
Citation: Mao, Y.-J.; Zha, L.-W.; Tam,

A.Y.-C.; Lim, H.-J.; Cheung, A.K.-Y.;

Zhang, Y.-Q.; Ni, M.; Cheung, J.C.-W.;

Wong, D.W.-C. Endocrine Tumor

Classification via Machine-Learning-

Based Elastography: A Systematic

Scoping Review. Cancers 2023, 15, 837.

https://doi.org/10.3390/

cancers15030837

Academic Editors: Zhiyun Xue and

Sameer Antani

Received: 2 December 2022

Revised: 26 January 2023

Accepted: 27 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Endocrine Tumor Classification via Machine-Learning-Based
Elastography: A Systematic Scoping Review
Ye-Jiao Mao 1,†, Li-Wen Zha 2,†, Andy Yiu-Chau Tam 1 , Hyo-Jung Lim 1, Alyssa Ka-Yan Cheung 3,
Ying-Qi Zhang 4, Ming Ni 5,6,*, James Chung-Wai Cheung 1,7,* and Duo Wai-Chi Wong 1

1 Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University,
Hong Kong, China

2 Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
3 Department of Electronic Engineering, Faculty of Engineering, The Chinese University of Hong Kong,

Hong Kong, China
4 Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, China
5 Department of Orthopaedics, Shanghai Pudong New Area People’s Hospital, Shanghai 201299, China
6 Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
7 Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
* Correspondence: gendianqing@163.com (M.N.); james.chungwai.cheung@polyu.edu.hk (J.C.-W.C.);

Tel.: +86-021-54661789 (M.N.); +852-2766-7673 (J.C.-W.C.)
† These authors contributed equally to this work.

Simple Summary: The incidence of endocrine cancers (e.g., thyroid, pancreas, and adrenal) has been
increasing; these cancers have a high premature mortality rate. Traditional medical imaging methods
(e.g., MRI and CT) might not be sufficient for accurate cancer screening. Elastography complements
conventional medical imaging modalities by identifying abnormal tissue stiffness of the tumor,
in which machine learning techniques can further improve accuracy and reliability. This review
focuses on the applications and performance of machine-learning-based elastography in classifying
endocrine tumors.

Abstract: Elastography complements traditional medical imaging modalities by mapping tissue stiff-
ness to identify tumors in the endocrine system, and machine learning models can further improve
diagnostic accuracy and reliability. Our objective in this review was to summarize the applications
and performance of machine-learning-based elastography on the classification of endocrine tumors.
Two authors independently searched electronic databases, including PubMed, Scopus, Web of Sci-
ence, IEEEXpress, CINAHL, and EMBASE. Eleven (n = 11) articles were eligible for the review, of
which eight (n = 8) focused on thyroid tumors and three (n = 3) considered pancreatic tumors. In
all thyroid studies, the researchers used shear-wave ultrasound elastography, whereas the pancreas
researchers applied strain elastography with endoscopy. Traditional machine learning approaches
or the deep feature extractors were used to extract the predetermined features, followed by clas-
sifiers. The applied deep learning approaches included the convolutional neural network (CNN)
and multilayer perceptron (MLP). Some researchers considered the mixed or sequential training
of B-mode and elastographic ultrasound data or fusing data from different image segmentation
techniques in machine learning models. All reviewed methods achieved an accuracy of ≥80%, but
only three were ≥90% accurate. The most accurate thyroid classification (94.70%) was achieved by
applying sequential training CNN; the most accurate pancreas classification (98.26%) was achieved
using a CNN–long short-term memory (LSTM) model integrating elastography with B-mode and
Doppler images.

Keywords: neoplasia; neoplasm; cancer; neuroendocrine tumor; computer-aided diagnosis;
deep learning; artificial intelligence; sonoelastography
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1. Introduction

The endocrine system plays an essential role in regulating metabolism by synthesizing
and releasing hormones into the body and transporting hormones to target cells [1]. The
cellular processes of the target cells are directly or indirectly modulated when the hormones
bind to the receptor molecules [1]. In addition, the endocrine system works together with
other systems to maintain normal physiological activities of the human body. The abnormal
growth of nodules or tumors in the endocrine system affects normal hormone production
and can result in various diseases [2]. The global burden of endocrine-related cancers is
increasing because of aging and exposure to alcohol, high-fat diets, and tobacco [3]. For
example, thyroid cancer has been the most common endocrine malignancy over the past
few decades, accounting for approximately 2% of all cancers [4,5]. Additionally, pancreatic
cancer has a poor prognosis, with a 5-year survival rate of approximately 2.5% [6]. The
incidence of the most common endocrine tumor, thyroid cancer, has dramatically increased
in the United States, with approximately 53,990 cases [7]. Additionally, more than half
of the new tumor cases in China are metastatic [8]. The initial diagnosis and treatment
of thyroid cancers cost USD 1425 to 17,000 [9]. A total of 9.3 per 1000 person-years of
patients experience financial catastrophe one year postdiagnosis, which is a substantially
higher rate than for other cancers [9]. Survivors bear additional psychological and financial
burdens and experience monetary hardship [10,11]. Approaching the highest mortality
rate among all cancers, the global burden of pancreatic cancer has doubled in the past
decades [12,13]. Early and accurate diagnosis of pancreatic cancer can facilitate more
efficacious treatments [14], whereas identifying thyroid cancer at earlier stages can improve
prognosis and reduce patient mortality [15].

Medical imaging modalities, such as magnetic resonance imaging (MRI), computed
tomography (CT), and ultrasonography, are vital assessment and diagnostic tools. Ul-
trasonography is mainly used to screen and evaluate the characteristics of thyroid nod-
ules [16,17], and real-time ultrasonography supports other assessment modalities, such
as fine-need aspiration, biopsy, cytology, etc. [17,18]. Additionally, magnetic resonance
imaging (MRI) is the mainstay imaging modality in staging pancreatic cancer [19,20] and
evaluating the neuroanatomy for pituitary adenomas [21,22]. Locating and measuring
the size of adrenal tumors is more challenging and requires the use of contrast-enhanced
computed tomography (CT) [16].

These medical imaging modalities have several drawbacks. CT exposes patients to
radiation and may not be appropriate for the frequency tracking of tumor progression [23].
Functional MRI is susceptible to noise and articles and has insufficient temporal and
spatial resolution and a low signal-to-noise ratio [24] and is contraindicated for patients
with metallic implants or pacemakers. Additionally, ultrasound might be limited by the
penetration depth and spatial resolution [25]. Therefore, an accurate and accessible tumor
assessment imaging modality that reduces radiation risk is required.

Elastography is an emerging imaging technology that measures and maps tissue
stiffness/elasticity, inspired by the manual palpation technique [26]. Despite sharing the
same limitations in terms of penetration depth and spatial resolution as B-mode ultrasound,
it provides complementary mechanical information of tissues. With this method, tissue
abnormality (malignancy) affects its ability to resist load deformation (i.e., stiffness) [27].
Ultrasound elastography has been widely used in different medical applications, such as
for the spine [28,29], breast [30], liver [31], brain [32–34], and lymph nodules [35]. The
two types of elastography are shear-wave and strain imaging. In the strain imaging
technique, a force is applied to the tissue and the strain is measured for calculating Young’s
modulus. In contrast, in shear-wave imaging, tissue stiffness is estimated by measuring the
propagation velocity of shear waves [27]. Furthermore, MRI elastography has also been
adopted for elastography in the assessment of chronic disease, such as lung disease [36],
hepatic fibrosis [37], breast cancer [38], etc.

Recently, computer-aided diagnosis was found to improve the diagnostic performance
and reliability of medical imaging [39]; this method is also less operator-dependent and
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less prone to observer variability [40–42]. Machine learning (and deep learning) models
play an important role in computer-aided diagnosis. Using mathematics and statistics tools,
machine learning models extract and segment relevant features, interpret the output, and
formulate a predictive model by correlating the data with the diagnosis of the patients [43].
For example, machine learning was applied to contrast-enhanced CT to distinguish large
adrenocortical carcinomas from other cortical lesions [44]. However, in addition to requiring
a large dataset, some models may not have sufficient power to produce a satisfactory
performance in the image segmentation of a specific modality [45]. With the advancement
of machine learning techniques, especially deep learning models, we anticipate that the
technique will also be applied in elastography for endocrine tumor classification [46].

The aim of this study was to provide a contemporary and comprehensive literature
review on the application of machine-learning-based elastography to classify endocrine
tumors, including thyroid, pancreas, adrenal, and pituitary tumors.

2. Materials and Methods
2.1. Search Strategy

In our systematic literature search, we followed the guidance of the Preferred Re-
porting Items for Systematic Review and Meta-Analysis Protocols Extension for Scoping
Reviews (PRISMA-ScR) guidelines [47], which we conducted on: PubMed (title/abstract,
journal articles, English), SCOPUS (title/abstract/keywords), Web of Science (topic field,
articles, English), IEEEXpress (title/abstract/indexing terms), CINAHL via EBSCOhost (ti-
tle/abstract/keywords), and EMBASE via OVID (title/abstract/author keywords, English).

Two authors (Y.-J.M. and L.-W.Z.) conducted independent searches in August 2022.
The first author (Y.-J.M.) screened abstracts and full texts, which were checked by an-
other author (L.-W.Z.) Any disagreement was resolved by seeking consensus with the
corresponding authors.

We searched the literature with a combination of keywords related to the areas of
endocrine tumors, elastography, and machine learning. For endocrine tumors, the searching
terms were “thyroid”, “pancrea*”, “adrenal”, or “endocrine” and those with “nodule*”,
“tumo*r*”, “cancer”, “carcinoma*”, “malignan*”, “neoplas*”, or “mass*”. For elastography,
the search terms were “elastograph*”, or “sonoelastograph*”. For machine learning, the
searching terms were “machine learning”, “deep learning”, “neural network”, “CNN”,
“RNN”, “ANN”, and “cascade network*”. The raw search and operations are included
in Table S1.

The search was limited to original journal research articles published in English.
The inclusion criteria included (1) application elastography (in any modality) to classify
endocrine tumors; (2) deep learning or machine learning technique involving image seg-
mentation, feature extraction, and classification; (3) classifying benign and malignancy;
(4) studies conducted on human subject or existing human subject data; and (5) with
at least one classification-related performance measure. Studies were excluded if they
(1) had insufficient details on the machine learning model; (2) were modeled or evaluated
by purely simulated data; or (3) classified metastasis.

2.2. Screening and Data Extraction

The PRISMA flowchart shown in Figure 1 illustrates the search and screening process
for this systematic review. The review context included the basic information (Table 1), the
configuration of the elastography system, image preprocessing and segmentation (Table 2),
feature extraction and classification (Table 3), evaluation metrics, and performance (Table 4).
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Figure 1. PRISMA flowchart of systematic search and screening.

Table 1. Subject and dataset information.

Reference Sample Size Sex (M:F) Mean Age (Years) Type
(B:M) Size (mm) Reference Standard

Hu et al. [48] 1582 patients
1747 nodules 567:1015 46.40 (SD: 9.65) Thyroid

701:1046 14.51 ± 3.51 FNA

Pereira et al. [49] 165 patients
964 images - - Thyroid

752:212 - -

Qin et al. [50] 233 patients
1156 nodules - - Thyroid

539:617 - Verified by clinical
pathology

Săftoiu et al. [51] 68 patients 47:21
Normal: 49.4 (SD: 15.4)
ChPan: 55.1 (SD: 17.0)
PanCA: 62.3 (SD: 12.9)

Normal: 22
ChPan: 11
PanCA: 35

- CT and biopsy

Săftoiu et al. [52] 258 patients
774 recordings 172:76 PanCA: 64 (SD: 15.40)

ChPan: 56 (SD: 13.25)
Pancreatic

47:211

PanCA: 31.97
(SD: 11.69, 6–85)

ChPan: 28.36
(SD: 12.23, 9–60)

FNA biopsy, verified
by clinical, biological
exams, and repeated

imaging tests

Sun et al. [53] 245 patients
490 images - - Thyroid

145:100 - Biopsy

Udris, toiu et al. [54] 65 patients
1300 images - -

PDAC: 30
CPP: 20

PNET: 15
- FNA biopsy

Zhang et al. [55] 2032 patients
2064 nodules 695:1337 45.25 (SD: 13.49) Thyroid

1314:750 ≤25 -

Zhao et al. [56] 174 patients
177 nodules 45:132 B: 47.9

M: 41.9
Thyroid

81:96
B: 23.4
M: 20.0 FNA biopsy

Zhao et al. [57] 720 patients
743 nodules 168:552 49.61 (15–89) Thyroid

469:274 ≥10 Biopsy

Zhou et al. [58] 70 patients
107 nodes 10:60 30 Thyroid

32:75 ≤10 FNA biopsy

B:M: benign-to-malignant ratio; ChPan: chronic pancreatitis; CPP: chronic pseudotumoral pancreatitis; FNA: fine-
needle aspiration; M:F: male-to-female ratio; PanCA: pancreatic cancer; PDAC: pancreatic ductal adenocarcinoma;
PNET: pancreatic neuroendocrine tumor; SD: standard deviation.
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Table 2. Configuration of elastography system and image segmentation.

Articles Mode Type System Processing and Segmentation

Hu et al. [48] US SWE +
B-mode

ACUSON Sequoia Redwood US diagnostic system
(Siemens, Munich, Germany)

Use PP-LiteSeg to
segment SWE by B-mode

Pereira et al. [49] US SWE + B-mode - Segmented SWE region with stress
corresponding to 0.7 max stress value

Qin et al. [50] US SWE + B-mode Aixplorer ultrasonic machine
Pre-extracted ROI by color channel

transformation and
segmented by radiologists

Săftoiu et al. [51] US EUS, SE + B-mode

HITACHI 8500 (Hitachi Medical Systems, Zug,
Switzerland)

Pentax Linear Endoscope EG3830UT and EG3870
UTK (Pentax, Hamburg Germany)

Processed using ImageJ software to extract hue
histogram matrix. Manual selection

or tumor area

Săftoiu et al. [52] US EUS -
Processed using a special software plugin based

on ImageJ software to extract hue histogram
matrix. Manual selection or tumor area.

Sun et al. [53] US SWE + B-mode -
ROI manually segmented using

ITK-SNAP Denoise with Median Filter and
outlined by radiologists.

Udris, toiu et al. [54] US EUS, SE, Doppler
HITACHI Preirus

EG3870UTK, Pentax Medical Corporation
(Mitaka, Tokyo)

Contrast enhancement, ROI
manual segmentation

Zhang et al. [55] US SE + B-mode
HI Vision 900, HI Vision Ascendus, HI Vision

Preirus color US units from Hitachi
(Tokyo, Japan)

Conducted by experienced radiologist

Zhao et al. [56] US
SE + B-mode HITACHI Vision 900 system (Hitachi Medical

System, Tokyo, Japan), - -

B-mode Philips iu222 (Philips, Bothell, WA, USA)

Zhao et al. [57] US SWE+ B-mode Aixplorer; Supersonic Imagine
(Paris, France), SWE ROI extracted by Q-Box quantification tool

Zhou et al. [58] US - - Contrast enhancement

EUS: endoscopic ultrasound; ROI: region of interest; SE: strain elastography; SWE: shear-wave elastography;
US: ultrasound.

Table 3. Configuration of machine learning and classification models.

Articles Feature Extraction Strategy Classifier/Model Validation
(trn:tst)

Hu et al. [48] 7 ResNet18 models on different segmentation approaches 71:29

Pereira et al. [49]

Predetermined SWE statistical features and
SWE features extracted by circular

Hough transform

Logistic regression, naïve Bayes,
SVM, decision tree

82:18
Fully trained CNN (2-layer) model for B-mode and SWE

Pretrained CNN18 for B-mode and SWE
Combine classification by averaging class probabilities of trained B-mode and SWE models

Qin et al. [50] Pretrained VGG16 with 3 fused methods (MT, FEx-reFus, and Fus-reFEx) and 3 classifier layers
(FCL, SPP, and GAP) 82:18

Săftoiu et al. [51] MLP (3- and 4-layer) 10-fold cxv

Săftoiu et al. [52] MLP (4-layer) 10-fold cxv

Sun et al. [53]
Deep feature extractor on SWE US

Predetermined statistical and radiomics
features on B-mode US

Logistic regression, naïve Bayes, and SVM on both SWE
and B-mode features. Classifications of both models

were combined and hybridized by uncertainty
decision-theory-based voting system (pessimistic,

optimistic, and compromise approaches).

5-fold cxv

Udris, toiu et al. [54]

CNN on B-mode, contrast harmonic sequential images taken at 0, 10, 20, 30, 40 s, color Doppler, and
elastography

LSTM on contrast harmonic sequential images taken at 0, 10, 20, 30, 40 s
CNN and LSTM merged by concatenation layer.

80:20

Zhang et al. [55] 11 predetermined B-mode features
1 predetermined elastography feature

Logistic regression, linear discriminant analysis,
random forest, kernel SVM, adaptive boosting, KNN,

neural network, naïve Bayes, CNN
60:40, 10-fold cxv

Zhao et al. [56] 20 predetermined radiomics features Logistic regression, random forest, XGBoost, SVM,
MLP, KNN -

Zhao et al. [57]
Machine-learning-assisted approach
(6 predetermined B-mode and 5 SWE

features) Radiomics features

Decision tree, naïve Bayes, KNN, logistic regression,
SVM, KNN-based bagging, random forest, XGBoost,

MLP, gradient boosting tree

Training: 520
Testing: 223

External Testing: 106

Zhou et al. [58] Predetermined statistical features, Feature
extraction by GLCOM-GLRLM, MSCOM RBM + Bayesian -

CNN: convolutional neural network; FCL: fully connected layers; FEx-reFus: feature extraction followed by
refusion; Fus-reFEx: fusion followed by feature re-extraction; GAP: global average pooling; GLCOM-GLRLM:
ray-level co-occurrence matrix and gray-level run-length matrix; KNN: k-nearest neighborhood; LSTM: long
short-term memory; MLP: multilayer perceptron; MSCOM: multiple subgraph co-occurrence matrix based on
multilevel wavelet; MT: mixed training; RBM: restricted Boltzmann machine; SPP: spatial pyramid pooling;
SVM: support vector machine; SWE: shear-wave elastography; trn: training; tst; testing; cxv: cross-validation;
XGBoost: extreme gradient boosting.
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Table 4. Evaluation metric and outcome performance of the method with either the best or featured model.

Articles Model and Approach
Evaluation Metrics and Outcomes

Acc (%) Sn/Rc (%) Sp (%) PPV/Pc (%) NPV (%) AUC (%)

Hu et al. [44] B-mode + SWE (1.0 mm offset) ResNet18 86.45 85.15 91.93 82.12 73.54 93
Pereira et al. [45] SWE Pretrained CNN18 83 - - - - 80

Qin et al. [46] Pretrained VGG16 Ex-reFus with SPP 94.7 92.77 97.96 - - 98.77
Săftoiu et al. [47] MLP (3-layer) 89.7 91.4 87.9 88.9 90.6 95
Săftoiu et al. [48] MLP (2-layer) 84.27 87.59 82.94 96.25 57.22 94

Sun et al. [49] Hybridized model with voting system (compromise approach) 86.5 82 89.7 - - 92.1
Udris, toiu et al. [50] CNN-LSTM 98.26 98.6 97.4 98.7 97.4 98

Zhang et al. [51] Random forest 85.7 89.1 85.3 - - 93.8
Zhao et al. [52] 2020 Random forest 86.0 86.6 85.5 - - 93.4

Zhao et al. [53] 2021 Machine-learning-assisted approach (B-mode + SWE) using
KNN-based bagging model 93.4 93.9 93.2 86.1 97.1 95.3

Zhou et al. [54] RBM + Bayesian (UE) - 90.21 78.45 - - -

Acc: accuracy; AUC: area under receiver operator characteristic curve; CNN: convolutional neural network;
KNN: k-nearest neighbor; LSTM: long short-term memory; MLP: multilayer perceptron; NPV: negative predictive
value; Pc: precision; PPV: positive predictive value; RBM: restricted Boltzmann machine; Rc: recall; Sn: sensitivity;
Sp: specificity; SWE: shear-wave elastography. Bold typeface indicates the best performance among the methods.

3. Results
3.1. Search Results

As shown in Figure 1, the initial search yielded 90 articles. After the exclusion of
duplicates, 56 articles remained. A preliminary screening of the title and abstract led to
the removal of 44 articles, for the following reasons: article type, n = 24; not related to
endocrine, n = 3; no elastography, n = 9; no machine learning, n = 5; unrelated to tumor
classification, n = 3. One article about the segmentation of metastatic was excluded during
full-text screening. In the end, 11 articles were eligible for data synthesis [48–58].

3.2. Basic Information and Dataset

The 11 articles involved a total of 5612 participants with sample sizes ranging from
65 to 2032 and patient age ranging from 15 to 90 year, as shown in Table 1. All except
two studies were published in or after 2018. Though we covered thyroid, pancreas, adrenal,
and pituitary tumors in the literature search, only those on the pancreas and thyroid were
found, accounting for three (n = 3) and eight (n = 8) studies, respectively. One study
further classified tumors into pseudotumoral pancreatitis, neuroendocrine tumor, and
ductal adenocarcinoma [54].

Women were generally more prevalent in thyroid research, whereas men were more
prevalent in pancreas studies. Most of the studies (8/11) confirmed the diagnosis
(i.e., ground truth) by biopsy, whereas the others did not specify how they determined
malignancy. Furthermore, the lesion size of the tumors was not available in five articles,
which can be an important factor in image processing and classification.

As shown in Table 2, in all reviewed studies, researchers used ultrasound elastogra-
phy and no researchers applied the magnetic resonance elastography. Of the 11 articles,
shear-wave ultrasound elastography was used in 6, all of which targeted thyroid tumors.
In the contrast, in four articles, the authors used strain elastography and all of them tar-
geted pancreas tumors. Two studies did not provide sufficient information on the type of
ultrasound elastography, and four articles did not provide the name/brand of the system.

4. Review Theme and Context
4.1. Data Processing and Segmentation

As shown in Table 2, for data processing, one study [53] mentioned the application
of a median filter for denoising, whereas two studies highlighted the process of contrast
enhancement of the acquired images [54,58]. However, other studies did not address any
image processing or conditioning (excluding segmentation).

For data segmentation, delineating the region of interest (ROI) is one of the essential
steps in image processing to focus the center of attention on the clinically relevant regions
and to avoid irrelevant image area information from degrading the efficiency and accuracy
of model training. The procedures were often conducted by manually contouring the
tumor boundary by radiologists with the assistance of software [42,53,54,59]. Alternatively,
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Pereira et al. [49] applied a threshold-based method to segment the regions with elasto-
graphic stress higher than 70% of the maximum stress, but this threshold level was not
justified. Qin et al. [50] pre-extracted the ROI using a color transformation technique before
the manual work by the radiologists.

Elastographic images can be segmented by overlaying segmented B-mode ultrasound
images. Hu et al. [48] trained a real-time semantic segmentation model, PP-LiteSeg [60],
on B-mode ultrasound images for segmentation. Then, they copied the segmented outline
from B-mode images to the elastographic images with different offsets. The accuracy of the
PP-LiteSeg model was verified by radiologists using the dice similarity coefficient, Cohen’s
kappa, and 95% symmetric Hausdorff distance.

Data augmentation was implemented by a few authors. The traditional data augmen-
tation involves random transformation, flipping, and scaling [48,50,54]; Hu et al. [48] also
considered augmentation of the brightness, contrast, and saturation of the images. In addi-
tion, some researchers considered integrating different segmentation methods or combining
lower- and higher-dimensional semantic features as a form of data augmentation [48,50].

4.2. Feature Extraction and Data Fusion

Using predetermined statistical-based features is one of the common strategies ap-
plied in feature extraction. In addition, some researchers extracted features from B-mode
ultrasound [49,53–55,57] and Doppler ultrasound [54] for tumor classification, as shown
in Table 3.

The statistical features of elastographic images include the mean, standard deviation,
range, and highest stress value [49,57]. Pereira et al. [49] also considered the number of
pixels with a stress level greater than 80 kPa but without justification. In addition, they
applied the circular Hough transform to obtain additional features, including the largest
radius detected, the largest value of the accumulator array, and the radius corresponding
to the largest value on the accumulator array [49]. Additionally, Zhou et al. [58] extracted
features based on the gray-level co-occurrence matrix and gray-level run-length matrix
(GLCOM-GLRLM), as well as the multiple subgraph co-occurrence matrix based on multi-
level wavelet (MSCOM). GLCOM-GLRLM represented the length of the highest highlight
run continuously distributed in the image, whereas MSCOM was used to mark the image
area with stripe-like textures [58].

Radiomics features were also considered in these studies, which are different from
statistical features in that they are generally ordinal or categorical data classified by radi-
ologists. For example, researchers [56] identified the shape and smoothness of a nodule,
the nature of the calcification, and the vascularity (in the four-grade Alder classification
scheme). The authors continued by automating the radiomics feature extraction process
using IFoundry software (Intelligence Foundry 1.2, GE Healthcare), which considered
6940 radiomics features in six classes [53]. Similarly, Sun et al. [53] automatically extracted
features using the Python package, Pyradiomics [61].

Zhao et al. [57] applied machine-learning-assisted feature extraction to filter prede-
termined statistical features based on their levels of importance (i.e., a feature reduction
process) using the random forest algorithm. Additionally, Sun et al. [53] used the VGGNet-
16 model [62] to serve as a deep feature extractor on elastographic images; notably, the
team adopted a predetermined feature extraction approach on the B-mode images. Lastly,
in six studies, researchers used a deep learning approach [48–52,54] in which the feature
extraction and classification were nested and streamlined in an unsupervised manner.

4.3. Classification and Modeling

For traditional machine learning studies with separate feature extraction and classifica-
tion processes, a broad spectrum of classifiers or statistical models have been explored, such
as logistic regression, decision tree, naïve Bayes, etc. (Table 3). Notably, some researchers
adopted a traditional machine learning approach (with separated feature extraction and
classification processes) but used deep learning models as either deep feature extractors or
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classifiers, such as using convolutional neural network (CNN) as deep feature extractor
and then connected to k-nearest neighbor (KNN) or extreme gradient boosting (XGBoost)
that served as classifier.

As deep learning approaches, CNN and MLP were the typical methods considered.
CNN receives input from image data, whereas MLP takes the flattened hue histogram
matrix from the elastographic images [51,52]. Hu et al. [48] attempted to construct a series
of CNN models using data from different segmentation settings. They applied a stochas-
tic gradient descent of 0.9 momentum and 1 × 10−4 weight decays while assigning the
cross-entropy loss as the loss function. The models were trained with a 128 batch size and
0.01 learning rate. Deep learning models were often pretrained using large datasets in
the public domain, in which the ImageNet database [63] was commonly used. The pre-
training process relieves the sample size demand in the actual training and can speed up
convergence, especially during the early training stages [64].

Some compelling model architectures are worth discussing, particularly data fusion
techniques in machine learning models. Sun et al. [53] separately trained the machine
learning models on elastography and B-mode data and joined the two models by an
uncertainty decision-theory-based voting system consisting of a pessimistic, optimistic,
and compromise approach [65]. Pereira et al. [49] averaged the class probabilities of the B-
mode- and elastography-data-trained models, which resembled the compromise approach
of the voting system. Moreover, they applied a grid search approach on the weighted
cross-entropy loss to determine the drop-out probability and learning rate.

Udris, toiu et al. [54] constructed a CNN and LSTM model using sequential ultrasound
B-mode, elastographic, and Doppler images trained at 50 epochs. Then, they were merged
by a concatenation layer. Qin et al. [50] investigated the differences in fusion methods,
including mixed training fine-tuning, fusion followed by feature re-extraction, and feature
extraction followed by refusion. In addition, they compared the fully connected layers,
spatial pyramid pooling, and global average pooling for the classification layers [50].

To evaluate the model, in six studies, researchers divided the data into training and
testing sets, whereas in one study, an external testing set was also used to improve gener-
alizability [57]. In three studies, the authors adopted a cross-validation approach; in one
study, both cross-validation and data-slicing approaches were implemented. In two studies,
the validation method was not addressed.

4.4. Classification Performance

In the majority of the reviewed articles, the authors explored and compared the
classification performance between different models or model architectures; Table 4 presents
the best-performing or -featuring (in the abstract) model for each study. Accuracy and
area under the receiver operating characteristics curve (AUC) were the primary outcomes
and were presented in all but one article. AUC evaluates the model performance across
different thresholds for a binary classifier, which represents the discriminatory power of a
predictive model to distinguish between events and nonevents. Of the 10 articles reporting
the accuracy measure, all methods attained an accuracy higher than 80% but only three
exceeded 90% [50,54,57]. Methods for the pancreas appeared to be more accurate than those
for the thyroid. The accuracy of methods in thyroid studies ranged from 83% to 94.7%,
whereas that for methods in pancreas studies ranged from 84.27% to 98.26%. Additionally,
all methods obtained a discriminatory power (via AUC) of more than 90%, except one.

Qin et al. [50] and Udris, toiu et al. [54] created the two models with the highest accuracy
and discriminatory power: these models accounted for data fusion inside the deep learning
model training process.

5. Discussion

In this contemporary review, we explored the applications of machine learning models
of elastography for identifying tumors in the endocrine system. However, we only found
mentions of ultrasound elastography in this review. Magnetic resonance elastography was
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available to facilitate the diagnosis of thyroid and pancreas cancer but might not be ready
to incorporate with computer-aided diagnoses, such as in machine learning models [66–68].
In addition, only thyroid and pancreas tumors were captured by our review, which were
assessed in B-mode with shear-wave ultrasound elastography and endoscopic ultrasound
strain elastography, respectively. The difference was due to the organ location: the thyroid
is superficially located. The use of elastography was not reported for other endocrine
organs, such as the adrenal gland and pituitary, because they are not accessible or are
beyond the detection depth of the elastography probe [69,70].

Traditional machine learning and deep learning models were common approaches in
computer-aided diagnosis: in several studies, researchers combined different approaches
to innovatively create unique model architectures, especially via data fusion. Ultra-
sound elastography often comes with B-mode ultrasound images with spatial information.
Hu et al. [48] segmented elastography images by overlaying segmented B-mode images
and compiling images with different segmentation approaches in a machine learning model.
We also found different feature extraction strategies for B-mode and elastography images
with a mixture of predetermined statistical or radiomics features and deep feature extrac-
tors. Pereira et al. [49] and Sun et al. [53] developed separate machine learning models for
B-mode and elastography images and estimated the outcomes by averaging the probability
output of the models. Moreover, Qin et al. [50] and Udris, toiu et al. [54] adopted a data fu-
sion approach by integrating the data using mixed/sequential training and a concatenation
layer, respectively, which yielded superior classification performance compared with the
other methods in this review.

Reporting quality is an important attribute of publications, with studies of machine
learning models being no exception [71]. Some reviewed articles did not present adequate
details on the participants and protocols, which hinders the replication and interpreta-
tion of findings. Two of the eleven studies did not specify the ground truth reference of
the diagnosis. Four studies did not present the demographic information of the patients.
Five studies did not report the size of the tumor, which may affect the accuracy of seg-
mentation. Furthermore, two studies reported neither the training–testing data division
nor cross-validation of the model performance evaluation. The methodological quality of
machine learning studies was also of particular concern, especially those with small sample
sizes [72]. Some journals may target on the innovation of the modeling or architecture and
may impose less stringent requirements on small dataset studies [73,74]. In this review, we
found studies with dataset sizes of 60 to 70 subjects over 2 to 3 classes, which would be
deemed insufficient. Data augmentation, transfer learning, and cross-validation are accept-
able measures to accommodate the limitations of sample size and to handle over-fitting and
convergence problems [50,73,75,76]. Additionally, imbalanced dataset classification is one
of the pervasive challenges in machine learning. All studies in this review suffered from
unbalanced class sizes, which might distort the validity of performance evaluation. Only
one study accounted for the unbalanced class size using the bootstrapping approach [44].
Hyperparameters (or model parameters) are sets of parameters that must be configured for
the model learning process [77]; the performance metrics of the model may be overly depen-
dent on the tuning of hyperparameters [78]. The number of trees and nodes in the random
forest classifier, the number of clusters (k) in the KNN models, and the number of layers in
MLP models are typical model parameters. For deep learning, grid and random searches
were common approaches to select the optimal combination of multiple hyperparameters,
which are less time-consuming and require less computational resources [79]. We decided
not to conduct a thematic and qualitative analysis on the selection of hyperparameters
and optimization strategy (e.g., loss functions and cross-entropy), which deserves another
standalone in-depth review in an engineering paper. However, three studies did not ad-
dress the hyperparameter tuning strategies. Other studies mentioned their optimization
strategies without the confirmed values of the hyperparameters or vice versa.

This review has some limitations. Due to language bias, some relevant research
published in languages other than English could have been missed. Moreover, we only
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included journal articles indexed from the mentioned electronic databases, which we
considered as higher quality but might constitute selection bias. In addition, we did not
conduct a formal methodological quality assessment for the eligible articles because the
focus of the studies was heterogeneous, which would have affected their efforts and focus
on the direction of reporting. For example, some studies were more based on clinical
applications, whereas others targeted on the innovations of the system development.
Furthermore, our search results included articles with terms related to machine learning
models. However, some boundaries between machine learning, advanced signal processing,
and statistical techniques were ambiguous. Some studies may have been missed or their
eligibility was difficult to determine, such as those using logistic regression [80].

Machine-learning-based ultrasound elastography is a recent technological advance-
ment of the field because most of the articles were published after 2018. In addition
to statistical models, progress can be observed in the direction of using deep learning
models, mixed and sequential training, etc. Image processing or denoising plays an im-
portant role in the subsequent medical image analysis [81] but was less discussed in the
reviewed studies. Machine learning or deep learning can also be applied in image de-
noising, segmentation, and augmentation. For example, generative adversarial network
(GAN) was proven effective in semantic segmentation and generative image modeling for
medical imaging [82,83], whereas linear combinations of datasets can be applied for data
augmentation [84]. Additionally, we anticipate that integrating 3D B-mode ultrasound and
3D elastography will be the future trend in improving visualization and, thus, decision-
making, as well as providing a complete profile of feature information.

Several core challenges are facing this field. Our review showed that the application
of machine learning model technology remains at the initial stage. Despite most reviewed
articles being contemporary, cutting-edge models were not used; researchers are still using
non-deep-learning approaches. Features were mainly predetermined and relied on manual
harvesting. Moreover, due to the size of the probe, penetration power, and constraints of
shear-wave generation, elastography had not been applied for organs, such as adrenal and
pituitary glands, as demonstrated in our review. Existing modalities also tend to reach the
physical limits on resolution. Combining measurements with other physical properties
may enhance our understanding of the features of tumors.

6. Conclusions

In this review, we summarized the applications and protocols of machine learning
models on elastography to identify tumors in the endocrine system. Shear-wave ultrasound
elastography has been applied to assess thyroid tumors, whereas strain elastography with
endoscopy has been used for diagnosing pancreatic tumors. Machine learning approaches
achieved an accuracy of >80%, whereas three studies reported an accuracy of >90%.
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