
Endocrine Control of Body Composition in Infancy,
Childhood, and Puberty

Johannes D. Veldhuis, James N. Roemmich, Erick J. Richmond, Alan D. Rogol, Jennifer C. Lovejoy,
Melinda Sheffield-Moore, Nelly Mauras, and Cyril Y. Bowers

Division of Endocrinology and Metabolism (J.D.V.), Department of Internal Medicine, Mayo Medical and Graduate Schools
of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905; Department of Pediatrics (J.N.R.),
State University of New York at Buffalo, Buffalo, New York 14214-3000; Departments of Pediatrics and Internal Medicine
(E.J.R., A.D.R.), General Clinical Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
22903; Pennington Biomedical Research Center (J.C.L.), Baton Rouge, Louisiana 70808; Division of Endocrinology
(M.S.-M.), Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555; Department of
Pediatrics (N.M.), Nemours Children’s Clinic, Jacksonville, Florida 32207; and Division of Endocrinology and Metabolism
(C.Y.B.), Department of Internal Medicine, Tulane University Medical Center, New Orleans, Louisiana 70112

Body composition exhibits marked variations across the early
human lifetime. The precise physiological mechanisms that
drive such developmental adaptations are difficult to estab-
lish. This clinical challenge reflects an array of potentially
confounding factors, such as marked intersubject differences
in tissue compartments; the incremental nature of longitudi-
nal intrasubject variations in body composition; technical
limitations in quantitating the unobserved mass of mineral,

fat, water, and muscle ad seriatim; and the multifold contri-
butions of genetic, dietary, environmental, hormonal, nutri-
tional, and behavioral signals to physical and sexual matura-
tion. From an endocrine perspective (reviewed here), gonadal
sex steroids and GH/IGF-I constitute prime determinants of
evolving body composition. The present critical review exam-
ines hormonal regulation of body composition in infancy,
childhood, and puberty. (Endocrine Reviews 26: 114–146, 2005)

I. Timing and Tempo of Normal Human Growth
A. Linear growth and body weight
B. Body composition in childhood and puberty

II. Measurement of Body Composition
A. Body mass index
B. Two-compartment models
C. Four-compartment models
D. Two- and three-compartment models
E. Fat topography
F. Clinic and field methods

III. Sex-Steroid and GH Interactions on Target Tissues in
Puberty

A. Overview
B. Actions of androgen, estrogen, GH, and IGF-I on bone
C. Adiposity and sex-steroid hormones
D. Adiposity and GH/IGF-I
E. Control of muscle by sex steroids and GH/IGF-I

IV. Energy Expenditure in Puberty
V. Summary

I. Timing and Tempo of Normal Human Growth

A. Linear growth and body weight

AUXOLOGY [Gk. auxesis, to increase or grow; logos,
study] is the scientific analysis of physical growth and

development. Growth is a complex process that is sustained
throughout in utero development, infancy, childhood, pu-
berty, and early adulthood. Dynamic control of growth is
endowed by age- and gender-dependent interactions among
key genetic, environmental, dietary, socioeconomic, devel-
opmental, behavioral, nutritional, metabolic, biochemical,
and hormonal factors. Thus, normative data must be devel-
oped from age-specific, gender-matched, and genetically
comparable healthy populations.

Although normative isobars are widely used for compar-
isons of static height, the endocrinologist and pediatrician
should also evaluate the velocity of linear growth velocity
(annual increment in height), chronological and apparent
biological age, pubertal status, family history, and psycho-
social adjustment. From a clinical perspective, biological age
is often assessed indirectly as radiographic bone age.

The velocity of in utero linear growth is maximal at about
18 wk of gestational age in the human. At this time, the fetus
grows four times more rapidly than at any time postnatally.
Increases in body weight follow a similar temporal pattern,
except that the zenith occurs at about 34 wk. The growth rate
declines sharply during the last weeks of gestation. The ma-
ternal-placental environment dictates the infant’s birth
weight more than the fetal genotype (1). In the newborn,
height velocity adjusts toward the genetically predicted tra-
jectory. Linear growth averages approximately 25 cm in the
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first year and 12.5 cm in the second year of life (see Refs. 2
and 3 for distributional estimates). The annual height veloc-
ity decreases to 8 cm (ages 2–4 yr) and 6 cm (ages 4–6 yr)
during childhood. A plateau-like phase emerges in midchild-
hood, wherein height velocity approaches 5.5 cm/yr before
puberty. Especially in the male, there is an incompletely
understood decline in height velocity before onset of the
pubertal growth spurt.

1. Sex differences in the fetal period. Unborn humans exhibit two
gender-related auxological distinctions: 1) males exhibit
more rapid linear growth than females early in utero; and 2)
girls manifest greater skeletal maturation than boys after 15
wk of gestational development. For example, the crown-
rump length in boys exceeds that in girls by 1.0 mm at 8 wk
and by 2.6 mm at 14 wk gestation (4). Ultrasonographic
records of fetal head circumference show an analogous gen-
der difference early in development. At term, the foregoing
sex-related distinctions approach 2% of the population mean.
Conversely, skeletal maturation (e.g., defined by radiological
bone age) proceeds more rapidly in the female than male
fetus, which disparity yields a bone age advance of 1.5 wk in
girls by the early third trimester of pregnancy (5). Weight
diverges in the sexes at approximately 24 wk of gestational
age, such that boys weigh 70 g more than girls at 30–32 wk
of in utero life. The absolute male-female weight difference
approximates 130 g (4% of the mean) at birth.

2. Sex differences in the postnatal period. Figure 1 presents
population-based projections of linear growth velocity by
gender in North American children. Healthy cohorts are
heterogeneous in genetic background, biological develop-
ment, nutrition, exercise, and psychosocial adaptation. Ac-
cordingly, in an effort to incorporate expected genetic non-
uniformity in height trajectories, normative data include

observations in children destined to become relatively tall or
short as adults.

In the first one-half year of life, boys gain height more
rapidly than girls. This velocity difference recedes after 8
months of age (2). During the age interval of 1–4 yr, girls
increase in stature slightly more rapidly than boys. There-
after, mean linear growth velocities converge in the sexes
until approximately age 9, when girls (but not boys) begin a
pubertal growth spurt. In North American and West Euro-
pean cohorts, during the interval of 9–14 yr of age, girls on
average are taller than boys (3).

Girls attain a peak height velocity of 8.3 cm/yr at an
average chronological age of 11.5 yr. This growth milestone
corresponds to pubertal Tanner breast stages 2 and 3. Boys
gain height at a prepubertal rate until age 11 (instead of 9),
when testis volume begins to increase beyond 7–10 ml. Ad-
olescent males then achieve a peak height velocity of 9.5
cm/yr at about 13.5 yr of age. The latter chronology coincides
with pubertal genital stages 3 and 4. Maximal height velocity,
but not total duration of linear growth, tends to be greater in
youths who mature early. In both sexes, the pubertal growth
rate declines rapidly after the gender-specific zenith; e.g.,
girls gain 1 cm/yr or less in height after age 14.5 yr, and boys
gain 1 cm/yr or less after age 17 yr. The net pubertal incre-
ment in stature in the male exceeds that in the female by 3–5
cm in Western cultures. Accordingly, the mean adult height
difference of 13 cm between the sexes primarily reflects the
gain of an additional 8–11 cm during a more prolonged
prepubertal interval (�2 additional years) in boys.

3. Interindividual auxological variations. Height isobar projec-
tions (static distance curves) are shown for both sexes in
Figure 2. Such population-defined data belie significant non-
uniformities among individual children in the timing (onset)
and tempo (rate) of sexual maturation and attendant physical
development. Known genetic and environmental factors pre-
dispose to pubertal pathophysiology (6–12). However, pre-
cisely how heredity and environment control normal vari-
ations in physical maturation in healthy individuals is less
well understood (13). Mechanistic considerations include
mutations or microsequence polymorphisms of genes en-
coding (at least) the LH �-subunit, the aromatase enzyme,
and the GH, LH, leptin, glucocorticoid, estrogen, and an-
drogen receptors (14–19). Additional studies will be impor-
tant to elucidate the impact of molecular diversity on phys-
ical, sexual, and psychological phenotypes.

Standardized growth curves assume a population-based
mean timing of pubertal onset and progress. However, any
given child may exhibit a delay or advance in sexual mat-
uration and thus diverge at least temporarily from group
predictions (2, 20, 21). A relevant family history should help
in interpreting the clinical significance of serial growth mea-
surements. As an additional aid, reference height-velocity
predictions are available for average, early-, and late-matur-
ing children in Northern Europe (3).

Normative weight trajectories are illustrated in Figure 3.
Newborns lose approximately 10% of birth weight over the
first 7–10 d of life. The exact adaptive processes that mediate
evident extracellular fluid loss and inferred tissue catabolism
at this time have not been articulated fully, but presump-

FIG. 1. Normative height velocity (centimeters per year) data in
healthy boys (A) and girls (B) of Western European ethnicity, who
subsequently become tall (solid line) or short (dotted line) as adults.
Adapted from Ref. 2 with permission.

Veldhuis et al. • Endocrine Control of Childhood Body Composition Endocrine Reviews, February 2005, 26(1):114–146 115

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/2

6
/1

/1
1
4
/2

3
5
5
2
5
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



tively entail combined nutritional and endocrine factors.
Healthy neonates overcome the expected weight deficit
within several weeks, and then gain approximately 30 g/d
during the first 3 months of life. The latter mean increment
declines to 20, 15, and 12 g/d over successive quarterly
intervals until age 1 yr.

In the first year of life, male infants gain weight slightly
more rapidly than female counterparts, such that at 12
months of age boys weigh an average of 10 kg and girls 9.5
kg. Over the next 2 yr, mean weight velocity approximates
8 g/d in both sexes. Weight gain diminishes to 6–7 g/d (2 or
2.5 kg/yr) in midchildhood. At age 7 yr, boys usually weigh
23 kg and girls 22 kg. Weight velocities accelerate by nearly
2-fold in the gender-specific years of puberty, wherein males
gain 5 kg/yr (13.7 g/d) and girls 4.2 kg/yr (11.5 g/d).

B. Body composition in childhood and puberty

Extended, prospective, ethnicity-specific, and population-
based normative body composition data stratified by gender
in childhood are lacking. However, important (albeit longi-
tudinally delimited and/or cross-sectional) observations are
available in the fetus, neonate, child, and adolescent (22–28).
Comprehensive body-compositional investigations will re-
quire the use of validated quantitative procedures, minimal
(if any) radiation exposure, high procedural reproducibility,

and repeated application in randomly selected cohorts of
healthy children.

Accurate estimates of and (population-based) statistical
boundaries for fat mass (FM) are crucial to classify children
accurately as lean, normal, overweight, or obese. Analo-
gously, reliable quantitation of fat-free mass (FFM) is im-
portant to identify relative or absolute sarcopenia and os-
teopenia. Valid measures of regional adiposity (e.g., sc and
visceral fat) are essential to elucidate the pathophysiological
basis and clinical impact of hyposomatotropism, insulin re-
sistance, dyslipidemia, obesity, and cardiovascular morbid-
ity (see Section II.A).

1. FM and FFM accrual. Projections of the gender-specific
evolution of FM, FFM, and percentage body fat in Caucasian
children are given in Fig. 4. These predictions aggregate the
results of accurate multicompartmental analyses performed
cross-sectionally at selected stages in infancy, childhood, pu-
berty, and early adulthood (22, 29, 30). Interpolations are
required to supplement incomplete body-compositional data
in midchildhood and early adolescence. Although ethnic
comparisons are limited, one pediatric investigation com-
pared FM and FFM estimates among African-, European-,
and Mexican-American children at or over the age of 4 yr (31)
(Fig. 5). This analysis like several recent other studies re-

FIG. 2. Height (static distance) isobars in boys (A and C) and girls (B and D) from birth through adulthood in the United States. Data are adapted
from the 2000 Center for Disease Control (CDC) Growth Charts (3).
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ported a higher mean FM value than that typically observed
earlier in children (32). Whether the latter (possible) increase
in absolute FM reflects de facto historical trends, population
selection, and/or technical differences is not clear.

The newborn boy has about 6.5% more (absolute) FFM
than the newborn girl (33, 34). This gender difference mirrors
the relative paucity of total body fat in the infant male
(�13%), compared with the female (�15%), and the male’s
higher birth weight. FM increases to 25–30% of total body
weight by age 6 months. Thereafter, FFM begins to accumu-
late preferentially. For example, 85% of the total weight gain
over the second 6 months of life comprises FFM. Although
fractional FFM remains comparable by gender across mid-
childhood, boys accrue about 1 kg more absolute FFM than
girls before puberty (22, 29, 30). In puberty, boys acquire FFM
at a greater rate (kilograms per year) and for a longer period
than girls. In one analysis, stable (adult) values of FFM were
attained by approximately 15–16 yr of age in girls and 2–3 yr
later in boys (35).

In absolute terms, FM (kilograms) is comparable by sex in
children ages 3–5 yr. Girls accumulate FM more rapidly than
boys in midchildhood, such that 10-yr-old females have ap-
proximately 2 kg (6%) more FM than males. In adolescence,
girls gain absolute FM at an average annual rate of 1.14 kg,
whereas boys maintain a relatively fixed absolute FM. Hence,
percentage body fat declines in pubertal boys (27).

2. Water, protein, and mineral accrual. Primary components of
FFM (water, protein, and mineral) vary markedly in infancy
and adapt further in childhood and adolescence (Fig. 6). The
percentage of total body water (TBW) normalized to FFM
(TBW/FFM) exceeds 80% at birth. The latter value decreases
by 1% over the first year of life. TBW/FFM falls to 77% in
boys and 78% in girls in early childhood and to 76% by age
10 in both sexes (22, 25, 29).

During the age interval of 10.5–12.5 yr, girls maintain a
lower mean TBW/FFM than boys. This sex difference wanes
until boys begin (and girls complete) puberty (25, 29, 30).
Protein constitutes 15.7% of FFM at birth. The latter value
increases to 18 and 19% at 2 and 10 yr of age, respectively,
and approximates 20% in late adolescence (22, 25, 29).

Mineral comprises primarily (�82%) bone salts. The min-
eral fraction in FFM remains stable in infancy and early
childhood, and then rises disproportionately (over protein
and water) in midchildhood and early puberty (22, 25, 29).
Bone mineral density (BMD) determined at near-peak height
velocity is greater in boys than girls (25, 29, 30). BMD is
higher in African-American than Caucasian individuals be-
fore and after puberty in both sexes (36, 37). The precise
endocrine determinants of this consistent ethnic difference
are not known. Nonendocrine genetic and environmental
factors may contribute to some differences. One analysis
revealed higher (overnight) serum concentrations of GH and

FIG. 2. Continued
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estradiol in African-American than Caucasian men, which
levels correlated positively with BMD (36). No comparable
distinction was evident before puberty or in women (37).
Other clinical studies have reported ethnic contrasts in
plasma IGF-I/IGF binding protein (IGFBP) concentrations in
the female (37–39). The foregoing epidemiological observa-
tions highlight the need to better understand the specific
mechanisms by which ethnicity, gender, and developmental
age modulate the endocrine control of human growth and
body composition (40).

II. Measurement of Body Composition

Body composition evolves dramatically in utero and across
infancy, childhood, puberty, and adulthood and appears to
be conditional on early developmental events (28, 34, 35,
41–45). Quantitation of body composition relies on auxo-
logical or anthropological attributes [e.g., body mass index
(BMI), skinfold thickness, abdominal girth], physical prop-
erties (e.g., total body volume, bioelectrical impedance, dual-
energy x-ray absorbance), and/or biochemical markers (e.g.,
TBW, calcium, potassium, or nitrogen). Clinical measures are
then applied in empirically constructed regression (correla-
tion or prediction) equations to estimate unobserved features
of body composition (26, 35, 46–50).

Primary estimates of body composition were derived by
chemical analyses of adult cadaveric tissues (27, 31). Such

data, albeit limited, provide validation for secondary esti-
mates based on densitometry (e.g., underwater weighing),
dual-energy x-ray absorptiometry (DEXA), isotope dilution,
bioelectrical impedance, BMI, and skinfold thickness (22, 24,
26, 27, 29, 31, 46, 47, 51, 52).

A. Body mass index

Height (meters) and weight (kilograms) are simple an-
thropological attributes. Algebraic combinations of these two
measures are used to compute the BMI (kilograms per square
meter), ponderal index (kilograms per cubic meter) or Benn
index (kilograms per meter) (53). BMI has been applied to
categorize children as lean, normal, overweight, or obese (54,
55). However, this metric varies with developmental age,
gender, and ethnicity (27, 55–58). For example, BMI is high
in the first year of life, decreases in early childhood (ages 2–5
yr), and then increases in puberty (54, 59). Accordingly, BMI
should be compared via age-stratified standardized z-scores
(or percentiles) defined in healthy populations, e.g., as re-
ported in North America, Holland, United Kingdom, France,
and China (60–63).

BMI does not quantitate body composition. Indeed, this
metric amalgamates frame size (mineral content), total FM
(visceral and sc) and lean tissue (27, 28, 30, 52, 64). Thus, a
short, muscular adolescent could be assigned a high BMI
spuriously suggestive of obesity (47, 59). Moreover, treat-

FIG. 3. Normative weight (kilograms) projections in boys and girls from birth through midchildhood. Data are presented as in Fig. 2.
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ment with recombinant human (rh) GH often reduces FM by
2–3 kg and increases lean body mass comparably in the
hypopituitary adult, while leaving BMI unchanged (65).

Indices like BMI also do not monitor the regional fat dis-
tribution (e.g., visceral vs. sc) (57, 66–68). This distinction is
significant epidemiologically, because visceral fat accumu-
lation predicts higher risk of peripheral insulin resistance,
dyslipidemia, adult cardiovascular disease, hypoandrogen-
emia, elevated free (salivary) cortisol, reduced concentra-
tions of SHBG, IGFBP-1, LH, and high-density lipoprotein,
and impoverished daily GH production (22, 26, 28, 69–76).
Recent investigations suggest that deficiency of intrauterine
growth factors, degree of fetal stress, low birth weight, rel-
ative hypercortisolemia, impaired glucose disposal in mid-
childhood, and premature adrenarche further forecast
greater risk of insulin resistance, cardiovascular disease, dys-
lipidemia, and abdominal obesity in adulthood (39, 77–86).

B. Two-compartment models

1. Densitometry. Densitometric methods partition body com-
position into two mutually exclusive compartments, viz., FM
and FFM. Calculations relate whole-body density (weight
divided by volume) to FM and FFM by way of average
tissue-density constants (24, 87). To estimate whole-body
density, weight is quantitated accurately on a dry scale, and

volume is estimated by underwater weighing, clinical volu-
metry, or air plethysmography (26).

Water-displacement procedures are based on the principle
of Archimedes, and thus require: 1) complete submersion of
the volunteer in a suitable water-filled chamber to record
underwater weight (hydrodensitometry) or quantitate water
overflow into a burrette (clinical volumetry); and 2) accurate
measurement of functional residual lung capacity by nitro-
gen washout to correct for the thoracic gas space. The latter
determination introduces the majority of technical variability
into the final estimate of percentage body fat. Within-subject
coefficients of variation are approximately 3–4% of total
body weight (26, 88). Limitations of hydrodensitometry in-
clude the requirement for a water tank, variable subject re-
luctance, and multiple (up to 10) submersions to ensure
technical reproducibility.

Air-displacement plethysmography provides a comple-
mentary volumetric approach based on Boyle’s law of the
partial pressure of gases. This procedure may be less stressful
to the subject than repeated immersion in a water chamber
(89, 90). One plethysmographic unit comprises a sealed fi-
berglass capsule (or pod). The volunteer enters the chamber
wearing a tightly fitting swimsuit and swim cap, views the
room through a small window, and breathes quietly for
several minutes while an internal diaphragm is oscillated to
generate small changes in air pressure. The air-displacement

FIG. 3. Continued
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estimate is also corrected for thoracic gas volume (above).
Cross-validating analyses indicate that air- and water-dis-
placement methods perform comparably in young adults.
However, air plethysmography may underestimate percent-
age body fat by 2–7% of total body weight (2–6 kg absolute
FM) in children and older individuals (45, 52, 89–91).

In densitometric techniques, one calculates percentage
body fat from the density estimate using an empirical re-
gression model, such as that of Brozek et al. (51) or Siri (92).
Both sets of equations assume a nominal adult tissue density
of 0.9 g/ml for fat and 1.1 g/ml for FFM (24, 31). However,
the use of adult tissue-density constants forces an overesti-
mate of percentage body fat in children (Fig. 7). This artifact
arises because the true density of FFM is as low as 1.063 g/ml
in early childhood, whereas the contribution of water (den-
sity, 0.9937 g/ml) and mineral (density, 3.0 g/ml) to body
density is higher and lower, respectively (27, 30). Accord-
ingly, Lohman and colleagues suggest the use of age-specific
tissue-density constants in the Siri model (24, 27). This ad-
justment obviates systematic overestimation bias in younger
subjects. However, compared with multicompartmental
methods (below), densitometry may yield inconsistent indi-
vidual predictions (random procedural bias) (30).

2. Isotope dilution methods. Accurate quantitation of TBW fa-
cilitates reliable determination of body composition, because
water represents 74–80% of FFM depending on age and
gender (29). TBW is quantitated by the degree of dilution in
the aqueous compartment of a known amount of a stable or

radioactive isotope of water (e.g., 2H2O, H2
18O, or 3H2O)

administered orally. Isotope concentrations are monitored in
one or more timed (postequilibration) samples of serum,
urine, saliva, or expired air by liquid scintigraphy (3H2O),
infrared spectrometry (2H2O), or isotope-ratio mass spec-
troscopy (2H2O or H2

18O) (68). Estimates are corrected for
nonaqueous loss, because 4% of labeled hydrogen exchanges
with nonaqueous hydrogen and 1% of labeled oxygen are
removed via metabolic oxidation. The degree of final isotope
dilution is proportionate to TBW. Given an estimate of TBW,
one may calculate FFM and percentage body fat from age-
and sex-specific constants for TBW/FFM (above). In isotope
dilution studies, the coefficient of variation in the calculation
of percentage body fat approximates 2–3% of body weight
(31, 92).

C. Four-compartment models

Multicompartmental models are used to quantitate FM
and the principal components of FFM (water, mineral, and
protein) (29, 30, 59, 93–99). For example, one method deter-
mines TBW by isotope dilution (above) and quantitates FM
and mineral mass by DEXA. Some compartmental models
include the determination of body cell mass (e.g., appraised
by nonradioactive potassium spectrometry) or total body
nitrogen and calcium (e.g., assessed by whole-body neutron
activation analysis) (100–105).

D. Two- and three-compartment models

Two-compartment analyses of body composition use sev-
eral means to evaluate the components of FFM (26, 46). In the
water-density model, TBW is quantitated first to calculate
FM (total weight minus TBW). Protein and mineral content
of FFM are estimated secondly from age- and gender-specific
prediction equations. In the mineral-density model, bone
mineral content is determined so as to compute summed
water and protein (mineral-free lean tissue) and FM (29). The
water-density model performs more reliably in pediatric age
groups, because water represents 73–80% (and mineral only
5%) of FFM in children (30). The mean bias of the water-
density calculation of FM is approximately 0.75% when cal-
ibrated against four-compartment methods. On the other
hand, the mineral-density model may overestimate percent-
age body fat by as much as 5–7.5% in individual children and
adolescents (Fig. 8).

DEXA scanning is a contemporary three-compartment
model. DEXA quantitates FM, mineral and mineral-free lean
tissue (protein and water) based on differential tissue ab-
sorption of two distinct x-ray energy peaks (31, 35, 43, 50).
The volunteer lies supine on a table under a detector panel
placed over the x-ray source. X-rays are fractionated into 40
keV and 70–100 keV energy streams. Approximately 40–
45% of recorded pixels (unit absorbance ratios) monitor x-ray
attenuation by bone and soft tissue (combined), and 55–60%
monitor x-ray absorbance by fat and mineral-free lean tissue
(combined) (31). Prediction bias arises from DEXA determi-
nations made near the surface of the body (due to dispro-
portionate proximity of mineral and sc fat) and the appen-

FIG. 4. Estimates of FFM, FM, and percentage body fat in European-
American boys (closed symbols) and girls (open symbols) from infancy
through early adulthood (age 20 yr). Curves reflect aggregate data
compiled from and interpolated among cross-sectional analyses (22,
25, 29, 30, 35). Units are kilograms (FFM, FM) (31).
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dicular skeleton (due to undue contiguity of muscle and
connective tissue).

DEXA precision is higher when applied to calibration
phantoms than to the human skeleton or the whole body (96,
106). In adults, the reproducibility of DEXA-based quanti-
tation of BMD averages 0.7% or 0.01 g/cm2; and, the absolute
error in percentage body fat approaches � 1.4% of body
weight. The latter precision compares well with a value of
�1% in predicting absolute FM by four-compartment models
(96, 107). In adults, estimates of percentage body fat based on
DEXA usually fall within 3% of those determined by more
complex models. Discrepancies typically reflect technical un-
certainty in the DEXA calculation of body weight (which
should agree with the scale weight within 1 kg) and/or errors
in the isotopic determination of TBW.

DEXA scanning tends to predict falsely high percentage
body fat in children (and older adults) (30, 95) (Fig. 8). DEXA
likewise overestimated FM in two recent primary validation
studies using the whole carcass of immature swine (108, 109).
Practical limitations include equipment and technician costs
and low-dose radiation exposure (1–3 mrad, or less than that
contributed by cosmic background during a single 4000-km
air flight). Nonetheless, DEXA technology offers a valuable
means to estimate body composition. Additional important
insights are achievable by way of computed tomography
(CT) and magnetic resonance imaging (MRI), because these
techniques allow one to appraise the regional distribution of
fat.

E. Fat topography

Intraabdominal fat is a key epidemiological determinant of
insulin resistance and cardiovascular risk (110). CT provides
one well-validated means to quantitate intraabdominal ad-

iposity. CT is technically precise in discriminating adipose
tissue and affords a brief scan time that obviates motion
artifact (111). To estimate abdominal fat, the CT examination
is performed at the level of the fourth or fifth lumbar ver-
tebrae, the corresponding intervertebral disc space, or (some-
what less reliably) the umbilicus. Data are expressed as the
cross-sectional area (square centimeters) of a demarcated
region of adipose tissue, such as visceral (mesenteric, peri-
colic, and perirenal), retroperitoneal, and sc fat (112, 113). A
recent distinction between superficial and deep sc FM sug-
gests that the latter may also predict increased cardiovascu-
lar health risk (114). MRI offers a complementary method to
quantify regional FM that does not require x-ray exposure.
Although not evaluated exhaustively in children, MRI out-
comes correlate with those of CT (115). Table 1 summarizes
available CT and MRI data in children as distinguished by
peripubertal age, gender, and ethnicity in cross-sectional
analyses. However, appropriately stratified longitudinal
comparisons will be required to definitively assess the
transpubertal control of regional fat distribution in girls and
boys. Concomitant metabolic implications of visceral and sc
accumulation and dissipation (e.g., peripheral insulin sensi-
tivity and lipoprotein composition) will be important to
quantitate so well as practicable in pediatric populations.
Finally, anatomic and metabolic adaptations across puberty
need to be correlated with changing hormone outflow (viz.,
GH, testosterone, estradiol, IGF-I, insulin, and leptin) or rest-
ing energy expenditure.

F. Clinic and field methods

Body composition may be assessed clinically by physical
anthropometry (e.g., BMI, the waist-to-hip ratio, anteropos-
terior abdominal dimension, skinfold thickness) and/or bio-

FIG. 5. Changes in FM and FFM of Af-
rican-American (filled circles), Cauca-
sian (open circles), and Mexican-Amer-
ican (filled triangles) girls (left panels)
and boys (right panels) ages 5 to 19 yr.
Data were collected cross-sectionally
from 856 healthy youth. FFM was cal-
culated from TBW data using age-
appropriate constants for hydration of
FFM. FM was determined by subtrac-
tion from total body weight. Note dif-
ferent y-axis ranges for girls and boys
and reduction in pubertal FM in Cau-
casian boys only. Adapted from Ref. 31
with permission.
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electrical impedance (34, 49, 116–119). In some studies, av-
erage predictions of percentage body fat derived from
summed skinfold thickness agree well with multicompart-
mental analysis (Fig. 9). However, anthropometric assess-
ments may exhibit significant inter- and intraindividual vari-
ability (random bias), and bioelectrical impedance estimates
may manifest marked (�25%) systematic bias compared
with multicompartmental analyses (34, 75, 119–121).

III. Sex-Steroid and GH Interactions on Target

Tissues in Puberty

A. Overview

From an endocrine vantage, normal physical growth and
sexual maturation require time-evolving coordination
among the somatotropic, gonadotropic, and adipostat sys-
tems (122–126). Time-varying somatic, visceral, endocrine,
and metabotropic signals are integrated to a significant de-
gree in hypothalamic centers (127–129). Additional interaxis
control is accomplished by convergent and divergent actions
of the corresponding hormones on the pituitary gland and
peripheral target tissues (40, 130–133). States of mono- and
bihormonal deficiency underscore the inferred interplay be-
tween somatotropic peptides and gonadal sex steroids in
directing adult body composition and sexual maturation
(134–137). For example, in the human, mouse, and rat, iso-
lated GH deficiency reduces the production of major GH-

dependent hepatic proteins, viz., IGF-I, IGFBP-3, acid-labile
subunit, and IGFBP-5, and retards the initiation of sexual
development (138, 139). In particular, deprivation of GH and
IGF-I: 1) delays the timely onset of puberty (in all species
studied); 2) slows the pace of pubertal maturation (all spe-
cies); 3) attenuates phallic growth (human); 4) reduces adult
testicular size (rodent); and 5) impairs sperm motility
(mouse); but 6) does not abrogate fertility in the mature
individual (all species) (131, 135, 140–145).

FIG. 6. Variations in TBW/FFM (circles), protein/FFM (PRO/FFM;
squares), and mineral/FFM (MIN/FFM; triangles), and mean density
of FFM (diamonds). Data apply to the newborn, prepubertal, and
pubertal boy (closed symbols) and girl (open symbols). Interrupted
lines reflect predictions based on a nominal adult (cadaveric) FFM
density of 1.1 g/ml. Compiled variously from cross-sectional data
reported in Refs. 22, 25, 29, 30, and 35.

FIG. 7. Bland-Altman plots to compare predictions across the human
lifetime of percentage body fat (% BF) by a two-compartment (2C) and
a four-compartment (4C) model of body composition. The x-axis pre-
sents % BF determinations by the 4C criterion model, and the y-axis
gives the bias [algebraic difference between the two methods (4C �

2C values)]. (Values for the 2C model are not shown directly, but are
calculated readily by addition of the X and Y values.) Equivalent
models would yield a zero mean bias (interrupted lines). Reliable
correlations between the two methods would afford limited y-axis
variance (random experimental variations). The implications of two
assumptions are illustrated; viz., a constant FFM density of 1.1 g/ml
(upper panel) and Lohman’s age-adjusted FFM density (lower panel)
(see text). Interrupted lines depict mean (systematic) bias, and dotted
lines define any trend in bias (slope of predicted linear regression �

2 SD, continuous curves). Squared correlation coefficients (r2) estimate
the percentage variation in bias due to changing % BF. P values test
a null hypothesis of no trend in bias. Symbols distinguish develop-
mental strata; viz., open circles, girls with Tanner breast stages I and
II; closed circles, Tanner breast stages III and IV (female); open tri-
angles, boys at genital stages I and II; and closed triangles, genital
stages III and IV. Stages I and II correspond to pre- and early puberty,
and stages III and IV to midpuberty and adulthood, respectively.
Reproduced from Ref. 30 with permission. The Bland-Altman graph-
ical representation was reported earlier.
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Clinical treatment of precocious puberty highlights the
inference that stimulatory effects of gonadal sex steroids on
the GH/IGF-I axis are reversed in part when ovarian or
testicular secretion is decreased medically (40, 146, 147). In
particular, therapy with a GnRH analog suppresses concen-
trations of estradiol and testosterone profoundly and those
of GH, IGF-I, and IGFBP-3 significantly, but does not affect
measurements of cortisol or adrenal androgens (148, 149).
Gonadal-axis down-regulation may thereby obviate rapid
skeletal maturation not only by sex-steroid depletion but also
by secondary inhibition of the somatotropic axis (150). Albeit
originally hypothesized as a means to stimulate growth in
the face of bone-age delay, combining rh GH supplementa-
tion with GnRH agonist therapy in children with sexual
precocity may enhance predicted final stature (147, 151, 152).

From a simplified viewpoint, the timely onset and effec-
tual progress of puberty would require, at a minimum, in-
teraxis coordination of GH/IGF-I and GnRH/LH/sex-ste-
roid production. Several mechanistic insights are relevant to
this network-like concept. First, IGF-I and/or insulin act in

an apparently species-specific manner to: 1) enhance hypo-
thalamic GnRH outflow in vivo in the juvenile female mon-
key and rat and stimulate GnRH secretion in vitro by murine
GT1–7 cells; 2) promote normal reproductive hormone se-
cretion in the male and female mouse in part via the central
nervous system insulin receptor substrate-2 signaling path-
way; 3) potentiate GnRH-stimulated LH release in vitro; and
4) synergize with LH and FSH in stimulating ovarian and
testicular steroidogenesis in vitro and in vivo (12, 132, 153–
163). Second, endogenous gonadal sex steroids amplify the
synthesis of GH and IGF-I and regulate the availability of
IGFBPs and cognate proteases (90, 131–133, 164–170). Third,
GH, IGF-I, IGF-II, insulin, and sex steroids interact via com-
plex heterologous control of receptor-effector signaling path-
ways (135, 165, 171–182). And, fourth, sex steroids and in-
sulinomimetic peptides act in combination to govern
appetite, thermoregulation, behavior, and energy expendi-
ture via central and peripheral pathways (183–186). Com-
prehensive formal integration of the foregoing multivalent
mechanisms is not yet possible.

FIG. 8. Bland-Altman plots to examine possible bias
in children between estimates of percentage body fat
(% BF) based on: 1) a three-compartment mineral-
density (3C-bone) model (top); 2) a three-compartment
water-density (3C-H2O) model (middle); and 3) DEXA
(bottom) compared with a four-compartment criterion
model (4C) applied in children. Predictions by DEXA
showed systematic positive bias; viz., predicted higher
% BF at all measurement levels, as reflected in the
zero slope of the linear regression. Data are presented
as defined in the legend of Fig. 7. Adapted from Ref. 30
with permission.
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B. Actions of androgen, estrogen, GH, and IGF-I on bone

1. Hypogonadism overview. Prolonged deprivation of sex-ste-
roid hormones at or after the time of expected puberty pre-
disposes to reduced peak bone mass, attendant osteopenia,
osteoporosis, and major fractures in the adult (56, 187–190).
Cross-sectional epidemiological analyses demonstrate that
total and bioavailable (non-SHBG-bound) estradiol concen-
trations predict bone mass in women and men more accu-
rately than total or bioavailable testosterone concentrations
(188, 191–194). Data from four longitudinal investigations
corroborate the fundamental association between peripheral
estrogen concentrations and bone mass in the aging indi-
vidual (56, 188). Testosterone, GH, IGF-I, and (in some stud-
ies) leptin concentrations also correlate with TBW in some
analyses (195, 196). Albeit incompletely defined, heteroge-
neous genetic factors are prominent determinants of bone
mass in healthy individuals (197, 198). In addition, ethnicity
may influence bone density by as much as 6–11% (199).

2. Male hypogonadism. Testosterone replacement in hypogo-
nadal boys and men increases TBW incrementally in pro-
portion to the degree of androgen deficiency at presentation
(168, 200–202). The anabolic effects of testosterone in vivo are
not fully understood but are associated with augmentation
of at least: 1) pulsatile GH secretion, which drives longitu-
dinal bone growth (166, 169, 170, 203, 204); 2) IGF-I synthesis
in both liver and bone cells (169, 170, 205–207); 3) gastroin-
testinal absorption and skeletal retention of calcium and
magnesium (201, 208–215); 4) muscle mass, mechanical load-

ing, and energy expenditure, which in turn correlate with
bone mineral content and density (90, 162, 164, 165, 168,
216–220); 5) biochemical markers of osteoblastic activity,
such as osteocalcin (221); and 6) epiphyseal growth-plate
maturation, which culminates in mineralization-dependent
cessation of skeletal elongation (15, 222–224). In vitro studies
affirm these inferences and further illustrate that (in rodent
species) testosterone and 5�-DHT can stimulate osteoblastic
activity, inhibit apoptosis of osteoblasts and osteocytes, sup-
press osteoclastogenesis, and promote cortical (periosteal)
bone apposition (225–228). Androgen- and estrogen-depen-
dent stimulation of epiphyseal mineralization underscores
the clinical challenge of tailoring sex-hormone replacement
in hypogonadal children to optimize total skeletal growth
without inducing premature fusion of the growth plate
(229–234).

Androgen receptors are expressed in human osteoblastic
cells and mature osteocytes (235). A normal linear growth
spurt is described in 46XY patients with complete androgen
insensitivity (testicular-feminization syndrome) due to inac-
tivating mutation of the cognate receptor (145, 236). None-
theless, loss of androgen-receptor function limits adult
height and skeletal volume (bone size) in the genotypic male
to values intermediate between those of the unaffected male
and female (237). A reduction in bone mineral content is
reported in some (but not other) patients with testicular
feminization syndrome. Low bone mineral content may re-
flect: 1) a younger age at prophylactic orchidectomy; 2) sub-
optimal estrogen replacement; 3) the postgonadectomy fall in

TABLE 1. Impact of childhood age, gender, and ethnicity on abdominal visceral and sc fat accumulation

Study cohort N Age (yr)
Fat accumulation (cm2)

Total body fat (%) Citation no.
Visceral Subcutaneous

Prepubertal boys and girlsa 16 6.4 (4–8) 8 (2–24) 65 (10–141) 25.8e 555
Prepubertal African-American boysa 27 7.3 (4–10) 22 (7–72) 61 (8–372) 26.6e 556
Prepubertal Caucasian boysa 16 8.2 (5–10) 27 (7–65) 65 (14–225) 24.5e 556
Prepubertal Caucasian boys and girlsa 68 10.0 (7–12) 48 (16–142) 145 (15–420) 28.6 557
Prepubertal African-American boys and girlsa 51 9.3 (7–12) 34 (7–118) 124 (9–436) 26.5 557
Prepubertal boys and girlsb 21 N/A 27 98 N/A 558
Obese prepubertal boys and girlsb 7 N/A 41 325 N/A 558
Obese prepubertal Caucasian boysb 10 9.7 (9–11) 69.8 274 42.1 559
Obese prepubertal African-American boysb 11 9.7 (9–11) 80.6 437 47.7 559
Prepubertal boysc 16 10.4 (9–12) 44 (18–93) 71 (30–127) 18.5 560
Pre- and early pubertal boysb 25 11–13 18 (6–58) 78 (21–214) 22.1e

Pubertal boysb 5 N/A 15 42 N/A 558
Obese pubertal boysb 6 N/A 56 380 N/A 558
Pubertal boysc 13 13.4 (11–15) 62 (43–119) 96 (37–209) 18.8 560
Prepubertal African-American girlsa 38 7.4 (4–10) 28 (7–73) 106 (14–272) 35.4e 556
Prepubertal Caucasian girlsa 20 8.2 (5–10) 54 (12–102) 172 (30–341) 37.8e 556
Obese prepubertal Caucasian girlsb 19 9.3 (9–11) 55.5 270 43.4 559
Obese prepubertal African-American girlsb 24 9.5 (9–11) 48.1 321 44.4 559
Prepubertal girlsc 12 10.4 (8–12) 44 (25–54) 103 (23–186) 24.0 560
Pre- and early pubertal girlsb 25 11–13 25 (15–50) 81 (29–152) 27.0e

Early pubertal girlsd 13 11.5 24 44 N/A 561
Obese pubertal girlsb 10 N/A 50 355 N/A 558
Pubertal girlsb 5 N/A 17 72 N/A 558
Pubertal girlsc 15 13.5 (11–15) 53 (36–72) 124 (53–285) 24.7 560
Late pubertal girlsd 11 14 26 63 N/A 561

Data represent mean (range). N/A, Not available.
a CT (level of umbilicus).
b MRI.
c MRI (at L4–5 interspace).
d MRI (at minimal waist circumference).
e Recalculated from original data.
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IGF-I availability; 4) a role for the androgen receptor in early
bone development; 5) reduced supplementation with aro-
matizable androgens, which provide substrate for estrogen
synthesis in situ; and/or 6) more severe inactivation of
androgen-receptor function (135, 223, 238–240).

Supraphysiological amounts of aromatizable and nonaro-
matizable androgens stimulate osteoblast proliferation, an-
tagonize the osteoclast-activating effect of PTH, and elevate
markers of bone growth (228, 241–244). In experimental an-
imals, 5�-DHT especially stimulates periosteal (apposi-
tional) skeletal growth and thereby increases cortical bone
formation (228, 245–247). However, available data are not
facile to interpret, because 5�-reduced products of testoster-
one activate the androgen receptor and simultaneously im-
pede estrogen action in some tissues (248–250). In the hu-
man, the androgen receptor may mediate up to 30% of sex
steroid-induced skeletal remodeling, as inferred by com-
bined administration of a down-regulating dose of a GnRH
agonist, testosterone, and placebo, or an aromatase-enzyme
inhibitor in healthy older men. In the sex steroid-depleted
setting, transdermal repletion of testosterone or estradiol
alone suppressed indices of bone resorption, increased mark-
ers of bone formation, and stimulated production of osteo-
protegerin, a potent inhibitor of osteoclastogenesis (below).
Each of the effects of testosterone was blunted by phar-
macological aromatase blockade, with the exception of

increased synthesis of osteocalcin, a marker of osteoblast
function. Comparable mechanistic investigations of sex
steroid-specific control of skeletal development are not avail-
able in childhood. Moreover, no studies have extended dis-
crete receptor agonist and antagonist analyses over pro-
longed intervals (years) in the human.

3. Estrogenic effects. Estrogenic steroids repress osteoclasto-
genesis, promote epiphyseal maturation, stimulate endosteal
and trabecular bone formation, augment mineralization, and
increase tensile bone strength (136, 137, 211, 240, 251–254).
Selective estrogen receptor (ER) modulators (e.g., raloxifene)
appear to act analogously (but not necessarily identically) to
enhance overall bone mineral content. Estrogen supplemen-
tation also stimulates the intestinal absorption and skeletal
retention of calcium, which processes contribute to bone
mineralization (255–257). Estrogens drive proliferation and
differentiation of the entire osteoblastic-cell lineage; enhance
the anabolic actions of other trophic signals (e.g., PTH, GH,
IGF-I, and prostaglandin E2); limit osteocyte apoptosis; in-
hibit osteoclastic resorption under osteolytic stress (e.g., by
PTH, prostaglandin F2�, interferon �, IL-1, and TNF-�); and
induce osteoblast synthesis of osteoprotegerin. The last-
named glycoprotein is a potent inhibitor of osteoclastogen-
esis and inducer of osteoblast cytodifferentiation (77, 136,
245, 251, 258–262).

4. ER subtype and aromatase-enzyme expression. Gene tran-
scripts encoding truncated and full-length ER� and ER� are
detectable in osteoprogenitor cells, differentiated osteoblasts,
and mature osteocytes (259, 263, 264). Expression of ER�

predominates in immature bone and wanes with skeletal
maturation (265, 266). As highlighted in Table 2, inactivating
mutations of ER� or the aromatase gene (but not ER�) cause
severe osteoporosis and impair epiphyseal mineralization in
the human and mouse (10, 237, 240, 243, 244, 246, 267–270).
In several patients with rare inborn aromatase deficiency,
repletion of estradiol stimulated prompt epiphyseal matu-
ration and bone mineralization, whereas testosterone sup-
plementation did not (243, 271). Albeit less well studied,
certain molecular polymorphisms of the estrogen-receptor
gene also predict reduced BMD epidemiologically.

Experiments based on short-term pharmacological inhi-
bition of the aromatase enzyme are consistent with genetic
inferences. In older men and aged male rats, administration
of specific aromatase antagonists increased biochemical
markers of bone resorption and (where assessed in the ro-

FIG. 9. Systematic and nonsystematic bias inherent in two particular
field models compared with a four-compartment criterion model (4C)
in quantitating percentage body fat in children. Top, Skinfold-thick-
ness prediction (equation originally estimated from a 4C criterion
model); bottom, bioelectrical impedance prediction (equation derived
from a 4C criterion model). Data presentation is described in the
legend of Fig. 7.

TABLE 2. Skeletal changes associated with genetic inactivation of
ER, androgen receptor (AR), or aromatase enzyme

Gene knockout Skeletal change

ER� 22 Trabecular/cancellous bone (human
and mouse); 22 cortical bone, male �

female (mouse)
ER� No human data; NL male (mouse); 1

female cortical bone (mouse)
AR NL rodent; 2 bone volume (human)
Aromatase enzyme 22 Skeletal mass; 1 markers of bone

turnover (human and mouse)

Arrows denote relative changes compared with wild-type. See text
for detailed discussion and references. NL, Normal.
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dent) impaired the pubertal gain in skeletal calcium and (in
the human and rodent) accelerated the age-related decline in
mineral density (242, 246, 272, 273). One prospectively ran-
domized study in boys with constitutionally delayed pu-
berty combined placebo or a potent, orally active, selective
aromatase-enzyme inhibitor (letrozole) with testosterone
supplementation. The combination delayed radiographic
bone maturation significantly compared with testosterone
administration alone.

Interpretation of target-tissue responses to ostensibly iso-
lated interruption of a single sex-steroid signaling pathway
in vivo is not straightforward, as indicated by the following
considerations. First, in one analysis, supplementation with
testosterone partially restored appendicular skeletal size in
the orchidectomized mouse harboring transgenetic inactiva-
tion (knockout) of the ER� subtype (�-ERKO model) (240).
In a strict technical context, this novel finding might be ex-
plained by androgen-receptor and/or ER�-mediated drive
of longitudinal bone growth; confounding by supraphysi-
ological androgen addback; and/or species, gene-dosage, or
strain effects inherent in the transgenic model (101, 165, 174,
235, 243, 253, 264, 274). Second, pharmacological muting of
sex-steroid negative feedback in the human and rodent stim-
ulates (systemic) testosterone and estradiol secretion by 1.5-
to 3-fold, thereby secondarily altering the systemic sex-hor-
mone milieu (275–279). Third, androgen and estrogen exert
both delayed genomic and rapid nongenomic effects on di-
verse target cells. Such bipartite actions mediate an array of
complementary neuronal and extraneuronal effects. For ex-
ample, in the central nervous system, estrogen acts on mem-
brane receptors that facilitate IGF-I signaling via Akt and
MAPK, thereby plausibly altering negative feedback by pe-
ripheral IGF-I (280–282). Fourth, androgens and estrogens
regulate sex-steroid metabolism by inducing or inhibiting
aromatase, 5-� reductase and 17�-hydroxysteroid dehydro-
genase isoenzymes, which interconvert androgens and es-
trogens. Fifth, age and gender appear to influence the skeletal
effects of aromatase deficiency in transgenic murine models
(246). Sixth, species modulates neuroendocrine adaptations
to the sex-steroid milieu; e.g., estradiol but not 5�-DHT in the
human (and, conversely, in the rodent) drives GH secretion
(127, 128). GH output is significant as a stimulus of both
systemic and skeletal synthesis of IGF-I (166). Seventh, in-
activation of ER� in the mouse depletes systemic IGF-I con-
centrations (237). Transgenic depletion of blood-borne IGF-I
indicates that this peripheral source of growth-factor drive
also contributes to adult bone growth (283). Eighth, androgen
depletion heightens the capacity of estrogen to stimulate
osteoblastic synthesis of the potent osteoclastogenesis-inhib-
iting peptide, osteoprotegerin (251, 259, 284–286) (Fig. 10).
And, lastly, the relative availabilities of estrogen and andro-
gen can determine promoter-specific gene transcription due
to incompletely characterized heterologous interactions
among ER�, truncated ER�, ER�, and the androgen receptor
(237, 240, 243, 287–292). In view of extensive complementa-
tion of osteogenic and osteolytic signals, the biological effects
of interrupting the action of a single agonist-receptor linkage,
such as disabling ER�, could reflect nonexclusively: 1) im-
pairment of ER�-dependent drive; 2) collateral actions via
ER� and/or the androgen receptor; 3) reduced availability of

systemic and in situ IGF-I; 4) altered sex-steroid synthesis and
metabolism; and/or 5) heterologous receptor-receptor
interactions.

5. GH and IGF-I. GH, IGF-I, IGF-II, and IGFBPs control
growth, remodeling, and mineralization of the skeleton in
part via direct actions on bone (7, 241, 293–302). A classic
study showed that unilateral infusion of GH into the tibial
artery of the GH-deficient male rat stimulates ipsilateral lon-
gitudinal bone growth. Mechanistically, GH drives a number
of local bone effects; viz., skeletal IGF-I synthesis; prolifera-
tion of prechondrocytes; hypertrophy of osteoblasts; bone
remodeling; and net mineralization (after a time lag of 1–2 yr
in the human) (101, 303–305). In addition, exogenous GH
suppresses osseous production of IGFBP-4 (which antago-
nizes the actions of IGF-I in bone) and stimulates in situ
synthesis of IGFBP-2, -3, and -5 (which stimulate bone cells
directly and/or via IGF-I) (306–309).

Sex steroids, IGF-II, T4, and glucocorticoids not only mod-
ulate the secretion of GH and IGF-I (127, 128), but also impact
the direct effects of GH and IGF-I on skeletal growth (146,
147, 310, 311). For example, testosterone stimulates GH and
IGF-I production systemically; induces IGF-I synthesis in the
skeleton; enhances GH-driven IGF-I accumulation in osteo-
blasts; promotes epiphyseal cartilage growth; increases min-
eralization of bone matrix; and, augments net trophic effects
of selected IGFBPs (306–308, 312, 313). Estradiol amplifies
GH receptor-mediated signaling in osteocytes, up-regulates
osteoblast IGF-I production, down-regulates inhibitory bind-
ing proteins (IGFBP-4 and -6), induces the type I IGF receptor
in bone, and uniquely stimulates osteoblastic synthesis of
osteoprotegerin, a potent antiresorptive signal that is not
induced by nonaromatizable androgens (15, 136, 165, 174,

FIG. 10. Schematic summary of roles of estradiol and testosterone
inferable on key stages in bone remodeling.
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207, 237, 265, 308, 309, 313–318). Apparently joint trophic
roles of GH and estradiol in bone accrual are inferable in-
directly in clinical studies. In particular, maximal BMD cor-
relates with 24-h GH concentrations in young men and with
overnight GH and estradiol concentrations in the African-
American (but not Caucasian) male (36, 37, 221).

Height, weight, and genetic endowment are strong epi-
demiological determinants of bone mineral content (191,
199). However, height and weight mirror multiple conver-
gent genetic, environmental, and trophic-hormone interac-
tions (319–321). The rate of skeletal calcium and magnesium
accretion is maximal at ages 11–14 yr in girls and 16–18 yr
in boys (322–324). On the other hand, total IGF-I, but not
sex-steroid, concentrations reach a zenith 1.5–2 yr later. In
young women, 99% of maximal BMD and 99% of total min-
eral content are attained at ages 22 � 2.5 yr and 26 � 3.7 yr,
respectively (325). Skeletal mass at age 20, which amalgam-
ates the conjoint impact of height, weight, environment, and
genetics, predicts more than 50% of the statistical variability
in bone mineral content in later adulthood (326). Nonethe-
less, some bone growth and mineralization continue in se-
lected skeletal sites into the fourth or fifth decade of life (56,
188, 221, 323, 325, 327).

In hyposomatotropic children and adults, GH replacement
therapy facilitates the timely onset of sexual development
and therewith increased sex-steroid secretion (140). GH treat-
ment in such patients uniformly elevates biochemical indices
of bone remodeling (within weeks), promotes marked (so-
called catch-up) linear growth in the first year, augments
skeletal mineralization after 1.5 to 2 yr, and (in children)
increases final adult stature (97, 241, 298, 328–334) (Table 3).
Albeit less well documented, administration of IGF-I also
stimulates bone growth, skeletal remodeling, and mineral
deposition in the IGF-I-deficient setting in man and animals.
Estrogen blunts the actions of GH on biochemical markers of
skeletal remodeling in the hypopituitary female, postmeno-
pausal woman, and male-to-female transsexual patient (335–
337). Estradiol replacement also attenuates the rh GH-
induced rise in IGF-I concentrations and decline in visceral
FM (127, 337). Whether the foregoing GH/sex-steroid inter-
actions apply equally to other long-term tissue effects is not
known.

Genetic GH receptor defects and primary IGF-I deficiency
states are associated with osteopenia, sarcopenia, and vis-
ceral adiposity in the adult (338). In the GH receptor-defec-
tive patient, replacement therapy with rh IGF-I facilitates the
onset of pubertal development and stimulates musculoskel-
etal growth (339). Nonetheless, systemic delivery of IGF-I
does not normalize growth velocity or body composition in
children with inborn GH receptor defects. The precise factors
that account for incomplete tissue responses in this setting
are not yet evident (141, 340–348). One consideration is that
GH and IGF-I exert both singular and combined trophic
effects in a target tissue-specific fashion (349–357). For ex-
ample, GH but not IGF-I induces synthesis of the complete
150-kDa ternary complex comprising IGF-I, IGFBP-3, and the
acid-labile subunit (358). Systemic concentrations of the ter-
nary complex correlate well with somatic growth in normal
puberty and during GH treatment in hyposomatotropic chil-
dren (338). Conversely, hepatic-specific IGF-I-deficient trans-
genic mice exhibit diminished BMD in adulthood despite
elevated GH concentrations (283). The latter important ob-
servation suggests that postnatally induced IGF-I deficiency
impairs skeletal growth in the rodent. In support of this
experimental inference, peripheral IGF-I administration can
stimulate markers of skeletal remodeling and increase BMD.

6. Multisignal endocrine control. Sex steroids, GH, IGF-I, cor-
tisol, T4, and other systemic hormones act on bone collabo-
ratively via potent local effector molecules, such as IGF-I/
IGFBPs, cytokines, prostaglandins, and osteoprotegerin. This
nonexclusive ensemble of in situ regulators directs skeletal
growth (increased volume), remodeling, and mineralization
(259). The importance of multihormonal trophic control of
bone growth and maturation is illustrated in children with
Turner syndrome. Osteopenia in this setting is attributable to
3-fold deficiency of estrogen, GH/IGF-I, and androgen along
with important but incompletely characterized genetic fac-
tors that disrupt bone development. TBW in gonadal dys-
genesis is reduced detectably in the third decade, and frac-
ture risk is increased significantly by the fourth decade of life
(40, 77, 136, 137, 201, 243, 359–363). Clinical interventional
trials have combined physiological estrogen replacement
(based on developmental age), dose-titrated repletion of an-
drogen, and supraphysiological amounts of GH to accelerate
height velocity. Final statural gain in Turner syndrome is
influenced principally by age at initial treatment, duration of
hormonal intervention, doses of GH (higher) and androgen
(low), degree of growth failure, and incompletely defined
genetic factors (98, 175–177, 209, 210, 232, 233, 364, 365).

C. Adiposity and sex-steroid hormones

Sex-steroid hormones, GH, insulin, glucocorticoids, and
�-3 adrenergic agonists are dominant determinants of adi-
pocyte mass (Fig. 11). A corollary thesis is that fat topography
is controlled by regionalized expression and activity of sex
steroid-metabolizing enzymes, growth factors, and cognate
receptors (366–368). For example, estradiol receptors pre-
dominate in mammary and gluteofemoral fat, whereas an-
drogen receptors are more abundant in intraabdominal
(omental) fat (367). At the level of target cells, GH, �-3-

TABLE 3. Primary actions of GH and sex steroids on body
compositiona

GH Estradiol Testosterone

Visceral fatb,c 22 d,e 2
Subcutaneous fatb,f 2 1 2
Bone mineralb,g 1 11 11
Muscle massb,c 1 d 11
Extracellular water 1 (acutely) d 1 (acutely)
Linear bone growthb,c,g 1 11 11
Epiphyseal fusionc,g d 11 11
Energy expenditure 1 d 11

a Refs. 194, 244, 393, 562–571.
b Possible synergy between somatotropic and gonadotropic signals.
c Nonaromatizable androgens also effectual.
d Limited or inconsistent data.
e Only in combination with a (synthetic) progestin.
f May differ in children and adults.
g Maximal effects require aromatization.
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adrenergic agonists, and testosterone induce greater lipolysis
of visceral than sc adipose tissue. In contradistinction, insulin
and cortisol stimulate lipogenesis in diverse fat depots (76,
100, 365–367, 369–372).

The liporegressive actions of testosterone reflect the 4-fold
ability of androgens to: 1) amplify the direct lipolytic effects
of GH and adrenergic agonists; 2) up-regulate androgen
receptors homologously (positive autofeedback effect) and
�-3 adrenergic receptors heterologously (sensitization ef-
fect); 3) oppose the lipogenetic effects of insulin and cortisol;
and 4) inhibit lipoprotein lipase-dependent esterification of
triglycerides, which biochemical step is required to enlarge
fat cells (253, 351, 365, 373–377). Collectively, such mecha-
nisms could contribute to pubertal redistribution of fat
stores. However, the details of such putative actions have not
been mapped.

Estradiol up-regulates its own receptor and that of insulin
in fat cells in vitro and in vivo (378, 379). These effects would
be consistent with the statistical association between (unop-
posed) estrogen replacement therapy and intraabdominal
adiposity in postmenopausal women (366, 380). However,
correlations may be invidious, inasmuch as the route of es-
trogen supplementation also determines the magnitude of
metabotropic effects; e.g., oral compared with transdermal
estradiol replenishment inhibits lipid oxidation more
(thereby predisposing to fat retention) and blocks glucose
disposal less (thus facilitating insulin action and fat synthe-
sis) (98, 381). Conversely, a history of combined use of es-
trogen and a synthetic progestin postmenopausally predicts
less visceral fat accumulation (98, 175, 177, 180, 382, 383). The
apparent lipolytic effect of adding a synthetic progestin may
be due to weak intrinsic androgenicity of such agents. Ac-
cording to this reasoning, greater availability of androgens in
menstruating than ovariprival women may contribute to
relatively less intraabdominal (visceral) fat (365, 383, 384). In
addition, nonwithdrawal of adrenal androgenic sex steroids
during long-term GnRH agonist therapy of precocious pu-
berty may account for some changes in total body fat despite
estrogen depletion (73, 385).

Estradiol inhibits proliferation of immature fat cells via

ER� and stimulates growth of preadipocytes via ER� (366).
The foregoing distinction applies in the rodent, inasmuch as
transgenetic �-ERKO and aromatase knockout induce hy-
perplasia and hypertrophy of (white) adipocytes with a re-
sultant 80–100% increase in total body fat (368, 386). Con-
versely, high-dose estradiol administration in the immature
mouse, rat, and cow reduces FM. The topography of adipose
tissue presumably depends further on (nonexclusively)
tissue-specific differences in the expression of �- (inhibitory)
and �- (stimulatory) ER, aromatase enzyme, 11-hydroxy-
steroid dehydrogenase (types I and II), and 17�-hydroxy-
steroid dehydrogenase (isotypes 2 and 3) (384). The forego-
ing enzymes control interconversion of testosterone and
estradiol, as well as cortisol and (inactive) cortisone. Under-
standing how the ensemble of IGF-I, GH, insulin, cortisol, sex
steroids, adipocyte topography, gender, and species deter-
mines regional and total FM in pubertal development pre-
sents a daunting investigative challenge.

D. Adiposity and GH/IGF-I

GH increases lipolysis acutely (within minutes), and de-
creases adiposity over the short-term (days to months) in
children and adults (387, 388) (Table 3). The whole-body
lipolytic effect of a given dose of GH is attenuated in estro-
gen-replete young or postmenopausal women compared
with estrogen-insufficient women and androgen-sufficient
men (175, 180, 345). Such distinctions suggest that estrogen
induces partial resistance of adipose tissue to GH. In one
mechanistic analysis of this relationship, estradiol down-
regulated GH signaling in vitro by inducing cellular expres-
sion of the negative-feedback signal, suppressor of cytokine
signaling (389).

GH induces rapid loss of fat due to stimulation of lipolysis
and reciprocal antagonism of the lipogenetic actions of in-
sulin (97, 119, 175, 299, 339, 353, 390–395). Although the
initial reduction of adipose-tissue mass persists during con-
tinued GH replacement in hyposomatotropic patients, the
rate of decrease in FM slows over time. The basis for evident

FIG. 11. Simplified schema of the conjoint effects of
GH, testosterone, estradiol, and �-adrenergic signaling
on human adipose tissue. Unpublished compilation.
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down-regulation of fat-cell responsiveness to the lipolytic
action of GH is not well defined.

GH replacement therapy in the adult initially elevates
(days to weeks) and then suppresses (months to years) in-
sulin and leptin concentrations. The delayed decline in in-
sulin and leptin concentrations parallels a gradual reduction
in visceral fat and total adiposity induced by exogenous GH
(98, 144, 180, 299, 351, 391, 396–400). The key lipolytic role
of GH is indicated in a murine model of transgenically en-
forced postnatal depletion of liver-derived IGF-I concentra-
tions. In this experimental context, hypersecretion of GH
reduces total-body fat in the face of elevated leptin and
insulin concentrations. Hepatic IGF-I gene silencing also im-
pairs muscle sensitivity to insulin and stimulates hepatic
gluconeogenesis. Such outcomes would secondarily modu-
late in vivo glucose and fat metabolism (401, 402).

Mature adipocytes express GH, but not IGF-I, receptors
(338). Indeed, in clinical studies, combining rh IGF-I and GH
replacement fails to reduce FM further (355). In addition,
long-term rh IGF-I treatment of children with GH receptor
defects decreases intraabdominal FM only over the first 6
months of therapy (339). A plausible notion is that this short-
lived liporegressive effect reflects IGF-I action on less mature
fat cells and/or the known capability of exogenous IGF-I to
suppress endogenous insulin secretion (403).

Adiposity suppresses GH production markedly in the hu-
man and experimental animal (59, 72, 404–408). In men and
women, intraabdominal FM is a primary negative determi-
nant of pulsatile GH secretion (71, 409, 410). On the other
hand, for reasons that are not known, sc rather than visceral
adiposity is a major negative correlate of GH production in
children (93). However, as observed in the adult, intraab-
dominal adiposity in the child presages insulin resistance
and dyslipidemia, and presumptively elevates long-term
atherosclerotic risk (47, 76, 411). In fact, hyposomatotropism,
topography of fat distribution, ethnicity, gender, sex hor-
mones, IGF-I, IGFBP-1, and insulin concentrations jointly
influence predicted risk of cardiovascular disease (58, 366).

Low GH concentrations in obesity result from reduced
secretion and increased elimination rates (412, 413). In par-
ticular, adiposity in some manner represses GH secretory-
burst mass, impedes the stimulatory effects of secretagogues,
expands the GH distribution volume, and accelerates the
metabolic clearance of GH (71, 405, 407, 409, 412–417). Re-
duced absolute GH secretion constitutes the major (�85%)
basis for low GH concentrations in obesity (127). More rapid
elimination of GH correlates with intraabdominal (upper
body) rather than sc (lower body) adiposity in young women
(71). The mechanistic basis for this association has not been
delineated.

In the human and experimental animal, several factors
appear to repress GH production in obesity: 1) direct inhi-
bition of somatotrope secretion by elevated systemic con-
centrations of free fatty acids (FFAs), free IGF-I, insulin, and,
less plausibly in the human, leptin (83, 418–427); 2) proxi-
mate suppression of GH release by excessive hypothalamic
somatostatin outflow, which in the obese Zucker rat differs
by gender; 3) impaired release and blunted actions of GHRH;
and 4) an obesity-associated reduction in systemic ghrelin
concentrations (17, 409, 414, 428–433). These considerations

are supported in part by the increase in GH secretion in obese
subjects following: 1) short-term fasting or weight reduction,
which suppresses IGF-I and insulin and elevates ghrelin
concentrations; 2) pharmacological inhibition of somatosta-
tin outflow, which drives GH secretion; and 3) infusion of
GHRH and/or GH-releasing peptide (GHRP), which stim-
ulates GH release (420, 429, 432, 434–437). Notably, none of
the foregoing individual interventions is able to reinstate GH
output equivalently in the obese and lean individual. How-
ever, the combination of l-arginine (to repress somatostatin)
or acipimox (to block FFA release) and GHRH or GHRP will
induce significant GH secretion in obese subjects, which out-
come is consistent with a presumptively multifactorial basis
for relative hyposomatotropism (127, 128). In fact, all three of
the insulin, FFA, and free IGF-I concentrations are elevated
in the obese adult, thus conferring potentially combined re-
pression of GH secretion (430).

Acute nutrient deprivation in obese volunteers fails to
stimulate maximal GH release (127). Attempting to interpret
this outcome illustrates the complexity of metabolic control
of the GH-IGF-I axis. For example, fasting lowers insulin and
free IGF-I concentrations, thereby potentially disinhibiting
feedback on GH output. At the same time, nutrient depri-
vation increases FFA concentrations, which presumptively
suppress somatotrope secretion (76, 423, 438–443).

Linear growth appears to be accelerated in obese children.
The precise basis for this observation is unknown. However,
unbound IGF-I concentrations are elevated in the obese hu-
man, which is presumably due to hyperinsulinemia-depen-
dent suppression of hepatic IGFBP-1 production (100, 439).
Elevated total and free IGF-I concentrations correlate with
exogenous IGF-I-induced inhibition of GH secretion in in-
dividuals of normal body weight (282, 419, 444, 445). Con-
versely, partial (34%) reduction of total IGF-I concentrations
by hepatic GH receptor blockade with pegvisomant ampli-
fies GH secretory-burst mass significantly (by 1.8-fold) in
healthy young adults (280, 281). Likewise, liver-specific post-
natal IGF-I gene inactivation in mice and a single case of
mutational truncation of the IGF-I gene in the human in-
creased GH concentrations by 2- to 10-fold and more than
30-fold, respectively (358, 401). These ensemble data would
support the postulate that excessive IGF-I availability con-
tributes to reduced GH secretion in obesity.

The role of hyperinsulinemia in promoting skeletal growth
or in repressing GH secretion in obesity is not clear. In the
latter context, free IGF-I and insulin concentrations both cor-
relate inversely with GH output (430). For example, in one
study, an acute euglycemic hyperinsulinemic clamp that
achieved insulin concentrations observed in fasting obese
adults did not inhibit GH secretion in healthy young men
(419). This important outcome does not exclude the corollary
notions that: 1) insulin may potentiate IGF-I feedback inhi-
bition; and 2) more prolonged hyperinsulinemia may sup-
press GH secretion. Such issues are relevant in view of in-
direct clinical data that are consistent with negative feedback
by both insulin and IGF-I (426, 427, 440, 444, 446, 447).

Marked weight loss is required to normalize suppressed
GH secretion in obese individuals (448). For example, several
weeks of caloric restriction, which were sufficient to reduce
visceral FM by more than 30% in obese premenopausal
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women, failed to reinstate normal 24-h GH production (71).
This outcome raises the question whether intraabdominal
obesity and hyposomatotropism arise individually, exacer-
bate each other, or reflect a common defect in metabotrobic
or appetite-regulating signals (17, 71, 366, 368, 418, 449–451).
Knowledge of this issue could aid in formulating how long
GH replacement should be continued in adult GH-deficient
patients with visceral adiposity and increased cardiovascular
risk defined on a priori epidemiological grounds. A corollary
interventional query in children with idiopathic visceral obe-
sity is the possible utility of short-term supplementation with
rh GH. The question is made difficult by possible toxicity,
significant cost, uncertain compliance, unknown perpetuity
of therapy, and the availability of alternative treatments that
reduce intraabdominal FM, enhance peripheral insulin sen-
sitivity, and engender more favorable lipid profiles (32, 65,
98, 144, 348, 351, 391, 396, 399, 452–460).

In the human, monkey, sheep, dog, and guinea pig,
fasting stimulates GH secretion. These responses contrast
with those in the rodent, in which caloric deprivation
represses GH production (127, 357, 391, 442, 461– 470). The
basis for the latter clarion species difference remains to be
clarified.

E. Control of muscle by sex steroids and GH/IGF-I

Few prospective interventional studies have examined the
impact of sex steroids and GH/IGF-I on muscle mass and
function in infancy, childhood, or puberty. In one analysis,
short-term testosterone supplementation in prepubertal
boys increased whole-body proteolysis by 18%, reduced
amino-acid oxidation (catabolism) by 49%, and stimulated
net protein synthesis by 35% (211). In laboratory experi-
ments, androgens promote hypertrophy of type IIA (rapid-
twitch, glycogenolytic, highly oxidative) muscle fibers and
protect against immobilization-induced muscle atrophy
(210). Physiological amounts of testosterone stimulate lean-
tissue accrual, augment total muscle volume, accelerate pro-
tein synthesis, retard protein breakdown, increase isokinetic
strength and induce in situ muscle IGF-I gene expression in
hypogonadal boys or men (23, 167, 201, 209–211, 370, 471–
478). However, pharmacological doses of androgen are re-
quired to enhance isometric strength or maximal aerobic
capacity in eugonadal young adults. This distinction could
indicate that euandrogenemia operates near or above the
genetically determined upper bound of the physiological
testosterone concentration-muscle response function (334,
370, 473). According to the foregoing collective data, in-
creased androgen availability in puberty would provide a
proximate (but nonexclusive) stimulus to muscle growth (25,
479) (Table 3). On the other hand, estrogen repletion does not
measurably affect whole-body protein synthesis or oxidation
in combined estrogen- and androgen-deficient (ovariprival)
girls with Turner syndrome (480, 481). These data suggest
that endogenous androgens may be required to drive pu-
bertal anabolism in girls.

Androgens and muscle loading stimulate myofibrillar pro-
tein synthesis, myoblast proliferation, and myocyte hyper-
trophy (211, 392, 471, 482). Anabolic and growth-promoting
effects of testosterone and muscle contraction occur in sig-

nificant part via the induction of in situ IGF-I and the inhi-
bition of IGFBP-4 gene expression (472). One study in older
men reported that repletion of testosterone also transiently
induced the androgen-receptor gene in muscle (472). The
significance of this finding has not been demonstrated. In-
tramuscular IGF-I accumulation driven by testosterone and
other factors promotes myoblast proliferation from satellite
cells and stimulates myocyte hypertrophy, as established by
direct local infusion of IGF-I peptide into senescent skeletal
muscle and transfer of the recombinant IGF-I gene into de-
veloping smooth muscle, respectively (212–214, 483–486).

Testosterone induces expression of the myostatin gene in
skeletal muscle. Myostatin is a 26-kDa glycoprotein that op-
poses myocyte apoptosis (215, 486, 487). Mutations of the
myostatin gene result in marked muscle hypertrophy in the
transgenic mouse and in the Belgian double-muscled Pied-
montese cow. Muscle unloading and catabolic syndromes
like AIDS-associated wasting also stimulate skeletal-muscle
myostatin gene expression (488). The foregoing adaptations
were postulated to reflect compensatory autocrine or para-
crine mechanisms in muscle. However, the nature of such
mechanisms is elusive. In a small number of studies, admin-
istration of either GH or IGF-I in elderly humans did not
consistently up-regulate this antiapoptotic signal (489, 490).
Therefore, additional studies will be required to clarify
precisely how testosterone and GH promote myostatin-
dependent and -independent muscle growth (392).

Anabolism occurs when the rate of amino-acid incorpo-
ration into proteins exceeds that of oxidative metabolism
(392). Net protein accumulation is determined positively by
amino-acid availability, muscle loading, and the myotrophic
hormones, GH, IGF-I, and testosterone. Protein loss is ac-
centuated variously by: 1) amino-acid depletion (491–493); 2)
aging (472, 493–495); and 3) systemic inflammatory disease
(496). Systemically delivered hormones stimulate protein
synthesis (androgen, GH, and high plasma concentrations of
IGF-I) and/or retard protein breakdown (testosterone and
lower blood-borne concentrations of IGF-I and insulin) (124,
201, 253, 334, 349, 453, 472, 476, 496–502). In one analysis,
exercise enhanced the biosynthesis of myofibrillar proteins in
part by enhancing translation of existing mRNA.

Testosterone supplementation promotes whole-body ni-
trogen retention in eugonadal and hypogonadal men and in
individuals with heightened catabolism; e.g., fasting, AIDS-
associated muscle wasting, and severe burns (166). Admin-
istration of GH or IGF-I increases lean body mass in organ-
ically hyposomatotropic patients (356, 393) and limits protein
catabolism in patients with multiorgan failure, major sur-
gery, protracted critical illness, male hypogonadism, and
glucocorticoid excess (357, 392, 499, 500, 503–509). In a recent
study in postmenopausal women, supplementation with rh
GH for 6 months stimulated whole-body protein synthesis
and breakdown by 9 and 8%, respectively; and administra-
tion of a high dose of rh IGF-I increased the same measures
by 18 and 17%, respectively. Although net protein synthesis
rose by 48% (GH) and 196% (IGF-I), exact comparison of GH
and IGF-I dosimetry in the human is not yet possible. The
importance of continuing trophic peptide drive is evident in
young-adult hypopituitary patients, in whom discontinua-
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tion of GH replacement therapy results in measurable attri-
tion of muscle mass (510).

An implicit clinical thesis is that testosterone, GH, and
IGF-I promote anabolism synergistically (323, 511–515). This
concept has not been explored definitively in human puber-
tal physiology (Table 4). In particular, the precise cellular and
molecular mechanisms that transduce putative hormonal
synergy are unexplained.

IV. Energy Expenditure in Puberty

Energy expenditure is quantitated by way of whole-room
calorimetry, portable closed- or open-circuit calorimetry, and
the metabolism of doubly labeled water (387, 408, 516–518).
The benchmark method has been quantitation in a closed
respiratory chamber (519). Calorimetry relies on the respi-
ratory quotient (ratio of oxygen and carbon dioxide content
in expired air) (72). Portable systems are used commonly, but
may be less reliable in children or apprehensive adults (516).
The innovative doubly labeled-water technique can be ap-
plied in community-dwelling individuals to monitor total
energy utilization during normal daily physical activity and
rest (293, 519).

Energy expenditure over 24 h reflects principally basal
metabolic costs (517). Energy is expended at rest to maintain
core body temperature via heat generation in internal organs
(liver, kidney, muscle, fat, and brain). Heat production pro-
ceeds through mitochondrial uncoupling protein (UCP),
such as muscle UCP-3, and in the maintenance of transmem-
brane ionic gradients and other ATP-dependent metabolic
reactions. Nonbasal contributions to energy balance arise
from the thermogenic effects of metabolizing glucose and
mixed nutrients (specific dynamic action of food) and phys-
ical activity (520–522). In correlational studies, FFM and aer-
obic exercise capacity are the principal positive determinants
of resting energy expenditure (518, 523, 524). Fasting leptin
concentrations also predict basal energy expenditure to some
degree (525). Although a causal relationship is not estab-
lished in the human, leptin promotes central sympathetic
outflow experimentally, which in principle would elevate
basal energy expenditure (526). In young adults, acute aer-
obic exercise increases energy expenditure without altering
leptin concentrations (527).

Healthy aging, food restriction, and limited physical ac-
tivity lower total energy expenditure (520, 528–531). Resis-
tance exercise, aerobic physical training, and sympatho-
adrenal outflow stimulate energy utilization in an age-,
nutrient-, gender-, and ethnicity-related fashion (521–523,
532, 533). In the human, endurance training drives heat pro-

duction, enhances insulin action, increases noradrenergic
outflow, augments maximal oxygen consumption, elevates
24-h GH secretion, facilitates muscle glucose uptake, reduces
visceral FM, and lowers leptin concentrations (520, 532, 534,
535).

Longitudinal analyses will be important to clarify the pre-
cise impact of sexual maturation and gender on energy ex-
penditure, inasmuch as current data are limited and contra-
dictory. For example, in a study of adolescent girls, the
resting metabolic rate (adjusted for FFM) averaged 1418 �

186 kcal/d before puberty, tended to decline in early pu-
berty, and then decreased significantly to 1179 � 189 kcal/d
4 yr after menarche (536). In another comparison of 12- to
14-yr-old children, resting energy expenditure was signifi-
cantly higher during adolescence than before puberty (537).

Resting energy utilization under free-living conditions is
lower in women than men (293). The gender distinction
presumably reflects the capacity of testosterone, nortestos-
terone, and to a lesser degree androstenedione or DHEA to
significantly augment basal energy expenditure (524, 538,
539). In addition, energy expenditure rises consistently (by
4–16%) in the luteal phase of the normal menstrual cycle
(540–545) and falls in amenorrheic states (546). Whether in-
creased progesterone or androgen availability contributes to
the former association is not evident. In women, estradiol
does not affect the basal metabolic rate or whole-body anab-
olism (408, 547). However, transgenic disruption of ER� in
the male mouse significantly (11%) reduced basal energy
expenditure via unknown mechanisms (368).

Energy expenditure is normal in GH-deficient patients,
when data are corrected for age, gender, and FFM (398, 548).
Nonetheless, GH replacement therapy in hyposomatotropic
patients and obese individuals elevates the basal metabolic
rate significantly by within-subject comparison (393, 398,
549, 550). GH administration in hyposomatotropic adults is
associated with: 1) increased expression of mitochrondrial
UCPs (551); 2) early stimulation and delayed suppression of
leptin concentrations (387, 525, 552); 3) accrual of lean-body
tissue and recession of intraabdominal FM (387, 398, 550,
553); and 4) enhanced conversion of T4 to T3 by 3�-mono-
deiodination in peripheral tissues (549, 553, 554). At present,
the impact of rh IGF-I on energy expenditure is not well
studied. In one investigation, acute infusion of this growth
factor did not stimulate energy expenditure in the parenter-
ally fed rat.

V. Summary

Body composition adapts across the in utero, neonatal,
pubertal, and adult lifetime in an ethnicity- and gender-
related fashion. The present review highlights these devel-
opmental adaptations and illustrates how signals from the
gonadotropic and somatotropic axes singly and jointly gov-
ern accrual and depletion of muscle, fat, and bone mass.
These emerging concepts should enlarge the platform of
critical clinical and basic-science investigations of this de-
velopmental theme.

TABLE 4. Illustrative unresolved issues in mechanisms of pubertal
activation of somatotropic and gonadotropic axis

● Molecular factors that mediate populational diversity
● Cellular factors that govern the timing and progress of puberty
● Basis for decline in GH/IGF-I production postpubertally
● Interactive control by ghrelin, GHRH, and somatostatin
● Mediators of ethnic diversity in GH/IGF-I and GnRH/LH

secretion
● Biological impact of species distinctions in control of

somatotropic and gonadotropic axes
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