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Endocrine and paracrine
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neuroendocrine prostate cancer
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of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
Prostate cancer is a common malignancy affecting men worldwide. While the

vast majority of newly diagnosed prostate cancers are categorized as

adenocarcinomas, a spectrum of uncommon tumor types occur including

those with small cell and neuroendocrine cell features. Benign neuroendocrine

cells exist in the normal prostate microenvironment, and these cells may give

rise to primary neuroendocrine carcinomas. However, the more common

development of neuroendocrine prostate cancer is observed after

therapeutics designed to repress the signaling program regulated by the

androgen receptor which is active in the majority of localized and metastatic

adenocarcinomas. Neuroendocrine tumors are identified through

immunohistochemical staining for common markers including chromogranin

A/B, synaptophysin and neuron specific enolase (NSE). These markers are also

common to neuroendocrine tumors that arise in other tissues and organs such

as the gastrointestinal tract, pancreas, lung and skin. Notably, neuroendocrine

prostate cancer shares biochemical features with nerve cells, particularly

functions involving the secretion of a variety of peptides and proteins. These

secreted factors have the potential to exert local paracrine effects, and distant

endocrine effects that may modulate tumor progression, invasion, and

resistance to therapy. This review discusses the spectrum of factors derived

from neuroendocrine prostate cancers and their potential to influence the

pathophysiology of localized and metastatic prostate cancer.
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Introduction

Prostate cancer (PC) is the second most commonly diagnosed cancer worldwide

among men (1). The American Cancer Society has estimated that ~270,000 men will be

diagnosed with PC in 2022 in the United States and PC will cause in excess of 34,000

deaths (2). The vast majority of men diagnosed with PC present with localized disease

and the histology of these tumors are primarily adenocarcinomas with distinctive
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architectures codified as Gleason patterns (3). The most

characteristic feature displayed by the vast majority of

localized and metastatic PCs involves the expression of the

androgen receptor (AR) and a program of genes/proteins

regulated by the AR including a group of secreted factors such

as prostate specific antigen (PSA) (4). In addition to specifying

prostate epithelial lineage and regulating metabolic and

secretory functions, the AR serves as a key therapeutic target

both for localized tumors and metastases (5, 6).

While the vast majority of PCs are adenocarcinomas with

secretory epithelial features and an active AR program, PCs with

a spectrum of other histological characteristics also occur.

Among these are PCs with qualities of neuroendocrine (NE)

cells (7). These prostate neuroendocrine carcinomas (NEPCs),

representing <1% of all localized PCs, exhibit features found in

benign NE cells and in NE carcinomas arising in other organs

and tissues (8, 9). In the context of localized NEPC, the origin of

these tumors has not been conclusively established as they may

arise from resident benign NE cells or from stem-like, basal or

luminal cells that usually serve as the cell of origin for typical

adenocarcinoma (10–12). In the setting of metastatic PC (mPC),

tumors with NE features are more common, ranging from 10-

30% depending on the markers used for classification and the

disease state with respect to the application of therapeutics that

suppress AR signaling (13, 14). Preclinical models have

demonstrated the occurrence of transdifferentiation whereby

tumor cells with a typical epithelial phenotype and active AR

program lose AR activity and gain NE characteristics during the

development of resistance to AR repression (15–17). With the

advent of more potent AR signaling inhibitors (ARSI) such as

abiraterone and enzalutamide, the frequency of tumors with NE

phenotypes is increasing (18). One feature of metastatic NEPC is

the downregulation or complete absence of AR expression and

AR signaling (18, 19). Notably, since a subset of these tumors

harbor underlying genomic alterations commonly observed in

AR-active PCs that serve to promote AR oncogenic functions

such as TMPRSS2-ERG rearrangements and structural

alterations in the AR locus – it is likely that these metastatic

PCs arise through transdifferentiation processes that are usually

repressed by an active AR program, and enhanced by the loss of

key tumor suppressors that influence cell reprogramming such

as TP53 and RB1 (13, 19–25).

While pure NEPC is evident in some tumor biopsies

including a subset with small cell histology that is

indistinguishable from small cell carcinomas arising in other

organs such as the lung, other tumors show mixtures of ARPC

and NEPC cells indicating a degree of intratumor heterogeneity

(14, 26). Currently, neuroendocrine small cell carcinomas are

primarily characterized by morphological features, lack of AR

expression, and a higher expression of several canonical markers

that reflects NE cell differentiation, e.g. the transcriptional

factors (TFs) ASCL1, NEUROD1, INSM1, and NE function,

for example, the secreted proteins synaptophysin (SYP),
Frontiers in Endocrinology 02
chromogranin A (CgA) and neuron specific enolase (NSE)

(14, 27, 28).

The role of the TFs in NE differentiation has been an active

area of investigation. ASCL1 plays a key role in promoting and

maintaining NE features of luminal cell types by modulating

chromatin dynamics, supporting lineage plasticity, and directly

regulating the expression of secreted NE proteins (29). Similarly,

NEUROD1 has been studied in the context of several aggressive

neural/neuroendocrine carcinomas and are important for their

survival, invasion, and metastasis (30). INSM1 is a zinc-finger

transcriptional factor that functions as a transcriptional

repressor, thus regulating cell cycle arrest and facilitating NE

differentiation (31). On the other hand, endocrine and paracrine

functions of NE secretory proteins, despite being some of the

most commonly used NE markers have not been established.

Most of these canonical markers are not specific to the prostate,

but are rather expressed in a variety of tumors that belong to the

diffuse neuroendocrine system (32).
Characteristics of neuroendocrine
cells in the normal prostate and
prostate carcinoma

The prostate is a complex secretory organ comprised of

multiple cell types broadly partitioned into epithelium and

stroma. The stroma includes predominant resident cell types

of smooth muscle, fibroblasts, vascular endothelium and nerves,

which are variably infiltrated with transitory inflammatory cell

populations that include neutrophils, lymphocytes, and

macrophages (33–35). The epithelial compartment is

comprised of two primary cell types: basal and luminal/

secretory cel ls , and a minor (<1%) populat ion of

neuroendocrine (NE) cells (7, 10, 12, 36) (Table 1).

Increasingly sophisticated molecular profiling studies now

subdivide these broadly classified types into subtypes with

distinctive functions such as those with stem cell/self-renewal

capabilities (35, 46, 47). The rare resident NE cells are not easily

appreciated using standard H&E staining. They are better

identified through immunohistochemistry (IHC) using

common markers including chromogranin A (CgA),

Synaptophysin (SYP), neuron-specific enolase (NSE), neural

cell adhesion molecule (NCAM), Forkhead-box A2 (FOXA2)

and CXC chemokine receptor 2 (CXCR2) (12, 48). NE cells are

androgen-insensitive and postmitotic and have been shown to be

preferentially situated around Ki-67 positive epithelial cells (49,

50), which are highly proliferative. Morphologically, there are

two distinct populations of NE cells in the prostate: open, flask-

shaped cells with long and slender extensions reaching the

lumen, and closed cells without luminal extensions (51)

(Figure 1). Although the distinct roles of these two NE sub-

populations have not been addressed specifically, there is a
frontiersin.org

https://doi.org/10.3389/fendo.2022.1012005
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Arman and Nelson 10.3389/fendo.2022.1012005
distinction in their ability to interact with the prostate

environment. Closed cells can only receive basal stimuli,

whereas, open cells can also receive luminal stimuli (52). The

functional role of NE cells in the mature prostate is not well-

defined. Electron microscopic studies have shown that NE cells

secrete a variety of products, including serotonin, histamine,

chromogranin A and other related peptides, calcitonin,

calcitonin gene-related peptide, katacalcin, neuropeptide Y,

vasoactive intestinal peptide (VIP), bombesin/gastrin releasing

peptide (GRP), somatostatin, alpha-human chorionic

gonadotropin (aHCG), parathyroid hormone-related protein

(PTHrP), thyroid stimulating hormone-like peptide,

cholecystokinin, adrenomedullin and vascular endothelial
Frontiers in Endocrinology 03
growth factor (VEGF) (8, 53). The potential role of these

factors on prostate cancer pathobiology has been detailed in

Table 2, however, in normal physiology these secreted factors

have growth promoting and angiogenic properties, justifying the

proximity of NE cells near to the highly proliferative cells. The

receptors for some of these products are detected in benign and

neoplastic prostate epithelium. This suggests, the possible roles

of NE cells in the regulation of growth and differentiation of the

developing prostate and also regulation of secretory processes in

the mature gland (8, 51, 53). Another postulated role of NE cells

is regulation of sperm function, because many of the

aforementioned secretory products are also detected in the

seminal fluid (11, 53).
TABLE 1 Common cell types comprising the normal prostate.

Cell type Markers for identification Function References

Smooth Muscle
Cells

• ACTA2, MYH11, MT1A, RGS5.
• Identified by a combination of morphology, tissue position
and lack of markers for epithelial cells, endothelial cells and
leukocytes.
• Vimentin and platelet-derived growth factors are sometimes
used as markers, but their expression not restricted to
fibroblasts.

• Contractile function altering prostate glandular shape for
urination vs ejaculation.
• Structural component of the stroma.

(37, 38)

Fibroblast Cells • APOD, FBLN1, PTGDS, DCN
• Vimentin

• Production of extracellular matrix
• Structural component of stroma
• Production of signaling molecules that influence epithelial
development and function

(35)

Vascular
Endothelial Cells

• VEGF
• CD34
• CD31
• CD200

• Growth and maintenance of differentiation of prostatic
epithelium.

(39, 40)

Nerves and
Nerve Cells

• Protein S100
• VAChT
• Tyrosine hydroxylase (TH)

• Receives sympathetic input via hypogastric nerves.
• Receives parasympathetic input via pelvic nerve.
• These nerves also provide sensory inputs to the gland.

(41)

Neutrophils • CD16
• CD45

• Role in tumor development by producing cytokines, proteases,
and reactive oxygen species (ROS) and interacting with other
immune cells

(42)

Lymphocytes • CD3
• CD4
• CD19

• Critical components of antitumor immunity.
• Aid in antibody production.

(42)

Macrophages • iNOS
• CD38
• Ym1
• CD206

• Promotes cell proliferation of normal prostate epithelial cells (43)

Basal Epithelial
Cells

• Cytokeratins 5 and 14
• p63
• CD49f, CD104, CD271

• Critical role in maintaining ductal integrity.
• Maintenance of survival of luminal cells.

(44)

Luminal/
Secretory
Epithelial Cells

• Cytokeratins 8 and 18
• CD26, CD38
• KLK3
• Androgen receptor (AR)
• Prostate specific antigen (PSA)

• Prostate development.
• Androgen mediated regeneration.

(45)

Neuroendocrine
Cells

• CgA
• SYP
• NSE
• NCAM/CD56)
• FOXA2
• CXCR2

• Function not well studied.
• Interacts with nearby epithelial cells in a paracrine manner.

(12)
fr
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Neuroendocrine prostate cancer
and neuroendocrine
transdifferentiation

Detailed mechanisms influencing prostate carcinogenesis

and tumor development have been previously reviewed (93,

94). Briefly, invasive prostate adenocarcinoma may develop

directly from differentiated secretory epithelium, epithelium

with stem-like characteristics, or from precursor lesions such

as high grade prostatic intraepithelial neoplasia (HGPIN).

Prostate adenocarcinoma exhibits characteristic features that

include cytologic atypia with enlargement of nuclei and

nucleoli, loss of the basal cell layer, branching morphogenesis,

and ultimately loss of gland formation (93–95). While localized

PC is generally treated by surgical removal or radiation therapy,

metastatic PC requires systemic therapies – primarily drugs that

repress AR activity. While most PCs resist AR targeting by

maintaining or amplifying AR signaling, a subset of PC cells is

capable of transdifferentiation – a process whereby a

differentiated AR-active tumor cell with secretory luminal cell

characteristics, change phenotypes with the resultant loss of AR/

luminal cell features and the gain of NE attributes that may

include alterations in morphology as well as the expression of

NE transcription factors and secretory proteins indicative of

differentiated NE cell types (25). This process termed

neuroendocrine differentiation (NED) is an adaptive

mechanism of PC cells to achieve therapy resistance as AR

signaling is no longer operative or required for cell survival and

proliferation (28). Determining the cellular mechanisms that
Frontiers in Endocrinology 04
initiate NED remains an active area of investigation, although

studies have shown that loss of tumor suppressor proteins such

as PTEN, RB1, TP53 increases the chances of tumors to acquire

neuroendocrine like features (96, 97). However, these tumor

suppressors appear to function as permissive rather than

deterministic factors. While loss of AR activity and attendant

enforcement of epithelial lineage is a key feature contributing to

NED, the precise molecular switches responsible for gaining NE

functions remain to be identified.

While a complete transition from ARPC to NEPC has been

shown to occur in patients, detailed autopsy studies have shown

that metastatic tumors may comprise heterogenous populations

of ARPC and NEPC that co-exist. Inter- and intra-tumor

heterogeneity with respect to tumor cells with ARPC and

NEPC phenotypes is well-documented. Notably, other than

representing a clear mechanism/pathway for bypassing AR-

directed treatment, the role and influence of NE cells in PC

pathology, particularly with respect to tumor progression and

therapy resistance is not completely understood. This is relevant

in view of the potential for NE-associated paracrine and

endocrine factors to influence the behavior of non-NE cell

types – either locally or distantly. In this context, a previous

study reported that the NE cells promoted the growth of

castration sensitive LnCaP cells, when grown as a xenograft in

castrated mice (98). Further, NE cells were also shown to

enhance the migration and metastasis of ARPC cells in the

presence of androgen (99). Thus, NEPC cells may promote the

continued survival of ARPC cells in an androgen deprived

environment possibly through paracrine and endocrine

mechanisms (discussed later).
FIGURE 1

Neuroendocrine cells in a normal prostate.
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TABLE 2 Secreted factors from neuroendocrine cells and potential roles in PC pathobiology.

Symbol Name Role Reference

CgA Chromogranin A • Marker for NED
• Elevated serum level is associated with poor prognosis and is inversely correlated with overall survival in men with
CRPC.

(54, 55)

CgB Chromogranin B • Marker for NED
• Involved in PC transdifferentiation

(56, 57)

SYP Synaptophysin • Marker for NED
• Detected in circulating tumor cells of CRPC patients and the expression levels directly correlates with abiraterone
and enzalutamide resistance.

(58)

ENO2 Enolase 2 • Isoenzyme of the glycolytic enzyme enolase.
• Marker of NEPC; upregulated as a result of IL8 mediated downregulation of FOXA1

(59, 60)

SCGN Secretagogin • Neuroendocrine marker
• Correlates with an increased risk of disease relapse after radical prostatectomy

(61, 62)

NPY Neuropeptide Y • Growth promoting factor in various malignancies.
• Key regulator of energy metabolism in PC cells.
• NPY neural axis regulates cancer cell survival, metabolism, and therapy resistance.

(63)

CGRP Calcitonin-gene related
peptide

• Increase invasiveness and promoting tumor growth in bone microenvironment. (64, 65)

CT Calcitonin • Elevated in advanced prostate cancer along with calcitonin receptor (CTR).
• CT-CTR axis promotes PC cell growth, invasion and epithelial-to-mesenchymal transition (EMT).

(8) (66, 67)

NTS Neurotensin • Expressed in LnCaP cells as a response to androgen-withdrawal.
• Induces tumor cell transdifferentiation to NE-like cells through (NTSR1/3) signaling.
• NTSR1 also has a frequently elevated expression in metastatic lymph nodes

(68)

AM Adrenomedullin • Expressed in LnCaP cells as a response to androgen withdrawal and maintains a NE phenotype.
• Supports hormone independent tumor growth and neovascularization by supplying/amplifying signals for
neoangiogenesis and lymphangiogenesis.

(69) (70)

IL8 Interleukin 8 • Expressed in both benign and malignant NE cells.
• Increased expression associated with reduced FOXA1 expression in NEPC cells.
• Paracrine and autocrine effects: cell survival and proliferation; NED.

(71) (72, 73)

GRP Gastrin releasing
peptide
(mammalian
homologue of
bombesin)

• Increased expression as a response to androgen withdrawal, activates the GRP/GRP-receptor (GRP-R) pathway, in
turn activating the NF-kB and increased levels of AR-splice variant (AR-V7).
• GRPR expression also amplifies in CRPC.

(74) (75)

SS Somatostatin • Inhibits cytokine release from immune cells.
• Somatostatin receptor scintigraphy (SRS) can identify NE features in prostate cancer and identify metastatic lesions.

(76–79)

VIP Vasoactive intestinal
peptide

• Increases expression of VEGF.
• Induces NE differentiation in LnCaP cells through PKA, ERK1/2 and PI3K signaling.

(80, 81)

VEGF Vascular endothelial
growth factor

• Increased expression associated with a more aggressive phenotype by aiding in neovascularization of carcinomas.
• Increased metastasis to lymph nodes

(82, 83)

PTHrP Parathyroid hormone
related protein

• Enhances proliferation of LnCaP cells at low levels of androgen, by stabilizing the AR protein through tyrosine
phosphorylation and preventing ubiquitination.
• Induces epithelial-to-mesenchymal transition (EMT) in prostate cancer cells along with promoting invasion,
tumorigenicity and metastasis.
• Protection of neighboring prostate cancer cells from Docetaxel (Doc) induced apoptosis.
• Positively regulates bone marrow microenvironment, increasing the angiogenic potential and tumor growth.

(84) (85–87)

HCG Human chorionic
gonadotropin

• Associated with poor prognosis in PC patients.
• Promotes cell migration and invasion via promoting ERK1/2 phosphorylation and MMP-2 upregulation in DU145
cells.

(88, 89)

5-HT Serotonin • Cell growth factor for PC cells.
• Promotes dedifferentiation of LnCaP cells by maintaining an increased level of cAMP.
• Activates MAPK/Erk and PI3K/Akt pathways to induce proliferation, migration, and differentiation.

(90, 91)

CCK Cholecystokinin • Induced by cysteine protease cathepsin B (CTSB)
• Supports self-renewal of PC stem cells (CSCs)

(92)
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Neuroendocrine carcinomas in non-
prostate organs and tissues

Neuroendocrine tumors (NETs) are generally classified as

neop la sms wi th both neura l - and endocr ine- l ike

characteristics, and these malignancies often have the ability

to store and secrete different peptides and neuroamines (100).

Although rare, NETs can occur anywhere in the body. Some of

the common sites of NET occurrence are the GI tract, lungs

and pancreas. The definition of NE cells has changed over the

years and in many instances their origins are still not clear. The

generally accepted criteria for defining NE cells are: (1)

production of a neurotransmitter, neuromodulator or

neuropeptide hormone, (2) the presence of dense -core

secretory granules from which hormones are released by

exocytosis, and (3) the absence of axons and synapses (101).

This section briefly discusses several of the more common

types of NETs, though as noted above, NETs can arise in nearly

every organ/tissue in the body and not all are described here,

for example neuroblastoma which is a NE tumor type arising

almost exclusively in children (102).
Gastric neuroendocrine tumor

These neoplasms are derived from enterochromaffin-like

cells (ECL cells) of the gastric mucosa (103). Over the last

several years, the incidence of gNETs is increasing, partly due

to improved diagnostic techniques (104). gNETs can be

clinically functioning (symptomatic) or silent (non-

symptomatic) (105) . Based on cl in icopathologica l

characteristics, and therapeutic and prognostic implications,

gNETs are further subdivided into four types (Type I-Type

IV) (104): Type I gNET comprise 70-80% of gNETs and are

associated with autoimmune chronic atrophic gastritis (103,

106). These patients often suffer from hypergastrinemia

(increased gastrin production by G cells) (103). Patients with

type I tumors are usually asymptomatic, and the tumors are

rarely metastatic (<2%) (106). However, these tumor cells

strongly stain positive for NE markers: chromogranin A (CgA)

and neuron specific enolase (NSE) (106), but have very low

proliferation rates; Type II gNET represent~7% of gNETs and

behave like type I tumors and are caused by gastrinomas. These

tumors show an increased staining for CgA compared to the type

I tumors and exhibit a higher metastatic potential (103); Type III

gNET are aggressive with tissue invasion and metastasis and

have a poor prognosis (106). The tumor cells also show a greater

frequency of staining for the proliferation marker Ki-67, but are

negative for CgA (106); Type IV gNET are very rare, but are

highly malignant and exhibit very high Ki67 staining. The tumor

cells may lack CgA expression but stain positive for other NE

markers such as synaptophysin (SYP) and NSE (106).
Frontiers in Endocrinology 06
Pancreatic neuroendocrine tumors

These are rare neoplasms that represent 1-2% of all

pancreatic tumors (107). They were originally thought to

arise from the islets of Langerhans, however, evidence

suggest an origin from the pluripotent stem cells in the

pancreatic ductal/acinar system (108). pNETs produce a

range of hormones , inc lud ing insu l in , g lucagon ,

somatostatin, and vasoactive intestinal peptide (VIP) (107).

Although most pNETs occur sporadically, about 10% are

associated with underlying genetic syndromes including

multiple endocrine neoplasia type I (MEN1), type IV

(MEN 4 ) , v o n H i p p e l - L i n d a u d i s e a s e ( VHL ) ,

neurofibromatosis type I (NF1), or tuberous sclerosis

complex (TSC) (109, 110). Like the gNETs, pNETs are also

classified into functional and non-functional tumors.

Functional tumors elicit systemic symptoms through

excessive secretion of hormones.
Lung neuroendocrine tumors

These are a heterogenous family of neoplasms in the lung,

that arises from the Kulchitzky cells of the bronchial mucosa

(111). They are classified into four distinct histologic variants,

namely, typical carcinoid (TC), atypical carcinoid (AC), large

cell neuroendocrine carcinoma (LCNEC) and small cell lung

carcinoma (SCLC) (112).

SCLC is the most aggressive form of lung cancer. SCLC was

originally thought to arise de novo from resident neuroendocrine

lung cells, but recent evidence from model systems suggests

alternative cells of origin such as alveolar type 2 cells (113–115).

Similar to NEPC, SCLC can also emerge following targeted

therapy for lung adenocarcinoma. For example, resistance to

epidermal growth factor receptor (EGFR) inhibitors can result

through tumor cell transdifferentiation to SCLC phenotypes

which no longer depend on EGFR signaling (116). SCLC is

well known to produce a variety of paraneoplastic syndromes

that result from the production of hormones such as

adrenocorticotrophic hormone (ACTH) (117).

Notably, SCLC shares a strong similarity of chromatin

structure and gene expression with NEPC (118). A detailed

study of various small cell neuroendocrine cancers (SCNCs)

across multiple tissues, shows that these cancers share a

convergence of molecular signatures (119, 120). Further, as

tumor cells progress towards a small cell neuroendocrine

(SCN) phenotype through transdifferentiation, they become

increasingly independent of tissue of origin and cluster with

SCNCs derived from different tissue types (120). Progress in the

clinical treatment of SCNCs has been very slow and improving

the outcomes of these aggressive tumors by exploiting the

mechanisms underlying their genesis has yet to be fully realized.
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Merkel cell carcinoma

Merkel cells are highly specialized cells located in the

epidermis that function as pressure receptors and may

originate from neural crest cells or from epidermal progenitors

(121). While originally considered to be the cell of origin of

MCC, which is also classified as primary neuroendocrine

carcinoma of the skin, primary small cell carcinoma of the

skin and trabecular carcinoma of the skin, more recent studies

indicate that these tumors arise from a Merkel cell precursor or

from resident fibroblasts via transdifferentiation (121, 122).

Drivers of MCC include the Merkel cell polyoma virus –

accounting for ~80% of MCCs, and the combination of TP53

and RB1 loss, which occur in the remainder (123–126). MCCs

share many features with NE carcinomas arising in other tissues

including the expression of SYP and CGA and the neural

transcription factor NEUROD1 (27).

In summary NETs are a diverse group of neoplasms,

distinguished by site of origin, degree of aggressiveness and

function. Although site-specific, most of the NETs express

immunohistochemical markers like CGA and SYP. These

tumors also produce a similar range of bioactive compounds

or hormones (127) that may influence tumor cells at distant sites

or produce pathological host effects that are collectively termed

as paraneoplastic syndrome (PNS). A PNS may be endocrine –

resulting from a specific hormone produced by the cancer, or

immune mediated. Though PNS are rare when considering all

human cancers, they occur more frequently in NETs. Several

well-characterized PNS results from the secretion of excess

hormones such as ACTH and others that produce neurologic

alterations due to the production of autoantibodies (117). For

most of these NETs, surgery and chemotherapy remain the

primary curative option if the cancer is identified while localized

to the primary site. This is, however, not feasible in NEPC as

most patients do not present with localized, organ-

confined disease.
The endocrine and paracrine
characteristics of NEPC

Analogous to benign NE cells found in the normal prostate,

NEPC cells are also capable of secreting a wide range of

neuropeptides and other factors (11, 12, 51). To date, studies

defining the role(s) of NEPC derived secreted products with

respect to PC pathogenesis and response to treatment are

limited, but the published reports indicate the importance of

further work in this field. Collectively, more than 20 distinct

NEPC-derived secreted factors have been identified that are

capable of exerting effects on PC adenocarcinoma (Table 2).

Recently, it was discovered that neuropeptide Y has a paracrine

effect on PC cells by influencing apoptosis, motility, and
Frontiers in Endocrinology 07
resistance to radiation therapy (63). The cytokine Interleukin 8

(IL-8) is produced by NEPC cells and is capable of activating

non-NE PC cells via the IL-8 receptor CXCR1 with downstream

signaling that is capable of driving androgen-independent

proliferation and tumor cell invasion (71) (Figure 2).

Adrenomedullin, a multifunctioning peptide, is produced by

PC cells after androgen depletion, and exerts autocrine signaling

that induces a NE-like transdifferentiation phenotype switch

(69). The neuropeptide Bombesin/Gastrin Releasing Peptide

(GRP) which is expressed in NEPC, exerts mitogenic effects

toward PC cells via bombesin receptor (BB2) signaling and may

also contribute to androgen-independent growth (74) (Figure 2).

The NEPC disease state is often associated with metastatic

dissemination. Caveolin-1 is an oncogenic membrane protein

associated with extracellular matrix organization, cell migration

and signaling (128). In prostate cancer cells, caveolin-1was shown to

exert paracrine effects that increase PC proliferative activity aiding

in perineural invasion and reduced apoptosis (129). The presence of

caveolin-1 in tumor derived exosomes also has a paracrine effect on

PC cells, driving the induction of cancer stem cell phenotypes,

epithelial- mesenchymal transition, and neuroendocrine

differentiation (130). As discussed previously, NEPC cells have

been shown to maintain ARPC adenocarcinoma tumor growth

after castration, by releasing uncharacterized factors that act to

increase AR expression and activity via paracrine and endocrine

signaling (98). NEPC cells have also been shown to promote the

development of adenocarcinoma pulmonary metastasis (99).

Gelsolin is a multifunctional actin-binding protein (131), that

shows an increased expression as a response to extracellular

factors produced by NEPC cells. Gelsolin overexpression

promotes epithelial cell invasion and an increase in cell

migration (99).

As mentioned before, NEPC cells can also exert systemic effects

through PNS. Though overall extremely rare, a range of PNSs have

been shown to arise in the context of aggressive and metastatic PC,

and notably NEPC [reviewed by Hong et al. (132)]. Though

unusual, the following paraneoplastic syndromes have been

attributed to PC: (1) The syndrome of inappropriate antidiuretic

hormone secretion (SIADH) is a cause of hyponatremia (133).

Patients with SIADHhave an elevated antidiuretic hormone (ADH)

level in the serum, which then acts on the distal tubules and

collecting ducts of the nephron and in turn increase water

resorption (132). Although SIADH is very rare in PC patients,

there have been a few clinical cases reported (133), and PC tumor

cells have been shown to express ADH (134). (2) Cushing’s

syndrome is caused by an excess of circulating serum cortisol as a

result of excess adrenocorticotrophic hormone (ACTH) (132). In

PC, Cushing’s syndrome is primarily associated NE-differentiation

to small cell carcinoma (135). (3) Humoral hypercalcemia, is caused

by the inappropriate release of parathyroid hormone related peptide

(PTHrP) by the tumor cells, which stimulates bone resorption

throughout the skeletal system (132). Although very rare in typical

PC, NEPC cells have been reported to synthesize and secrete PTHrP
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with both paracrine signaling effects toward ARPC and endocrine

effects contributing to hypercalcemia (84, 136). Several other

syndromes resulting from autoimmune responses have been

reported in rare instances to be associated with PC and NEPC

including Evan’s syndrome which involves immune-mediated

hemolytic anemia and thrombocytopenia (137); exfoliative

dermatitis (138); polymyalgia rheumatica (139); myasthenia gravis

(140); dermatomyositis (141); paraneoplastic jaundice (142) and

others (132).
Role of nerves in the development
of prostate cancer

In addition to the potential for NE cells to exert effects on

non-NE tumor cells via paracrine and/or endocrine effects, nerve

cells have also been shown to influence tumor cell behaviors.

This section will briefly summarize what is known regarding the

role of neural signaling in prostate cancer progression (Figure 3).

In addition to fibroblasts, endothelial cells and immune cells,

neurons and nerve fibers are integral and functional components

of tumor microenvironments (143). The processes of

neurogenesis (increased numbers of neurons/nerves) and

axonogenesis (tumor induced neural sprouting within or

toward tumor microenvironments) can be driven by

neurotrophic growth factors released by cancer cells and are

emerging as hallmarks of aggressive cancer types (143, 144). The

involvement of nerves in cancer has been studied in the context
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of perineural invasion (PNI), which is the process of neoplastic

invasion of nerves contributing to metastatic spread (145, 146).

However, until recently, nerves were generally considered

passive components of cancers (144). Studies from multiple

cancer models have now demonstrated the active involvement

of the parasympathetic nervous system (PSNS) and sympathetic

nervous system (SNS) in cancer progression and tumorigenesis

(147) PSNS and SNS are components of the autonomic nervous

system. SNS controls the “flight or fight” response and PSNS

controls the “rest and digest” processes. Cholinergic fibers of the

PSNS transmits impulses to other nerve cells or muscle fibers by

transmitting acetylcholine. Adrenergic fibers of the SNS

regulates the function of nearby and distant muscles and also

components of the central nervous system by transmitting

epinephrine or norepinephrine.

Several landmark studies regarding tumor innervation and

its effect in PC have been reported in the last several years and

have been reviewed in-depth (144, 148, 149). In-vitro co-culture

experiments with dorsal root ganglia showed an increased

proliferation of human PC cell lines (150), suggesting an

interdependence of carcinoma cells and neurons in PNI

contributing to PC progression. The importance of nerves in

PC progression was further confirmed when surgical

denervation showed inhibition of prostate tumor development

in mouse models (151). The same group also parsed out the roles

of the two distinct autonomic nerve types: (i) adrenergic fibers of

the SNS in promoting tumor cell survival and establishing the

initial stages of cancer development by acting through the b2 and
FIGURE 2

Neuroendocrine prostate cancer paracrine and endocrine signaling. Neuroendocrine prostate cancer (NEPC) cells produce and secrete a
spectrum of peptides and proteins with paracrine effects that influence local cell types and endocrine effects that influence distant cell types,
tissues and organs. NEPC-derived factors have the potential to promote the progression and therapy resistance of non-NEPC ARPC cells within
heterogenous tumors (intra-tumor heterogeneity) or in situations where inter-tumor heterogeneity occurs. NEPC, neuroendocrine prostate
cancer; ARPC, AR active prostate adenocarcinoma; IL8, interleukin 8; CXCR1, the IL8 receptor C-X-C motif chemokine receptor 1; GRP, gastrin
releasing peptide; BB2, the GRP/Bombesin receptor 2.
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b3-adrenergic receptors, and (ii) cholinergic fibers of PSNS in

supporting tumor cell invasion, migration and distant

metastases through stromal Chrm1 (cholinergic receptor

muscarinic 1)-mediated signals (151). In alignment with these

findings, clinical evidence has demonstrated that patients with

spinal cord injuries resulting in functional denervation of the

prostate have lower incidence rates of PC (152).

The mechanisms by which nerves influence the pathogenesis of

solid tumors is beginning to be understood. Tumors rely on

angiogenesis to expand beyond certain physiological constraints

relating to oxygenation and the delivery and elimination of

metabolites (153). Adrenergic nerve fibers release noradrenaline

into the tumor microenvironment that stimulates b2-adrenergic
receptor expression, resulting in the activation of endothelial cells

and angiogenesis, which in turn supports PC growth (154). PCs of

higher Gleason grade have been reported by exhibit greater

innervations than PCs of lower grade or benign prostatic

hyperplasia (144). Various neurotrophic growth factors produced

by cancer cells can contribute to the increased axonogenesis in PC.

Overexpression of the precursor of nerve growth factor (proNGF)

has been reported in PC accompanied by increases in nerve density

(155). Furthermore, it was shown that granulocyte colony-

stimulating factor (G-CSF) supports the survival of sympathetic

nerve fibers and promotes aberrant outgrowth of parasympathetic

nerve fibers in PC models (156).

Several studies have evaluated the role of nerve growth factor

(NGF) in the development of CRPC and NEPC disease states.

Tropomyosin receptor kinase A (TrkA) receptors activated via
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nerve growth factor (NGF) signaling have been shown to

mediate proliferation, invasiveness and epithelial-mesenchymal

transition (EMT) in CRPC cells (157). In the context of ARPC

treatment resistance, ADT has been shown to activate the

transcription factor ZBTB46, which consequently regulates the

activation of NGF. NGF in turn promotes NEPC differentiation

by interacting with Chrm4 (cholinergic receptor muscarinic 4)

(158). Another recent study reported that patients who

subsequently developed metastatic CRPC had elevated

adrenergic nerve fiber innervation in the primary prostate

tumors. High levels of the neurotransmitter norepinephrine,

which is produced by sympathetic nerves, was shown to induce

NE-like alterations in PC cells, and these effects were effectively

inhibited by b2-adrenenergic receptor blocker propranolol (159).
Conclusions and future directions

Neuroendocrine prostate cancer, whether developing de novo,

or through transdifferentiation, carries a very poor prognosis with

rapid disease progression and very limited survival. As the

frequency of metastatic NEPC appears to be increasing in the

setting of more potent AR pathway blockade, new treatment

approaches are needed. A notable feature of NE tumors involves

their ability to exert effects toward other tumor cell types and benign

host cells through endocrine and paracrine mechanisms. These

secreted proteins provide a communication network between

cancer cells and their adjacent microenvironment that may serve
FIGURE 3

Neural signaling and prostate cancer. Different aspects of prostate cancer development and progression are supported by the autonomic
nervous system. The adrenergic fibers of the sympathetic nervous system (SNS) release noradrenaline, that stimulate the beta-adrenergic
receptors and supports angiogenesis and tumor cell survival. The cholinergic fibers of the parasympathetic nervous system (PSNS) secrete
acetylcholine, that stimulates the cholinergic receptors and contributes to the pathogenesis of aggressive and malignant prostate cancer tumor
variant. Invasive prostate cancer cells also secrete neurotrophic factors such as nerve growth factor (NGF) that further stimulates the growth of
the autonomic nerve growth into the tumor microenvironment.
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to drive tumor progression and treatment resistance. Preclinical

studies have identified the potential therapeutic benefit of inhibiting

the activity of the signaling pathways activated by these NE-derived

molecules. However, the full repertoire of NEPC-derived secreted

factors – the secretome - remains to be identified and characterized.

A recent comprehensive secretome study of different subtypes of

SCLC underscores the benefit of understanding the aspects of

tumor biology that have extracellular influence (160). A thorough

understanding of the NEPC secretome: individual factors and

combinations - has the potential to widen our understanding of

peptides/proteins that can act in an endocrine/paracrine manner to

create tumor macro- and microenvironments conducive to tumor

survival and growth. Characterizing the interactions between NEPC

and ARPC cells also has the potential to identify key drivers of

cancer progression and therapy resistance that could serve as

effective targets for future drug development.
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