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There has been a great deal of research over
the last decade examining the endocrine-
disrupting action of various environmental pol-
lutants (Ankley et al. 1997; Guillette and Crain
2000). Much of this research has focused on
the ability of chemical pollutants to act as
estrogen receptor (ER) or androgen receptor
(AR) agonists or antagonists (McLachlan
2001). Most of the compounds studied—
pesticides and industrial pollutants—exhibit
weak receptor affinities compared with
endogenous hormones but can produce
endocrine responses both in vitro and in vivo at
environmentally relevant doses (Rooney and
Guillette 2000; Tyler et al. 1998).

Studies have begun to focus on natural hor-
mones released from animal waste used to fertil-
ize agricultural fields. Significant concentrations
of estrogens and androgens have been reported
in ponds or streams receiving runoff from fields
fertilized with chicken litter (Finlay-Moore et al.
2000; Nichols et al. 1997; Shore et al. 1995). In
fact, depending on application rate, concentra-
tions in runoff have been measured as high as
1,280 ng/L (Nichols et al. 1997). Natural hor-
mones, such as estradiol, have also been
reported in ponds below cattle holding facilities

and have been associated with elevated plasma
concentrations of the yolk precursor protein
vitellogenin in female turtles (Irwin et al. 2001).
Contamination of water systems with endoge-
nous hormones such as 17β-estradiol (E2) and
testosterone (T) is not limited to surface waters
because E2 has been reported in spring water
from mantled karst aquifers in agricultural areas
(Peterson et al. 2000).

In addition, the presence of endogenous
and pharmaceutical estrogens in sewage efflu-
ent has been studied as an example of hor-
monal pollution of the aquatic environment
and has been reported as a factor affecting fish
development and reproductive activity
(Purdom et al. 1994; Tyler et al. 1998). Work
performed below sewage treatment plants in
Great Britain has documented a significant
number of intersex fish compared with rivers
with less effluent (Desbrow et al. 1996;
Jobling et al. 1998). Furthermore, these stud-
ies have reported that many males had ele-
vated levels of estrogen-induced vitellogenin
in their blood. This protein does not normally
occur in males. Fractionated sewage effluent,
derived mostly from domestic sources, exhib-
ited various peaks with estrogenic activity.

Those representing ethinyl estradiol and
estrone displayed the most potent estrogenic
activities (Harries et al. 1996, 1997). In other
countries, similar research has supported these
observations and extended them by reporting
that male fish exposed to sewage effluent not
only have detectable plasma vitellogenin con-
centrations but also display altered plasma
concentrations of T and E2 (Folmar et al.
1996, 2000; Orlando et al. 1999).

These studies have helped focus attention
on the possible detrimental roles of pharma-
ceutical agents released into the environment.
A wide array of pharmaceutical agents, includ-
ing hormonal mimics, have been reported in
sewage and open waters in various countries
(Daughton and Ternes 1999; Kolpin et al.
2002; Stumpf et al. 1999; Ternes 1998).
These agents include drugs commonly pre-
scribed for the treatment of heart disease,
stress, inflammation, bacterial infections
(antibiotics), and birth control. Further, veteri-
nary drugs, such as growth promoters and
antibiotics, are used extensively in agriculture,
but few studies have examined their presence
in the environment, although some studies
have recently reported the presence of these
compounds in groundwater near farms
(Peterson et al. 2000). Importantly, no studies
have examined the possible effects of these
compounds on wildlife exposed to runoff from
farms using large concentrations of pharma-
ceutical agents, such as cattle feedlots.
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Endocrine-Disrupting Effects of Cattle Feedlot Effluent on an Aquatic
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Over the last decade, research has examined the endocrine-disrupting action of various environmental
pollutants, including hormones, pharmaceuticals, and surfactants, in sewage treatment plant effluent.
Responding to the growth of concentrated animal feeding operations (CAFOs) and the pollutants pre-
sent in their wastewater (e.g., nutrients, pharmaceuticals, and hormones), the U.S. Environmental
Protection Agency developed a new rule that tightens the regulation of CAFOs. In this study, we col-
lected wild fathead minnows (Pimephales promelas) exposed to feedlot effluent (FLE) and observed
significant alterations in their reproductive biology. Male fish were demasculinized (having lower tes-
ticular testosterone synthesis, altered head morphometrics, and smaller testis size). Defeminization of
females, as evidenced by a decreased estrogen:androgen ratio of in vitro steroid hormone synthesis,
was also documented. We did not observe characteristics in either male or female fish indicative of
exposure to environmental estrogens. Using cells transfected with the human androgen receptor, we
detected potent androgenic responses from the FLE. Taken together, our morphologic, endocrino-
logic, and in vitro gene activation assay data suggest two hypotheses: a) there are potent androgenic
substance(s) in the FLE, and/or b) there is a complex mixture of androgenic and estrogenic substances
that alter the hypothalamic–pituitary–gonadal axis, inhibiting the release of gonadotropin-releasing
hormone or gonadotropins. This is the first study demonstrating that the endocrine and reproductive
systems of wild fish can be adversely affected by FLE. Future studies are needed to further investigate
the effects of agricultural runoff and to identify the biologically active agents, whether natural or phar-
maceutical in origin. Key words: anabolic steroid hormones, aquatic ecosystem health, concentrated
animal feeding operation (CAFO), environmental androgens and estrogens, gene expression, HPG
axis, hypothalamic–pituitary–gonadal axis, pharmaceuticals and personal care products (PPCPs),
Pimephales promelas. Environ Health Perspect 112:353–358 (2004). doi:10.1289/ehp.6591 available
via http://dx.doi.org/ [Online 1 December 2003]



In the United States, hormone supplements
are used in the production of approximately
90% of the beef cattle (Balter 1999). These
supplements promote rapid growth and
increase the conversion of feed to muscle mass.
Currently, marketed hormone implants contain
pharmaceutical-grade compounds that have
androgenic, estrogenic, or progestogenic activi-
ties or a mixture of these activities (Schiffer
et al. 2001). Androgenic trenbolone acetate,
estrogenic zeranol, and progestogenic melenge-
strol acetate are commonly used singly or com-
bined with native steroid hormones, including
T, E2, or progesterone (Schiffer et al. 2001).

Recent studies have indicated that there is a
basis for concern about the ecologic effects of
these pharmaceutical supplements. Trenbolone
acetate, a synthetic androgenic anabolic steroid
used in cattle production, is metabolized into
trenbolone-β, the biologically active molecule,
and excreted as trenbolone-α and -β (Schiffer
et al. 2001). Trenbolone-β has a half-life in liq-
uid manure of > 260 days, suggesting that it
could have ecologic impacts if released into the
environment as runoff from feedlots (Schiffer
et al. 2001). In another study, estrogenic activ-
ity was detected in ponds below feedlots hous-
ing a cattle herd in an academic agricultural
facility (Irwin et al. 2001).

Responding to a concern over the growth
of concentrated animal feeding operations
(CAFOs) and the pollutants present in their
wastewater (e.g., nutrients, pharmaceuticals,
hormones, etc.), the U.S. Environmental
Protection Agency (U.S. EPA) recently issued
a new agency rule that tightens the regulation
of CAFOs (U.S. EPA 2003). The latest rule
revises the existing 1976 U.S. EPA require-
ments on CAFOs in two ways: a) more
CAFOs will be required to seek discharge per-
mits under the Clean Water Act (1972) (e.g.,
previously exempt dry litter poultry opera-
tions); and b) all CAFOs must develop and
implement a nutrient management plan.

In our research, we examined whether
endocrine activity could be detected in natural
stream/river systems below feedlots by studying
the reproductive endocrinology and secondary
sex characteristics of wild fish populations. We
examined adult fathead minnows (FHMs),
Pimephales promelas, living upstream and
downstream of cattle feedlots in Nebraska. The
FHM was chosen because it is a well-character-
ized toxicologic model and native to the study
region. FHMs have been proposed as a sentinel
species for exposure to environmental andro-
gens and estrogens (Ankley et al. 2001).
Untreated male and female FHMs exposed to
androgens develop increased head size and
nuptial tubercles on the dorsal region of the
head. Untreated female and male FHMs
exposed to estrogens synthesize the yolk pro-
tein vitellogenin (Tyler et al. 1999). We
hypothesized that fish populations exposed to

effluent from the cattle feedlots would exhibit
altered sex steroid hormone titers and altered
head morphology compared with FHM popu-
lations from the reference site. In addition, we
hypothesized that the water would contain
hormonally active substances.

Materials and Methods

Research sites. For this initial study, we identi-
fied two affected sites: a) a stream directly
below the effluent outfall of a feedlot with a
high density of penned cattle (designated the
contaminated site); and b) a stream that
receives runoff from fields with dispersed cattle
and agricultural activity (designated the inter-
mediate exposure site) (Figure 1). Both sites are
confluent with the Elkhorn River and have sev-
eral commercial feedlots that release effluent
into retaining ponds, which then drain into the
river. In addition to the sites above, we identi-
fied a number of reference sites upriver from
these feedlots. These streams also flowed into
the Elkhorn River but with no apparent feedlot
activity in the surrounding area. We were able
to capture FHMs in sufficient numbers from
only one of these sites (designated the reference
site), which is located within the Oak Valley
State Wildlife Management Area. At each site,
water quality information was obtained that
included temperature, pH, dissolved oxygen
(DO), and salinity (Table 1).

Fish. During 9 days in June 1999, FHMs
(n = 97) were collected at each of the sites using
a seine or minnow traps. Immediately upon
capture, fish were placed in coolers containing
aerated river water. Fish were then transferred
to the University of Nebraska in Omaha, where
they were anesthetized with tricaine methane-
sulfonate (MS-222, 150 ppm; A5040, Sigma
Chemical Co., St. Louis, MO) and processed.
Various morphologic measurements were
obtained, including length (0.1 mm), mass
(grams), widest head width (HW; 0.1 mm),
and interocular (IO) distance (0.1 mm).
Hepatic tissue and gonads were removed and
mass (grams) obtained; then gonads were
immediately transferred to an explant culture.
After in vitro culturing, the gonads were fixed
in neutral buffered formalin and processed for
paraffin histology following standard protocol
(Humason 1997). To determine the reproduc-
tive stage of the gonad, we compared the mean
values of four stages of gametogenesis in both
sexes between sites (Grier 1981; Selman and
Wallace 1989).

Gonad cultures and radioimmunoassays. In
vitro gonadal synthesis of sex steroid hormones
was examined in female and male FHMs fol-
lowing a modification of the protocol described
by McMaster et al. (1995). Gonadal tissue cul-
ture medium consisted of Media 199 (pH 7.4;
no. 21200-027; Gibco, Ontario, Canada),
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Figure 1. Map of field sites confluent with the Elkhorn River in eastern Nebraska, showing the feedlot
retention pond (site 1), contaminated site (site 2), intermediate site (site 3), and reference site (site 6).
Figure also presented by Soto et al. (2004).



3-isobutyl-1-methylxanthine (final concentra-
tion, 0.1 mM; no. I-7018; Sigma), forskolin
(final concentration, 5 µM; no. F-6886;
Sigma), and androstenedione (final concentra-
tion, 100 ng/mL; no. A-9630, Sigma). Culture
medium was sterile-filtered into an autoclaved
glass bottle and stored on ice.

After gonads were excised, they were
weighed, placed in glass test tubes with 1 mL
culture medium, wrapped in Parafilm, and
incubated on a rocking plate for 6 hr at 24°C.
Parameters of the assay, including the incuba-
tion time and quantity of gonadal tissue and
culture medium, were determined empirically
from a previously conducted pilot study.
After incubation, the culture medium was
decanted and stored at –80°C until assayed.

In vitro production of E2 and T in female
FHMs and T in male FHMs was measured via
radioimmunoassay on extracted culture media
as described previously (Guillette et al. 1995).
Culture medium samples were extracted twice
with ethyl ether, vaporized under a stream of
filtered dry air, and resuspended with 100 µL
0.5 M borate buffer (pH 8.0). After resuspen-
sion of the steroid hormones, the following
assay constituents were added: 200 µL anti-
body, 100 µL bovine serum albumin borate
buffer, and 100 µL 3H-hormone (Amersham
Biosciences, Piscataway, NJ). Final sample
volume was 500 µL, and all assay tubes were
run in duplicate. E2 and T standards (Sigma
Chemical Co.) were also made in duplicate at
concentrations of 1.56, 3.12, 6.25, 12.5, 25,
50, 100, 200, 400, and 800 pg/tube.

After incubating all samples and standards
overnight at 4°C, we added 500 µL 5% char-
coal/0.5% dextran/0.5 M phosphate-buffered
saline (PBS) mixture to separate the bound
from free hormone. The tubes were vortexed
and centrifuged, and the supernatant contain-
ing the bound hormone was decanted. Five
milliliters of ScintiVerse BD scintillation

cocktail (Fisher Scientific, Pittsburgh, PA)
was combined with the supernatant, and the
tubes were counted on a Beckman scintilla-
tion counter (model LS 5801; Beckman,
Somerset, NJ). Extraction efficiencies of 95%
for E2 and 99% for T were used to correct
raw data to actual medium concentrations.
Assays were validated by comparing the slopes
of an internal standard curve, a medium dilu-
tion curve, and the assay’s standard curve.
Parallelism between the internal standards,
medium dilutions, and assay standard curves
was confirmed using homogeneity of slopes
for E2 (p = 0.24) and T (p = 0.11) (StatView
5.0; SAS Institute, Inc., Cary, NC).

Bioassays for hormonal activity in water
samples. Water was sampled in U.S. EPA–
approved glass bottles concurrent with collec-
tion of the fish at the contaminated, interme-
diate, and reference sites. In addition, water
was obtained from a retaining pond, which is
located immediately at the base of the feedlot
and whose outfall is the headwaters for the
contaminated site. Water was refrigerated
upon collection and treated with sodium azide
to inhibit bacterial degradation of organic
matter in samples. Samples were analyzed for
in vitro androgenic and estrogenic activity
(Soto et al. 2004). Additional water samples
were collected 1 year later (June 2000), treated
as stated above, and shipped to the U.S. EPA
for androgenic activity analysis. Table 1 pro-
vides information on sampling conditions and
basic water quality parameters.

Preparation of water samples for CV-1
AR-dependent transcriptional activation
assay. Dosing medium was made using water
that was obtained from the retaining pond
immediately below the feedlot, as described
above. Powdered Gibco Dulbecco’s modified
Eagle’s medium (Invitrogen Corporation,
Carlsbad, CA) with 3.7 g NaHCO3 (ICN
Biochemicals, Irvine, CA) was reconstituted

with 1 L of retaining pond water and adjusted
to pH 7.4. Medium was sterile filtered
(0.2 µm, Nalgene bottle-top filters; Fisher
Scientific), supplemented with 5% dextran
charcoal serum (HyClone, Logan, UT), with
added antibiotics, wrapped in aluminum foil,
and stored at 4°C until use in the CV-1
transcriptional activation assay.

CV-1 AR-dependent transcriptional acti-
vation assay. Several experiments were con-
ducted to determine if feedlot effluent (FLE)
induced human AR (hAR)–dependent gene
expression in CV-1 cells (monkey kidney line;
American Type Culture Collection, Rockville,
MD); for a further description of this assay
and its use in testing androgenicity of water in
other aquatic systems, see Parks et al. (2001).
To determine if FLE displayed AR agonist
activity, cell medium was made with site
water. In this experiment, 200,000 CV-1 cells
were plated in a 60-mm dish and then tran-
siently cotransfected with 50 ng pCMVhAR
expression vector (from Elizabeth Wilson,
University of North Carolina at Chapel Hill)
and 5 µg MMTV-luciferase reporter
(Boehringer, Mannheim, Germany) using
5 µL Fugene reagent in 95 µL serum-free
medium (Boehringer-Mannheim, Basel,
Switzerland) (seven replicate studies). Twenty-
four hours after transfection, cells were dosed
with 4 mL of medium that was made with
water from the retention pond site and incu-
bated at 37°C with 5% CO2. After 24 hr
exposure, the medium was removed and the
cells were washed once with PBS and then
harvested with 500 µL lysis buffer (Promega,
Madison, WI). Relative light units of 0.05 mL
aliquots of lysate were determined using a
Monolight 2010 luminometer (Analytical
Luminescence Laboratories, San Diego, CA).

Statistical analyses. We tested for differ-
ences between sites for body length and mass,
gonad mass, hormones, and head morphomet-
rics in FHMs by one-way analysis of variance
(ANOVA) or analysis of covariance and
ANOVA on the CV-1 AR-dependent tran-
scriptional activation assays (StatView 5.0). If
needed, data were log-transformed to obtain
homogeneity of variance. Correlations between
various hormones and body parameters were
determined using Pearson’s correlation or mul-
tiple linear regression analyses (StatView).
Differences between examined groups were
considered significant at p < 0.05.

Results

Morphometrics. No significant difference was
noted in length (p = 0.29) and mass (p = 0.70)
among female FHMs from the three sites
(Table 2). Further, no significant difference
was noted in ovarian (p = 0.13) or liver
(p = 0.45) mass. In contrast, IO distance was
significantly different (F = 5.6, p = 0.008),
with females from the contaminated and
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Table 1. Water quality parameters for the three sites confluent with the Elkhorn River in eastern Nebraska
from which FHMs were collected.

Site Temperature (°C) pH DO (mg/mL) Salinity (ppt)

Contaminated 24.8 7.88 2.37 0.8
Intermediate 23.3 NA 2.79 0.2
Reference 21.7 7.64 4.1 0.3

NA, not available (broken pH meter). 

Table 2. Morphometric values (mean ± 1 SE) for female FHMs from three sites confluent with the Elkhorn
River in eastern Nebraska. 

Contaminated site Intermediate site Reference site
Measurement (n = 23) (n = 13) (n = 19)

Length (mm) 5.36 ± 0.19 5.68 ± 0.11 5.68 ± 0.12
Soma mass (g) 2.23 ± 0.26 2.48 ± 0.15 2.46 ± 0.14
Gonad mass (g) 0.312 ± 0.05 0.418 ± 0.05 0.405 ± 0.03
Liver mass (g) 0.065 ± 0.008 0.065 ± 0.006 0.076 ± 0.007
IO distance (mm) 4.05 ± 0.18a 4.24 ± 0.15a 4.72 ± 0.13b

HW (mm) 7.07 ± 0.24 7.22 ± 0.19 7.35 ± 0.17

Values with different superscripts within a row of data are significantly different (p = 0.05); values in rows with no super-
scripts are not significantly different.



intermediate sites having smaller distances
than females from the reference site (Table 2).
HW, however, was not different (p = 0.47).
IO distance was correlated with HW, and the
regression lines from each site have similar
slopes but significantly different y-intercepts
(p = 0.02), with the reference site having a
higher y-value than the other two sites.

As with females, no significant difference
was noted in length (p = 0.14) or body mass
(p = 0.15) among male FHMs collected at the
three sites (Table 3). Male fish from all sites
were significantly larger than female fish from
the three study sites. We found a significant
difference in testicular (F = 4.58, p = 0.017)
but not hepatic (F = 1.9, p = 0.16) mass in
males (Table 3). Males from the contaminated
and intermediate sites had significantly smaller
testes than did those from the reference site.
IO distance was significantly different
(F = 4.2, p = 0.02), with males from the conta-
minated and intermediate sites having reduced
distances compared with males from the refer-
ence site (Table 3). HW, however, was not
different (p = 0.08). IO distance correlated
with HW in males, with the regression lines
from each site having similar slopes.

Histopathology. No apparent pathology
was observed in any of the ovaries or testes
using standard histologic techniques. Also,
through histologic examination, we confirmed

that all FHMs collected were adults and that
the reproductive stage of the gonads in males
and females did not vary among sites.

Gonadal steroidogenesis. No significant
difference in ovarian E2 synthesis was
observed among sites (p = 0.44; Figure 2A).
Ovarian mass was not correlated with E2 syn-
thesis (contaminated: r2 = 0.074, p = 0.22;
intermediate: r2 = 0.115, p = 0.25; reference:
r2 = 0.169, p = 0.11). Mean ovarian synthesis
of T was not different among sites (p = 0.08;
Figure 2B). When the data from the females
were examined as an estrogen:androgen (E:A)
ratio, a significant difference was clearly
apparent (F = 5.6, p = 0.02; Figure 2C). Our
data indicate that the females from the conta-
minated and intermediate sites had a defemi-
nized sex hormone ratio, that is, a decreased
E:A ratio based on a reduction in E2 synthesis
and an increase in T synthesis (Figure 2A,B).

There was a significant difference in
T synthesis in vitro from testicular tissue
obtained from the fish collected from the
three sites (F = 5.6, p = 0.008; Figure 3), and
in vitro T synthesis was lower in testes
obtained from contaminated and intermedi-
ate site fish. T synthesis was not correlated
with testicular weight at any of the study sites
(contaminated: r2 = 0.14, p = 0.21; interme-
diate: r2 = 0.03, p = 0.61; reference: r2 = 0.11,
p = 0.19).

CV-1 AR-dependent transcriptional acti-
vation assays. We assessed androgenicity in
seven replicate experiments (with duplicates of
each replicate). Androgenicity was defined as
the ability of FLE or dihydrotestosterone
(DHT, Sigma Chemical Co.) to induce AR-
dependent luciferase gene expression in a trans-
fected CV-1 cell line. In every sample and in all
seven replicates, FLE induced AR-dependent
luciferase gene expression. The data presented
in Figure 4 are expressed as fold induction over
the control medium (without FLE) and com-
pared with the positive control of 1 nM DHT
(near maximal concentration in terms of its
ability to induce luciferase expression). FLE and
DHT each exhibited significantly higher andro-
gen activity than did media (p < 0.0001, for
each treatment vs. medium control). DHT-
and FLE-induced responses were not signifi-
cantly different (p = 0.35) from each other.

Discussion

To our knowledge, this is the first study to doc-
ument endocrine disruption in fish exposed to
FLE. Wild fish collected below a feedlot exhib-
ited altered reproductive biology, including
decreased T synthesis, altered head morpho-
metrics, and smaller testis size in males and
decreased E:A ratio in female fish. We did not
observe overt characteristics in either male or
female fish suggesting environmental exposure
to estrogens. With an in vitro assay using cells
transfected with hAR, we detected potent
androgenic responses from the FLE. Taken
together, our morphologic, endocrinologic, and
in vitro gene activation assay data suggest two
hypotheses: a) there is an androgenic sub-
stance(s) in the FLE and/or b) there is a mixture
of endocrine-active substances that alter the
hypothalamic–pituitary–gonadal axis. Further
support for the hypothesis that androgens are
present in the FLE comes from observations
of androgenic activity (Soto et al. 2004).
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Table 3. Morphometric values (mean ± 1 SE) for male FHMs from three sites confluent with the Elkhorn
River in eastern Nebraska. 

Contaminated site Intermediate site Reference site
Measurement (n = 12) (n = 10) (n = 17)

Length (mm) 6.25 ± 0.35 6.68 ± 0.25 6.85 ± 0.07
Soma mass (g) 3.69 ± 0.65 4.06 ± 0.46 4.80 ± 0.18
Gonad mass (g) 0.067 ± 0.01a 0.088 ± 0.01a 0.111 ± 0.01b

Liver mass (g) 0.107 ± 0.02 0.104 ± 0.02 0.143 ± 0.01
IO distance (mm) 5.58 ± 0.48a 5.83 ± 0.37a 6.77 ± 0.15b

HW (mm) 8.3 ± 0.54 8.64 ± 0.39 9.34 ± 0.12

Values with different superscripts within a row of data are significantly different (p = 0.05); values in rows with no super-
scripts are not significantly different.

Figure 2. Mean (± 1 SE) in vitro synthesis of (A) E2 (p = 0.44) and (B) T (p = 0.08) from the ovaries obtained from fish from three Nebraska sites, and (C) the E:A ratio.
Abbreviations: Con, contaminated; Int, intermediate; Ref, reference. The E:A ratio (C) was significantly decreased for ovaries cultured from fish collected from the
Con and Int sites (p = 0.02). Values with different superscripts within a row of data are significantly different (p < 0.05); values in rows with no superscripts are not
significantly different. 
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However, Soto et al. (2004) also found estro-
genic activity in FLE using the MCF-7 cell in
vitro E-SCREEN assay, suggesting that there
could be a complex mixture of natural and
pharmaceutical compounds in the effluent. 

Our data clearly demonstrate androgenic
activity from water obtained below feedlots.
However, it does not identify the causal
agents. Androgenic activity could be due to
natural androgens found in fecal material or
androgenic pharmaceuticals used in growth
implants (Meyer 2001). Natural androgens
have relatively short half-lives in feces and in
the open water of retaining ponds (Meyer
2001). In contrast, recent studies demonstrate
that metabolites of synthetic androgens (e.g.,
trenbolone-β from trenbolone acetate) used
in growth implants have longer half-lives.
Approximately 27.5% of the initial concen-
tration of trenbolone-β was still present in
manure piles 4.5 months after deposition
(Schiffer et al. 2001). Natural steroids appear
to be rapidly degraded, with half-lives meas-
ured on the order of days to hours. No litera-
ture could be found regarding the relative
persistence of zeranol or melengestrol in feed-
lot retaining ponds, however.

Trenbolone-β acts as a potent androgen
agonist in the CV-1 cell assay used to test FLE
in this study (Wilson et al. 2002). In fact, its
potency was equal to or greater than that of the
positive control, DHT, at similar concentra-
tions. Trenbolone acetate is known to be
8–10-fold more potent than native T in cattle
(Schiffer et al. 2001). Furthermore, in an
in utero screening assay, maternal trenbolone-β
increased anogenital distance and attenuated
the display of nipples in female rat offspring
(Wilson et al. 2002).

In a recent laboratory study, FHMs
exposed to trenbolone-β displayed severely

altered female and male reproductive biology
(Ankley et al. 2003). In females, fecundity
decreased, malelike secondary sex characteris-
tics developed (nuptial tubercles), and plasma
concentrations of T, E2, and vitellogenin were
all significantly decreased. In males, plasma
concentrations of 11-ketotestosterone were
decreased and E2 and vitellogenin were
increased. Although difficult to compare
directly because of differences in experimental
design, data from our field study support the
results of this laboratory study.

Trenbolone-β binds the FHM ARs with
greater affinity than does T (Ankley et al.
2003). In male FHMs, trenbolone-β could act
at the level of the hypothalamus or pituitary to
depress gonadotropin–releasing hormone
(GnRH) and/or gonadotropic hormone (GtH)
synthesis and/or release, leading to decreased
T synthesis, testicular mass, and IO distance,
as was seen in this study in the males from the
contaminated site. Female FHMs exposed to
FLE at the intermediate and contaminated
sites in this study had decreased E:A ratios
caused by a decrease in ovarian E2 and an
increase in T synthesis during in vitro culture.
That is, if the hormones were examined indi-
vidually, no significant difference was
observed among sites; however, when a ratio
was calculated, it was obvious that ovarian
steroidogenesis was altered in fish obtained
from the intermediate and contaminated sites.
This result suggests that some component of
the FLE has the potential to inhibit ovarian
aromatase, the enzyme that converts T to
E2 (Norris 1997). Interestingly, trenbolone-β
at certain concentrations has been shown to
weakly bind the FHM estrogen receptor,
induce vitellogenesis in male FHMs, and
weakly bind the rainbow trout estrogen recep-
tor in an in vitro transfected yeast system
(Ankley et al. 2003; Le Guevel and Pakdel
2001). Future research should investigate what
constituent(s) of the FLE may be inhibiting
aromatase synthesis or action.

Other compounds that are strong anabolic
agents, such as the mycotoxin zearalanol, are
estrogenic in cattle, humans, rainbow trout

(Oncorhynchus mykiss), and Atlantic salmon
(Salmo salar) (Arukwe et al. 1999; Le Guevel
and Pakdel 2001). Zearalanol is also known to
depress concentrations of follicle-stimulating
hormone and leutinizing hormone in cattle.
Zearalanol, measured as resorcylic acid lac-
tones, was not detected by Soto et al. (2004).
Furthermore, we do not know, presently, if
zearalanol can interact with GnRH or GtH
receptors in fish.

Water quality parameters obtained during
this study suggested that the responses observed
in fish were unlikely to be complicated by dif-
ferences in the aquatic environment (Table 1).
No fish were found in the retaining pond
immediately below the feedlot. This site had
very low DO levels (0.7 ppt) and relatively high
salinity (1.2 ppt). When the contaminated sites
(where fish were obtained) were compared with
the reference site, it was apparent that DO was
slightly different, as was salinity. The slightly
lower observed DO is not surprising given the
eutrophic nature of the effluent-laden streams
where fish were caught. Salinity was also ele-
vated at the contaminated site versus the other
sites, but the levels reported here should have
little effect on the fish because the differences
were < 1 ppt. Thus, it is unlikely that these vari-
ables significantly influenced the end points
measured in this study.

We were not able to identify sites (feed-
lots) where only endogenous fecal steroids
would be in the runoff. That is, all the feedlots
we identified used growth implants in their
cattle. We had hoped to identify sites that had
operations raising cattle without hormone
supplements and searched extensively for such
locations in the same region. All of the opera-
tions we identified that did not use hormone
implants also did not raise cattle in a feedlot
setting. These implant-free cattle are usually
free-ranging cattle; that is, they are raised at
low density on open rangelands. Future stud-
ies are needed to examine fish exposed to slur-
ries of manure from treated and untreated
animals. Given the recent publication docu-
menting wide-scale contamination of U.S.
water bodies with numerous pharmaceutical
agents (Kolpin et al. 2002), future work—
such as that presented in this study combined
with intensive environmental chemistry—is
urgently needed if we are to understand the
possible adverse effects of these compounds on
aquatic ecosystem health.
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