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Abstract

Epidemiological findings and experimental studies in animals have shown that individual tissues and whole organ systems

can be programmed in utero during critical periods of development with adverse consequences for their function in later

life. Detailed morphometric analyses of the data have shown that certain patterns of intrauterine growth, particularly

growth retardation, can be related to specific postnatal outcomes. Since hormones regulate fetal growth and the develop-

ment of individual fetal tissues, they have a central role in intrauterine programming. Hormones such as insulin, insulin-like

growth factors, thyroxine and the glucocorticoids act as nutritional and maturational signals and adapt fetal development

to prevailing intrauterine conditions, thereby maximizing the chances of survival both in utero and at birth. However, these

adaptations may have long-term sequelae. Of the hormones known to control fetal development, it is the glucocorticoids

that are most likely to cause tissue programming in utero. They are growth inhibitory and affect the development of all the

tissues and organ systems most at risk of postnatal pathophysiology when fetal growth is impaired. Their concentrations in

utero are also elevated by all the nutritional and other challenges known to have programming effects. Glucocorticoids act

at cellular and molecular levels to alter cell function by changing the expression of receptors, enzymes, ion channels and

transporters. They also alter various growth factors, cytoarchitectural proteins, binding proteins and components of the

intracellular signalling pathways. Glucocorticoids act, directly, on genes and, indirectly, through changes in the bioavailabil-

ity of other hormones. These glucocorticoid-induced endocrine changes may be transient or persist into postnatal life with

consequences for tissue growth and development both before and after birth. In the long term, prenatal glucocorticoid

exposure can permanently reset endocrine systems, such as the somatotrophic and hypothalamic–pituitary–adrenal axes,

which, in turn, may contribute to the pathogenesis of adult disease. Endocrine changes may, therefore, be both the cause

and the consequence of intrauterine programming.
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Introduction

Epidemiological studies in man have shown that impaired
intrauterine growth is associated with an increased inci-
dence of cardiovascular, metabolic and other diseases in
later life (Barker 1994). Low birth weight, in particular,
has been linked to hypertension, ischaemic heart disease,
glucose intolerance, insulin resistance, type 2 diabetes,
hyperlipidaemia, hypercortisolaemia, obesity, obstructive
pulmonary disease, renal failure and reproductive dis-
orders in the adult (Barker 1994). These associations have
been described in populations of different age, sex and
ethnic origin and occur independently of the current level
of obesity or exercise (Barker 1994, Rhind et al. 2001).
Detailed morphometric analyses of the human epidemi-
ological data have shown that certain patterns of intrauter-
ine growth can be related to specific adult diseases. For
instance, it is the thin infant with the low ponderal index,
rather than the symmetrically small baby, that is more
prone to type 2 diabetes as an adult (Phillips et al. 1994).

These observations have led to the hypothesis that adult
disease arises in utero as a result of changes in the devel-
opment of key tissues and organ systems during subopti-
mal intrauterine conditions associated with impaired fetal
growth (Barker 1994).

This hypothesis has been tested experimentally in a
number of species using a range of techniques to impair
fetal growth (Table 1). Inducing intrauterine growth retar-
dation (IUGR) by maternal undernutrition or placental
insufficiency leads to postnatal hypertension, glucose intol-
erance, insulin insensitivity and to alterations in the func-
tioning of the adult hypothalamic–pituitary–adrenal (HPA)
axis in several species (Table 1). Similarly, in naturally
occurring IUGR in polytocous species, low birth weight is
associated with hypertension and abnormalities in glucose
metabolism and HPA function after birth (Table 1).
The range of postnatal physiological perturbations
observed after induced and naturally occurring IUGR in
experimental animals is, therefore, similar to that seen in
human populations.
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The animal studies have also shown that the timing, dur-
ation and exact nature of the insult during pregnancy are
also important determinants of the pattern of fetal growth
and of the specific postnatal outcomes. In rats, calorie
restriction during pregnancy leads to hypertension in the
adult offspring when it occurs throughout gestation but not
when it is confined solely to the second half of pregnancy
(Woodall et al. 1996a, Holemans et al. 1999). Similarly,
in rats, the extent to which maternal protein deprivation
during pregnancy leads to adult hypertension depends on
the severity of the restriction and the precise composition
of the low protein diet (Langley-Evans 2000). In sheep,
undernutrition for 10 days in late gestation alters postnatal
HPA function, but not glucose metabolism, while extend-
ing the period of prenatal undernutrition to 20 days alters
glucose metabolism, but not HPA function, in the adult
offspring (Oliver et al. 2002, Bloomfield et al. 2003). In
addition, maternal nutritional insults which have little or
no effect on birth weight have been shown to alter glucose
tolerance, blood pressure and HPA function in the fetus
during late gestation (Hawkins et al., 2000, Oliver et al.
2001). These observations are consistent with the human
epidemiological data from the Dutch hunger winter
(1944–1945) which showed that the increased risk of
specific adult onset degenerative diseases depended on the

gestational age at famine exposure and that these associ-
ations occurred despite little, if any, reduction in birth
weight (Roseboom et al. 2001). Together, the animal exper-
iments and human epidemiological data demonstrate that
individual tissues and whole organ systems can be pro-
grammed during critical periods of intrauterine develop-
ment with adverse consequences for their function in later
life. This programming occurs across the normal range of
birth weights and has the worst prognosis at the extreme
ends of the birth weight spectrum.

Hormones and fetal development

The role of hormones in regulating fetal growth and the
development of individual fetal tissues has been identified
using a range of techniques including ablation of the fetal
endocrine glands, hormone administration to the fetus
and mother, and gene knockout and disruption exper-
iments (Fowden 1995, Efstratiadis 1998). These studies
show that hormones affect both tissue accretion and differ-
entiation in utero and that specific hormone deficiencies
are associated with particular types of IUGR. They also
show that hormones act on fetal growth both directly, via
genes, and indirectly, through changes in placental
growth, fetal metabolism, and/or the production of growth

Table 1 Postnatal consequences of naturally and experimentally induced intrauterine growth retardation.

Procedure Species Postnatal outcome Reference

Maternal undernutrition
Calorie deprivation Rat Hypertension, hypercholesterolaemia,

obesity, glucose intolerance
Jones & Friedman (1982),
Woodall et al. (1996a),
Szitanyi et al. (2000)

Guinea-pig Hypertension, insulin resistance, obesity Kind et al. (2002, 2003)
Sheep Hypertension, altered HPA axis Hawkins et al. (2000),

Bloomfield et al. (2003)
Protein deprivation Rat Hypertension, glucose intolerance Dahri et al. (1991),

Langley-Evans (1997)
Insulin resistance Burns et al. (1997)

Iron deficiency Rat Hypertension Crowe et al. (1995)

Placental insufficiency
Increased litter size Guinea-pig Glucose intolerance, insulin deficiency Kind et al. (2003)

Pig Hypertension, glucose intolerance Poore et al. (2001),
Poore & Fowden (2002)

Altered HPA axis Poore & Fowden (2003)
Restricted blood flow Rat Glucose intolerance, insulin deficiency

and resistance
Simmons et al. (2001)

Guinea-pig Hypertension Persson & Jansson (1992)
Decreased placental size Sheep Hypertension, glucose intolerance Gatford et al. (2000)

Horse Altered sympathoadrenal function Giussani et al. (2003)

Glucocorticoid exposure
Maternal dexamethasone
treatment

Rat Hypertension, glucose intolerance Benediktsson et al. (1993),
Nyirenda et al. (1998)

Insulin resistance, obesity Dahlgren et al. (2001)
Guinea pig Altered HPA axis Owen & Matthews (2003)
Sheep Hypertension, insulin resistance Moss et al. (2001),

Dodic et al. (2002)
Altered HPA axis Sloboda et al. (2002a)

Inhibition of placental
11bHSD2

Rat Hypertension, glucose intolerance,
insulin resistance

Lindsay et al. (1996a,b)

Maternal stress Rat Altered HPA axis Barbazangers et al. (1996)

11bHSD2, 11b-hydroxysteroid dehydrogenase type 2.
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factors and other hormones by the feto-placental tissues
(Fowden & Forhead 2001, Fowden 2003).

The hormones present in the fetal circulation have four
main sources. First, they may be secreted by the endocrine
glands of the fetus. The fetal pancreas, thyroid, pituitary
and adrenal glands are functional from early in gestation
and become progressively more responsive to stimuli
during late gestation (see Fowden & Hill 2001). Secondly,
hormones may be derived from the uteroplacental tissues.
These tissues produce a number of hormones including
steroids, peptides, glycoproteins and eicosanoids, which
are released into both the umbilical and uterine circula-
tions (Challis et al. 2001). Thirdly, lipophilic hormones
such as the steroids and thyroid hormones may be derived
from the mother by transplacental diffusion. The amount
of hormone transferred in this way depends on the
materno-fetal concentration gradient and the permeability
of the placental barrier, both of which vary between
species (Sibley et al. 1997). Finally, hormones in fetal
plasma may be derived from circulating precursor mol-
ecules by metabolism in the fetal or placental tissues.

The concentrations of hormones in the fetal circulation
change both developmentally and in response to nutri-
tional and other stimuli. Towards term, there are increases
and decreases in the concentrations of specific hormones,
which act as maturational signals to the fetus (Fowden et al.
1998). These developmental endocrine changes occur
independently of the nutritional state of the fetus and
induce permanent changes in tissue morphology and func-
tion in preparation for extrauterine life. Changes in hor-
mone concentrations also occur in response to variations
in nutritional state, especially in late gestation when all the
fetal endocrine glands are functional (Fig. 1). In general,
nutritional challenges that reduce fetal nutrient availability
lower anabolic hormones (e.g. insulin, insulin-like growth
factor (IGF)-I, thyroxine (T4)) and increase catabolic hor-
mone concentrations (e.g. cortisol, catecholamines,
growth hormone (GH)), whereas challenges that increase
the fetal nutrient supply raise anabolic and reduce cata-
bolic hormone levels in the fetal circulation (Fowden &

Forhead 2001). The specific combination of endocrine
changes depends on the magnitude, duration and precise
nature of the insult and alters the pattern of fetal develop-
ment accordingly. The key hormones involved in these
regulatory processes are insulin, the thyroid hormones, the
IGFs and the glucocorticoids (Fig. 1).

Insulin

Insulin is derived from the fetal pancreas from early in
development. Its concentration in utero rises between
early and mid gestation and then remains stable until term
(Fowden & Hill 2001). Fetal insulin concentrations are
also positively related to the fetal glucose levels and to
body weight at birth (Fowden 1995). Fetal insulin
deficiency leads to a symmetrical type of IUGR with little,
if any, developmental abnormalities in individual fetal tis-
sues (see Fowden & Hill 2001). Insulin, therefore, has neg-
ligible effects on tissue differentiation or maturation in
utero but enhances tissue accretion via its anabolic effects
on fetal metabolism and by stimulating production of IGF-
I (Fig. 1). Thus, fetal insulin is a growth-promoting hor-
mone, which acts as a signal of nutrient plenty.

Thyroid hormones

In sheep, thyroid hormones present in fetal plasma are
derived primarily from fetal sources, although in other
species such as man and rabbits they can also have a
maternal origin. Fetal plasma contains T4, tri-iodothyro-
nine (T3) and large amounts of reverse T3 (rT3), the
biologically inactive metabolite of T4. Developmentally,
fetal plasma T3 concentrations rise while plasma rT3 falls
towards term as a result of increased peripheral 50 mono-
deiodination of T4 (Thomas et al. 1978). Fetal thyroid hor-
mone concentrations are not related to metabolite
concentrations during normal conditions but are reduced
during hypoxaemic conditions associated with IUGR
(Fowden 1995). Fetal hypothyroidism leads to an asymme-
trical type of IUGR with a reduction in muscle mass (see
Fowden 1995). It also alters development of the fetal
nervous system, appendicular skeleton, skin, lungs and
skeletal muscle. Thyroid hormones, therefore, affect both
tissue accretion and differentiation, and stimulate these
processes via modulation of IGF production and by meta-
bolic actions, which increase fetal O2 consumption
(Fig. 1). Thus, thyroid hormones promote fetal develop-
ment and act as signals of energy availability.

IGFs

Fetal plasma IGF-I and IGF-II are derived from a range of
feto-placental tissues throughout gestation. Their concen-
trations vary widely between species but are positively
correlated with glucose and pO2 levels in the sheep fetus
(Owens 1991). Plasma concentrations and tissue expression
of the IGFs are also regulated developmentally and by the
other key hormones involved in the control of fetal growth

Figure 1 Diagram illustrating the relationships between nutritional
state, hormone concentrations, metabolism and tissue accretion and
differentiation in the fetus.
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(Fig. 1). In mice, knockout or disruption of the Igf genes or
the IGF-type 1 receptor leads to severe growth retardation
whereas over-expression of the Igf2 gene results in fetal
overgrowth (Efstratiadis 1998). These IGF-induced changes
in fetal body weight are accompanied by developmental
abnormalities in several individual tissues including bone,
skin, respiratory and other muscles. Similarly, in fetal
sheep and monkeys, administration of IGF-I has selective
effects on the growth of individual tissues but has little
effect on body weight (see Fowden 2003). The IGFs stimu-
late fetal growth by metabolic and non-metabolic mech-
anisms. They act as progression factors in the cell cycle,
prevent apoptosis and increase DNA and protein synthesis
in fetal tissues (Hill et al. 1998). IGF-I also has anabolic
effects similar to insulin in utero. Since fetal IGF-I is more
nutritionally sensitive than fetal IGF-II (Fowden 2003) IGF-
I appears to be the signal of nutrient sufficiency, which
regulates tissue accretion in relation to the nutritional con-
ditions in utero. Fetal IGF-II may provide a more
general stimulus to cell growth, and regulate tissue-
specific changes in cell differentiation during late ges-
tation and in response to adverse intrauterine conditions
(Fowden 2003).

Glucocorticoids

For most of gestation, glucocorticoids are low in concen-
tration in the fetus and are derived from the mother down
a materno-fetal concentration gradient, which varies
widely between species (Table 2). This transplacental con-
centration gradient is maintained by placental 11bHSD2,
which converts the active glucocorticoids, cortisol and
corticosterone, to their inactive metabolites (Seckl 2001).
This enzyme is, therefore, a key factor in limiting fetal and
placental exposure to maternal glucocorticoids. Its placen-
tal activity is regulated by nutritional and endocrine factors
(Clarke et al. 2002, Seckl 2001), and varies between
species in parallel with the magnitude of the materno-fetal
cortisol concentration gradient (Table 2). In sheep, in
which this gradient is small (Table 2), 90% of the cortisol
in the fetal circulation is of maternal origin before the fetal

adrenal begins cortisol production close to term. However,
once the fetal adrenal cortex is activated in late gestation,
the fetus becomes the primary source of circulating gluco-
corticoids and there is a progressive increase in both the
basal cortisol levels and the adrenocortical responsiveness
to adverse conditions (Challis et al. 2001). Increased fetal
glucocorticoid exposure can, therefore, occur due to
increased maternal cortisol levels, decreased placental
11bHSD2 activity or increased cortisol output by the fetal
adrenal. The importance and relative contribution of each
of these sources to changes in the fetal glucocorticoid
level varies with gestational age and in response to the
prevailing nutritional and endocrine conditions.

During the stage of gestation when fetal glucocorticoid
levels are low, glucocorticoids appear to have a relatively
minor role in controlling tissue accretion compared with
other hormones (Fowden 1995). However, when concen-
trations are raised either endogenously or exogenously in
fetal sheep, the growth rate of the fetus declines (Fowden
et al. 1996, Jensen et al. 2002). Fetal overexposure to glu-
cocorticoids by maternal administration of synthetic gluco-
corticoids has also been shown to retard fetal growth in
rats, rabbits, sheep, monkeys and man (Seckl 2001). Gluco-
corticoids, therefore, inhibit tissue accretion when their
concentrations are elevated. They also have major effects
on the differentiation of a wide range of tissues including
the lungs, liver, kidneys, muscle, fat and gut (see Fowden
et al. 1998). They stimulate morphological and functional
changes in these tissues and activate many of the biochemi-
cal processes which have little or no function in utero but
which are essential for survival postnatally (Fowden et al.
1998). Glucocorticoids, therefore, signal adverse intrauter-
ine conditions and adapt fetal development to ensure the
maximum chances of survival both in utero and at birth.

Hormones and intrauterine programming

Sexually dimorphic programming of tissues is well known
to be hormone dependent. Exposure to androgens early in
life alters expression of steroid metabolising enzymes in
the liver, neuronal structure in the hypothalamus, central
feedback sensitivity to peripheral hormones and sexual
behaviour in the adult (see Austin et al. 1981). These
effects can only be induced by androgen exposure at a
critical window of perinatal development but then persist
throughout life, independently of subsequent sex steroid
levels. Of the hormones known to regulate fetal develop-
ment, it is the glucocorticoids that are most likely to cause
tissue programming in utero. They are growth inhibitory
and affect development of all the tissues and organ sys-
tems that are at increased risk of adult pathophysiology
when fetal growth is impaired (Fowden et al. 1998). Their
concentrations in utero are also elevated in IUGR and in
response to most of the nutritional and other challenges
known to have programming effects, including maternal
undernutrition, placental insufficiency and restriction of

Table 2 Species differences in fetal and maternal cortisol
concentrations and in placental 11bHSD type 2 activity during late
gestation.

Plasma cortisol
concentration (ng/ml)

Placental 11bHSD2

Species Mother Fetus
Materno-fetal

gradient
activity (pmol/min

per mg protein)

Sheep 12 10 2 2.0
Pig 30 15 15 2.5
Horse 40 7 33 2.5
Monkey 300 150 150 3.5
Human 200 20 180 5.0
Guinea pig 1000 200 800 9.0

Data from Seckl (2001) and Clarke et al. (2002).
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placental blood flow (Challis et al. 2001, Fowden &
Forhead 2001).

Fetal overexposure to glucocorticoids either via
maternal administration or by inhibition of placental
11bHSD2 leads to hypertension, glucose intolerance and
abnormalities in HPA function after birth (Table 1). The
specific postnatal effects of these treatments depend on the
gestational age at onset and on the duration of exposure.
In sheep, maternal glucocorticoid treatment early in ges-
tation leads to hypertension but not glucose intolerance in
the adult offspring while glucocorticoid exposure late in
gestation has the opposite effects (Gatford et al. 2000,
Moss et al. 2001). With treatment late in gestation, post-
natal glucose intolerance is magnified with repeated ante-
natal glucocorticoid administration (Moss et al. 2001).
When maternal glucocorticoid concentrations are raised
endogenously in rats during pregnancy by stress or adreno-
corticotrophic hormone (ACTH) administration, there are
permanent changes in HPA function, behaviour and
neuroendocrine responsiveness in the adult offspring (Wel-
berg & Seckl 2001). Furthermore, in rats, the programming
effects of undernutrition and 11bHSD2 inhibition can be
prevented by abolishing maternal glucocorticoid synthesis
by adrenalectomy or metyrapone treatment (Langley-Evans
1997). Glucocorticoids can, therefore, programme tissues
in utero and may also mediate the programming effects
of nutritional and other environmental challenges
during pregnancy.

Cellular and molecular mechanisms of
glucocorticoid programming

Glucocorticoids act at cellular and molecular levels to
induce changes in tissue accretion and differentiation by
direct and indirect mechanisms. At a cellular level, gluco-
corticoid exposure in utero alters receptors, enzymes, ion
channels and transporters in a wide range of different cell
types during late gestation (Table 3). They also change the
expression of various growth factors, cytoarchitectural pro-
teins, binding proteins and components of the intracellular
signalling pathways (Breed et al. 1997, Chinoy et al.
1998, Hai et al. 2002, Antonow-Schlorke et al. 2003).
These changes will influence the basal functioning of the
cell and its responses to endocrine, metabolic and other
stimuli with consequences for its size, proliferation rate
and terminal differentiation. In addition to these direct
effects, glucocorticoids can act indirectly on tissue pro-
liferation and differentiation through changes in the cellu-
lar secretion of proteins, hormones, growth factors and
metabolites. Even when the effects of glucocorticoids are
confined to a single tissue or gestational age, they may
have more widespread effects on fetal development. For
instance, the cortisol-induced changes in placental GLUT
gene expression may permanently alter transplacental
glucose transport to the fetus with implications for fetal
metabolism and growth more generally (Hahn et al. 1999,
Langdown & Sugden 2001).

One important factor linking the glucocorticoid-induced
changes in cell function, proliferation and differentiation
is the fetal IGF status. Glucocorticoids affect tissue
expression of both Igf genes in the fetus (Fowden 2003). In
fetal sheep, cortisol suppresses IGF-II mRNA abundance
in liver, skeletal muscle and adrenal, and has tissue-
specific effects on IGF-I gene expression (Fig. 2; see
Fowden 2003). These changes are observed in response to
both the endogenous rise in plasma cortisol close to term
and when cortisol is infused exogenously earlier in ges-
tation (Fig. 2). They also depend on the gestational age of
the fetus. Cortisol suppresses muscle IGF-I gene expression
at 130 days of gestation but not earlier in gestation,
whereas it up-regulates hepatic IGF-I gene expression at
both gestational ages in the sheep fetus (Fig. 3). Tissue-
and age-specific effects of the glucocorticoids are also
seen with other genes. Cortisol increases hepatic but not
muscle GH receptor (GHR) mRNA abundance and
induces pulmonary but not renal angiotensin-converting
enzyme activity in fetal sheep during late gestation (Li et al.
1999, 2002, Forhead et al. 2000b). Similarly, in the gastro-
intestinal tract of fetal pigs, exogenous cortisol activates
some but not all of the digestive enzymes and is effective
only in the period of gestation just before fetal cortisol
levels rise endogenously (Trahair & Sangild 1997). The
cellular effects of the glucocorticoids are, therefore, tissue
specific and dependent on gestational age.

At a molecular level, glucocorticoids affect a number of
different processes. They may act on transcription, mRNA
stability, translation and/or the post-translational proces-
sing of the protein products. Several of the genes known
to be regulated by glucocorticoids (e.g. Igf2, angiotensino-
gen, tropoelastin) have the necessary glucocortiocoid
response elements (GRE) in their promoter regions to
allow direct transcriptional control of the gene by cortisol.
Certainly, cortisol acts directly on the Igf2 gene in fetal
liver to decrease transcription (Li et al. 1998). However,
other genes which appear to be glucocorticoid sensitive
(e.g. Igf1) do not have recognisable GRE consensus
sequences. In these instances, the effects of cortisol must
be mediated indirectly via changes in GHR gene
expression or via other transcription factors or cortisol-
dependent hormones. Glucocorticoids have been shown
to affect the expression of several transcription factors
including cfos, AP-1 and C/EBPd in fetal tissues (Breed
et al. 1997, Slotkin et al. 1998). They also raise fetal
plasma T3, which is known to affect expression of the Igf
genes in fetal ovine liver and skeletal muscle (see Fowden
2003). In genes which have multiple mRNA transcripts
derived from alternate exon slicing and promotor usage,
the effects of the glucocorticoids may be specific to
certain leader exons in the genes. Indeed, differential pro-
motor usage has been observed in response to glucocorti-
coids in the GHR, Igf and glucocorticoid receptor (GR)
genes in fetal liver during late gestation (Li et al. 1996,
1999, McCormick et al. 2000). Glucocorticoids may,
therefore, initiate use of specific promoters which, in turn,
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could alter the relative abundance of particular mRNA
slice variants with consequences for protein translation. In
genes which are imprinted and expressed from only one
parental allele (e.g. Igf2), the effects of the glucocorticoids
may also be mediated through changes in imprint status.
Imprinting of Igf2 is controlled by the H19 gene which is
itself imprinted and nutritionally regulated in a tissue-
specific manner (see Reik et al. 2003). Certainly, in sheep,
there is a perinatal transition from monoallelic to biallelic
Igf2 gene expression in the liver, which closely parallels

the prepartum cortisol surge in the fetus (McLaren &
Montmonery 1999).

The cellular and molecular changes induced by gluco-
corticoids in individual tissues combine to produce inte-
grated changes in function at a systems level. In fetal
sheep, the hypertensive effect of cortisol may be due to
functional changes in the brain, heart, vasculature and
kidneys induced by altered expression of hormone recep-
tors, enzymes, ion channels, transporters and cytoskeletal
proteins in these tissues (Table 3). It also depends on local

Table 3 Cell functions affected by glucocorticoids in utero.

Function Specific change Tissue Reference

Receptors Glucocorticoid Lungs, brain, anterior
pituitary, liver

Erdeljan et al. (2001),
Holloway et al. (2001)

Mineralocorticoid Brain McCabe et al. (2001)
ACTH Adrenal Leavitt et al. (1997)
Vasopressin Anterior pituitary Young et al. (2003)
Noradrenaline and adrenaline Liver, lung Cheng et al. (1980),

Fowden et al. (1995)
GH Liver Li et al. (1996)
IGF Liver Price et al. (1992)
Prolactin Liver Phillips et al. (1999)
Dopamine Brain Labaune et al. (2002)
Leptin Placenta Sugden et al. (2001),

Smith & Wadell (2002)
Angiotensin II Liver, kidney, heart, brain Segar et al. (1995),

Dodic et al. (2002)
Enzymes 11bHSD types 1 and 2 Liver, placenta, adrenal Ross et al. (2000), Clarke et al. (2002),

Gupta et al. (2003)
3b-Hyroxysteroid
dehydrogenase

Adrenal Leavitt et al. (1997)

Prostaglandin G/H synthetase Placenta Wu et al. (2001)
17a-hydroxylase Placenta Anderson et al. (1975)
17,20-lyase Placenta Anderson et al. (1975)
Aromatase Placenta France et al. (1988)
Angiotensin-converting
enzyme

Lungs Forhead et al. (2000b)

Endothelial nitric
oxide synthetase

Lungs Grover et al. (2000)

Fatty acid synthetase Lungs Xu & Rooney (1997)
Argininosuccinate synthetase Liver Bourgeois et al. (1997)
Argininosuccinate lyase Liver Renouf et al. (1995)
Type I 50-monodeiodinase Liver Wu et al. (1978)
Pyruvate carboxylase Liver Fowden et al. (1993)
Glucose-6-phosphatase Liver, kidney Fowden et al. (1993)
Fructose diphosphatase Liver, kidney Fowden et al. (1993)
Phosphoenolpyruvate
carboxykinase

Liver, kidney Fowden et al. (1993)

Aspartate transaminase Liver, kidney Fowden et al. (1993)
Renin Kidney Segar et al. (1995)
Chymosin Stomach Sangild et al. (1994)
Amylase Pancreas Sangild et al. (1994)
Lactase Small intestine Sangild et al. (1995)
Aminopeptidase Small intestine Sangild et al. (1995)
Phenylethanolamine
N-methyltransferase

Heart, adrenal Kennedy & Ziegler (2000)

Collagenase Bone Delany et al. (1995)
Ion channels Epithelial Naþ channel Lungs, kidney Venkatesh & Katzberg (1997),

Nakamura et al. (2002)
Voltage-gated Naþ channel Heart Fahmi et al. (2003)

Transporters GLUT 1 and 3 Placenta Hahn et al. (1999),
Langdown & Sugden (2001)

Naþ/Kþ ATPase Lungs, kidney Chalaka et al. (1999),
Petershack et al. (1999)

Naþ/Hþ exchanger Kidney Guillery et al. (1995)

GLUT, glucose transporter.
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and systemic changes in the secretion of vasoactive
agents, such as angiotensin II (AII), adrenaline, nitric oxide
and vasopressin by several different tissues (Dodic et al.
2002). Glucocorticoid programming of physiological sys-
tems is, therefore, multifactorial and involves co-ordinated
and interdependent changes in many different tissues.

Endocrine mechanisms of glucocorticoid
programming

One of the major mechanisms by which glucocorticoids
act on physiological systems is via changes in hormone
bioavailability. Glucocorticoids are known to alter the
production and secretion of a number of hormones by the
placenta and fetal endocrine glands (Table 4). They also
regulate hormone receptor densities and the activities of
several enzymes involved in activating and inactivating
hormones at the fetal tissues (Table 4). For instance, corti-
sol activates T3 production by inducing 50 monodeiodi-
nase in fetal liver and has tissue-specific effects on its own
availability by regulating activity of both 11bHSD iso-
forms (Table 3). In addition, by altering the concentration
of hormone-binding proteins, such as corticosteroid-bind-
ing globulin and IGF-binding proteins (Price et al. 1992,
Sloboda et al. 2002b), glucocorticoids control the avail-
ability of free hormone for receptor binding in the fetus.

Some of the endocrine changes induced by glucocorti-
coids in utero are transient while others persist after gluco-
corticoid levels have returned to normal values (Fletcher
et al. 2000, Forhead et al. 2002). Even transient endocrine
changes may have permanent effects by altering tissue
development. In fetal sheep, cortisol up-regulates activity
of the renin–angiotensin system (RAS) by increasing fetal
plasma AII concentrations and altering AII type 1 receptor
expression in the heart and kidneys (Table 3). These
changes may cause cardiac hyperplasia and reduce the
number and size of the glomeruli in the kidney (Woods &
Rasch 1998, Sundgren et al. 2003). Even if the enhanced
RAS activity does not persist after birth, the alterations
in cardiac and renal morphology may predispose these
tissues to pathophysiology later in life.

Glucocorticoid-stimulated changes in hormone produc-
tion, particularly in the placenta, may have their program-
ming effects via the mother. Placental hormones, such as
progesterone and placental lactogen, influence maternal
metabolism in favour of glucose delivery to the fetus.
Changes in these hormone levels will, therefore, affect the
partitioning of nutrients between the maternal and fetal tis-
sues, and alter the availability of substrates for tissue accre-
tion by the fetus. In fetal sheep, the cortisol-induced
reduction in the number of placental binucleate cells pro-
ducing placental lactogen may also compromise mammary
development and cause a lactational constraint on nutri-
tion after birth (Ward et al. 2002). Certainly, in human
populations, the risk of adult onset cardiovascular disease
is greatest in individuals who were growth retarded in
utero, grew slowly during the first year of postnatal life and
then showed rapid catch-up growth during later childhood
to become obese as adults (Eriksson et al. 2001). Changes
in lactation induced by prenatal glucocorticoid exposure
may, therefore, provide a mechanism linking pre- and
immediate postnatal growth, and lead to postnatal pro-
gramming of tissues that were unaffected by glucocorti-
coids in utero.

Figure 3 Schematic diagram showing the effects of cortisol on the
activation of the GH–IGF axis in ovine hepatocytes. Data from Li
et al. (1996, 1998, 1999).

Figure 2 Cortisol and tissue IGF gene expression. Mean (^S.E.) values
of plasma cortisol and IGF-I mRNA abundance in fetal ovine liver
and skeletal muscle with respect to gestational age in normal intact
(n . 5) and adrenalectomised sheep fetuses (n . 4) and in fetuses
infused with cortisol for 5 days before delivery (n . 4). Values with
different letters are significantly different from each other (P , 0.05,
ANOVA). *P , 0.05 compared with normal, intact fetuses at the
same gestational age (t-test). Data from Li et al. (1996, 2002).

Hormones and intrauterine programming 521

www.reproduction-online.org Reproduction (2004) 127 515–526

Downloaded from Bioscientifica.com at 08/23/2022 02:25:21PM
via free access



In the long term, prenatal glucocorticoid exposure may
permanently reset the endocrine axes. In fetal sheep, corti-
sol alters the growth-regulatory mechanisms by initiating
the transition from the fetal to the adult mode of IGF
expression in the liver and other tissues (Fig. 3). The corti-
sol-induced rise in hepatic Igf1 gene expression is prob-
ably mediated through an increase in hepatic GHR gene
expression as the GH-sensitive transcript of IGF-I mRNA is
specifically up-regulated in response to cortisol (Li et al.
1996, 1999). In turn, up-regulation of GHR mRNA abun-
dance depends on the cortisol-induced increase in plasma
T3 (see Fowden 2003). Cortisol, therefore, initiates a
switch in the somatotrophic axis from GH-independent,
local production of IGFs in utero to GH-dependent hepa-
tic production of endocrine IGF-I in the adult hepatocyte
(Fig. 3). It is also responsible for the perinatal transition
from IGF-II to IGF-I as the predominate growth-regulatory
IGF (Fig. 3). Premature activation of these switches by
early exposure to cortisol may, therefore, alter the growth
trajectory both before and after birth. Certainly, in rats,
there are permanent changes in the GH–IGF-I axis after
prenatal undernutrition, which persist into old age (Wood-
all et al. 1996b). Precocious onset of the mechanisms for
GH-dependent growth may also explain, in part, the rapid
catch-up growth seen in growth-retarded fetuses with pla-
cental insufficiency once the nutrient restriction is lifted
after birth (Kind et al. 2003, Poore & Fowden 2003). How-
ever, in human populations, there is no evidence of a link
between low birth weight and the function of the somato-
trophic axis in old age (Kajantie et al. 2003).

In other endocrine axes, glucocorticoids may change
the set point and sensitivity of the feedback mechanisms
(Bertram & Hanson 2002). This leads to permanent
changes in basal hormone levels and in the endocrine
responses to stimuli. Basal and stimulated glucocorticoid
concentrations are known to be high in adult sheep, rats
and guinea pigs over-exposed to glucocorticoids in utero
(Langley-Evans et al. 1996, Matthews et al. 2002, Sloboda

et al. 2002a). Similarly, in man, basal hypercortisolaemia
and greater adrenocortical responsiveness to ACTH are
observed in adults who were small at birth (Phillips et al.
1998, Reynolds et al. 2001). Postnatal adrenocortical
responsiveness is also exaggerated in experimental
animals after natural and experimentally induced IUGR
(Bloomfield et al. 2003, Poore & Fowden 2003). The post-
natal changes in HPA function associated with IUGR and
prenatal glucocorticoid exposure are sex linked in some
species and, generally, become more pronounced
with increasing postnatal age (Bertram & Hanson 2002,
Matthews et al. 2002). Persistently enhanced HPA func-
tion in the adult may itself contribute to the pathogenesis
of cardiovascular and metabolic diseases, independently
of any other programming events, as high glucocorticoid
levels are known to cause diabetes and hypertension in
the adult (Benediktsson et al. 1993).

Intrauterine resetting of the HPA and other endocrine
axes may occur at a central or peripheral level through
permanent changes in receptors, enzymes and/or binding
proteins (Table 3). Prenatal glucocorticoid exposure has
been shown to alter GR gene expression in peripheral
(liver and kidney) and central (hippocampus, hypothala-
mus and amygdala) tissues in adult rats, guinea pigs and
sheep (see Welberg & Seckl 2001, Dodic et al. 2002, Mat-
thews et al. 2002). These changes are tissue specific and
dependent on gestational age at the time of glucocorticoid
exposure (Welberg & Seckl 2001). Similar tissue-specific
changes in GR gene expression have been observed in
adult rats that were undernourished before birth (Langley-
Evans et al. 1996). In addition, prenatal glucocorticoids
permanently alter the monoaminergic and other transmit-
ter systems involved in regulating GR expression in the
brain (Muneoka et al. 1997). The central changes in GR
expression will alter the functioning of the HPA axis while
the peripheral changes in GR mRNA abundance may
explain the tissue-specific nature of glucocorticoid pro-
gramming. Central changes in receptor density for the

Table 4 The effects of natural or synthetic glucocorticoids on circulating hormone concentrations in fetal sheep at the time of exposure.

Hormone class Specific hormone Change in concentration Reference

Steroids Oestrogen increase Sloboda et al. (2000)
Cortisol decrease Bennet et al. (1999)

Eicosanoids PGF2 increase Challis et al. (2002)
PGF2a increase Challis et al. (2001)
PGI2 increase Ibe et al. (1996)

Proteins Insulin decrease Sloboda et al. (2000)
Leptin increase Forhead et al. (2002)
Erythropoietin decrease Lim et al. (1996)
Gastrin increase Trahair & Sangild (1997)
ACTH decrease Derks et al. (1997)

Peptides Neuropeptide Y increase Fletcher et al. (2000)
Angiotensin II increase Forhead et al. (2000a)

Iodothyronines T3 increase Thomas et al. (1978)
rT3 decrease Thomas et al. (1978)

Amines Noradrenaline decrease Derks et al. (1997)
Adrenaline decrease Derks et al. (1997)

PG, prostaglandin.
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gonadal and adrenal steroids may also explain, in part,
the altered behaviour and abnormalities in hypothalamic–
pituitary–gonad function seen in adults after IUGR and
prenatal exposure to undernutrition or excess glucocorti-
coids (Rhind et al. 2001, Welberg & Seckl 2001).

Conclusions

Hormones have a central role in regulating fetal growth
and development. They act as maturational and nutritional
signals in utero, and control tissue accretion and differen-
tiation in relation to the prevailing environmental con-
ditions in the fetus. The glucocorticoids, in particular,
have a key role in intrauterine programming. They induce
permanent changes in physiological systems by altering
hormone bioavailability and the cellular expression of
receptors, enzymes, ion channels, transporters and various
cytoarchitectural proteins in the fetal tissues. Glucocorti-
coids act directly on genes and indirectly via other hor-
mones and growth factors. Endocrine changes are,
therefore, both the cause and the consequence of intrau-
terine programming.
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