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Abstract

A major econometric issue in estimating productamameters and technical efficiency is the
possibility that some forces influencing producteme only observed by the firm and not by the
econometrician. Not only can this misspecificatiead to a biased inference on the output
elasticity of inputs, but it also provides a faultyeasure of technical efficiency. We extend the
Levinsohn and Petrin (2003) approach and provideestimation algorithm to overcome the
problem of endogenous input choice in stochastdyetion frontier estimation by generating
consistent estimates of production parameters actthical efficiency. We apply the proposed
method to a plant-level panel dataset from the @blan food manufacturing sector for the
period 1982-1998. This dataset provides the valiitput and prices charged for each product,
expenditures and prices paid for each material ,useergy consumption in kilowatt per hour
and energy prices, number of workers and payrall, ook values of capital stock. Empirical
results find that the traditional stochastic prdduc frontier tends to underestimate the output
elasticity of capital and firm-level technical eféncy. The evidence in this research suggests
that addressing the endogeneity issue mattersahastic production frontier analysis.
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Introduction

Estimating the production technology is fundamembabssessing the production potential of
firms or sectors. Increased availability of largenflevel micro datasets of inputs and outputs
and the interest in analyzing production efficienayrelation to any change in policy in
production processes has led to renewed intergsbutuctivity and efficiency analysis. From an
econometric perspective, the stochastic produdtmmtier approach has been a standard starting

point for modeling technical efficiency (Kumbhalard Lovell 2000; Greene 2008).

A major econometric issue in estimating productianameters and technical efficiency
is the possibility that some determinants of praiducare only observed (or predictable) by the
firm and not by the econometrician. The firm’s ib@llocation is chosen by its optimizing
behavior where input choices may be correlated thiéise observed (or predictable by the firm)
components. Traditionally, stochastic productiaonfrer models assume that input choices are
independent of the efficiency and productivity tetfra firm observes some part of its efficiency
and productivity, its input choices may be influedcresulting in an endogeneity problem in the
stochastic production frontier estimation. This spiscification leads to a biased inference on
measurement of input elasticities and the econoofiesale, and provides a faulty measure of

firm technical efficiency.

The concerns about endogeneity in production foncéistimation are well documented
in the literature (Marschak and Andrews 1944; Ghiis and Mairesse 1995; Olley and Pakes
1996; Levinsohn and Petrin 2003; Ackerberg, Caagd, Frazer 2006). Quantities of inputs are
likely to be correlated with productivity shockshmh lead to biased estimates of production

function parameters. The traditional approachesadaoressing endogeneity in production



function estimation employing instrumental variabdnd fixed effects are problematic on both
theoretical and empirical grounds. Olley and Pgk€96) address endogeniety by focusing on
investment to control for the unobserved produttishock, while Levinsohn and Petrin (2003)
and Ackerberg, Caves, and Frazer (2006) use intBateeinputs as a means to control for the
unobserved shocks. These approaches assume thatdjrerate efficiently to obtain maximum
potential output given the firm’s resources andainfation at a given time. However, the firms
may not necessarily make optimal decisions in eypenyod. The discrepancy between optimal
and observed quantities is derived as a measuexbiical efficiency in the stochastic frontier

literature.

Kutlu (2010) and Tran and Tsionas (2013) modify widely used Battese and Coelli
(1992) approach to deal with the endogeneity prabie the case of stochastic production
frontier estimation. Mutter et al. (2013) also askdr the endogeneity issue but in a stochastic
cost frontier setting. However, these latter stsidie not model shocks to the production that are

predictable by the firms but unknown to the econtitians.

Overall, the stochastic frontier literature hagyéy ignored the advances made in firm
production function estimation using inputs to ¢ohfor unobservables. Our approach extends
the semi-parametric estimation approach of Levinsand Petrin (2003) and provides an
estimation algorithm to address the endogeneitthefinput bias problem within the stochastic
production frontier framework to generate consisestimates of the production parameters and
technical efficiency. We apply the proposed mettwmglant-level panel data for the Colombian
food manufacturing sector and find that addres#iregendogeneity issue significantly impacts

stochastic production frontier estimation.



The next section addresses the issue of the eneibgeri input choice and presents a
semi-parametric approach to the stochastic prooludtiontier estimation that corrects for the
input choice endogeneity. The following two sectigoresent the data and estimation results,

with the final section providing concluding commznt
Endogeneity and the Stochastic Production Frontier

Firm output is bounded from above by a frontiert tisastochastic in the sense that it varies
randomly across firms. The starting point is thecastic production frontier for a sample of N

firms for T time periods, and can be written as
Q) Y, = A f(X;B8) e ™ i=1L.,N;t=1..]T,;

Y, denotes production of ifirm at time perioct, X, is a vector of input quantities ot firm at

t time period, S is a vector of unknown parameters to be estimatedd, is the (unobserved)
production shock component. The model combines tremdom error components;
v, ~ N(0,07), a standard noise component, apd- N*(x,07), a non-negative term reflecting

technical inefficiency.

We focus on the log-linear form of the Cobb-Dougbasduction frontier with technical

efficiency presented as
(2) Mt:ﬁo+ﬁ|n+ﬂmmt +,3e%+ﬁ<|&+5t+§+ Y-

wherey, |, m, e, andk refer to the natural logarithm of output, labomterial, energy, and

capital inputs, respectively, whilg, £, 8., and S, are the coefficients associated with inputs



I, m, e, andk; tis the proxy for exogenous technical changegrepresents technical
inefficiency;, and v, is random statistical noise. We can create a ceegpoerror term
(é‘it =a, +V, —un) with the following rationale. The shocks to protion that are predictable
by firms when making input decision are denot@dand can be influenced by factors like
expected rainfall at the firm’s location, manageshility of the firm, expected breakdowns,
strikes, etc. The pure random deviation or measemnérmrror,V, , is not observable by the firm
when making its input choices. The deviations fitb ‘best-practice’ firm are captured by .
All the predictable components of the productiatyd efficiency are embodied in tl@eterm to

address endogeneity.

If a firm observes some part of its efficiency gmdductivity, its input choices may be
influenced, resulting in a simultaneity problemtie stochastic production frontier estimation.
These production input decisions can be influerdmedommon causes impacting efficiency and,
hence, the simultaneity problem emerges. Inputdileely to be correlated with the components
of productivity and efficiency that are observed Hye firm but unobserved by the
econometrician. This problem is more pronouncedrputs that adjust quickly, such as labor
and materials. The omission of some explanatoriabbas leads to biased likelihood estimation

of the stochastic production frontier models.
Semi-parametric approach to stochastic productromtier estimation

Olley and Pakes (1996) overcome the simultaneitplpm by using investment as a proxy for
the unobserved productivity shock. When investmsntiscontinuous, Levinsohn and Petrin

(2003) suggest that investment may not respond follthe productivity shocks and propose



using intermediate inputs to control for the sirao#ity problem. Two important conditions must
be met for intermediate inputs to be a valid préotycontrolling for simultaneity. First, there

should be a strict monotonicity assumption on titermediate input demand functions, which
follows the basic economic primitives of a profiaximizing firm. If more productive firms find

it profitable to produce more than the less progactirms for a given capital stock, more

productive firms will demand more of that intermegtei input. Second, the market environment
is assumed to be competitive and firms face commpuat and output prices. This assumption
relates to the monotonicity condition. If the metrktructure is not competitive, it is not obvious
that the firms with a greater productivity shocklvaroduce more output, and hence will use
more intermediate input. In an oligopolistic mark&ucture, for example, the more productive

firms do not necessarily produce more due to piifferences.

To correct for the simultaneity issue in stochagtioduction frontier estimation, we
modify the structural estimation methodology pragbdy Levinsohn and Petrin (2003) for
obtaining consistent estimates of production patareeand technical efficiency. The estimation

stages proceed as follows:

Stage 1

The first stage employs energy as the proxy foruhebserved productivity shock. Using the

assumptions mentioned above, specifying the inpatashd function for energy as

(3) Qt:q(ﬁ'"t()’

we employ the monotonicity condition to invert é8)d generate the energy demand equation

4  a=3(g k).



By expressing the intermediate input demand ag arfunction ofa, and k,, we implicitly

invoke the perfect competition assumption, whictthfier assumes input and output prices are
identical across firms. However, indexing the indamand function by allow these prices to
change over time, with prices being common acragssf allowing us to express the

intermediate input demand function with just twatstvariables.

In estimating (2), we follow Battese and Coelli 929, v, ~ N(0,67), u, ~ N* (i,07),
and time-varying technical efficiency is definegl b, =y exp({ [t—T]), with u, reflecting the
firm-specific, base-period efficiency component,endthe sign of the estimatetigoverns the
change in technical inefficiency over time. White toroduction shoclg, is a state variable that
influences the firm’s decision, the remaining ervpr-uy, has no impact on the firm’'s decision.

Substituting (4) into (2) yields

6)  Ye=BL+Bm +tot+g(e, k)+y-uy

where

©6) q@E.k)=L+Bk+Be+ ale K.

Following Levinsohn and Petrin (2003), we specifthad-order polynomial approximation in

3 3-i
k and gin place ofg(g, k) or @(e.k)=> > ¢ K¢e. Maximum likelihood estimation with

i=0 j=0
no intercept leads to consistent estimates of tiedficients of freely variable inputs except the
proxy from (5). The time-varying technical effic@nparameter is also estimated in this stage

using the Battese and Coelli (1992) error componerdel.

Stage 2



The coefficients of the proxy input and capital mlentified in this stage. Coefficients of capital
and energy enter twice in (6) and cannot be identifvithout further restrictions. Building on

Levinsohn and Petrin (2003), identification is faated by assuming that capital is a state
variable and does not instantaneously adjust touthexpected part of productivity shock,
although it might adjust to the predicted part. sThiotion is formalized by assuming that

productivity is governed by an exogenous first-ofdarkov process
™M p(aHati% k)= p(al 2z

where |, is the firm’s information set at—1. The evolution of a firm’s productivity over time
is such that a firm having just observeg, at t-1 infers that the distribution o, will be
p(a, |a.,). We can decompose@, into its conditional expectation given the infotina

available to the firm at—1(denoted byl _,) and a residual i,

@ a=E(ally)+E .

Using the assumption that productivity follows estfiorder Markov process as given in (7) we
know that firms, realizing the value @ _, att-1 form expectations of productivity at and

hence we obtain

9 a=E(ala,y)+é.

Further, we assume that the non-forecastable pagstoaluctivity is uncorrelated with capital,

leading to the two moment conditions

(10) E[(C(n"'vn)iﬁ]:E[fn ‘f]"' E[iyik]zo



(1)  E[(6,+v)e4]= Hé eu]+ Hyve]=0

The first moment condition (10) states the asswmpthat capital does not respond to the
innovation in productivity. Capital stock in peridds determined by investment decisions from
previous periods and does not respond to this g'eriproductivity innovatiod,. The second
moment condition (11) reflects last period’s eledly choice and is uncorrelated with
innovation in productivity. We employ the GeneratizMethod of Moments (GMM) to estimate

the parameters of capital and energy, which inwhloosing a starting valy€ and g, for the

estimation algorithm. For any candidate valuesraverite (2) to yield
(12) Y -BLh-Am-Be-BKk-oty=a+y

Substituting (9) into (12) yields

(13) yit_:élit ‘/Ainm[ ‘,3;%‘,3:‘&‘3”1!‘ E@-l i"il—l):ﬁ‘zt v

—

Conditional on our candidate valueg ( 3; ), (12) implies estimate of, +V,

—

(14) ait+V|t:yit_:élit_:émmt_lge*et_ﬂlﬁ_gﬁy

With E(a, | g,_,) unknown, we estimaté(a, | g,_,) = E( a+tyl ﬂ-l)- From (6) in Stage 1 we

obtain

(15) éi,t—lzé)t—l_ﬁ(:et—l_ﬁ; Kt—l

e

By performing local least squares regresSiom a, +V, by & ,_,we estimaté (g, | 8,.,), wWhich

now allows us to compute an estimate of the retidﬁ/gﬂ(ﬁ*) using (13) where

—

B =(B.,B.). We perform local least squares with dependerniabtara, +Vv, and independent



variable §,_,, specifying a local quadratic kernel-based esfonathat weights the observations
closest to the point of evaluation more heavily. iMen employ the GMM criterion to estimate

the unknown parameteig’ = (5., 4.)

(16) n;;n[[ZZ(ft +vn)kn]2 +[Z

it

Z(cﬁt +vit)e.,t1]2]

it

and use a two-dimensional grid search to obtaingtbbal minimum of this objective function
by allowing the candidate values f@ and 5, to vary from 0.01 to 0.99, in increments of 0.01.

The moment condition represents the distance bettyeeobserved moments and zero. The two

moment conditions (10) and (11) state that thedr%itermm (,8*) IS mean independent of
kit and QI—l "

In stage 2the estimated coefficients frostage lare fed into the regression equations to

JE———

compute g, +v, and §,_,. Local quadratic least square estimation is exetutsing these

estimators. Both the estimatethge 1coefficients and the predicted values from thalldeast
square regression are then combined in the GMNhasitn routine to estimate the coefficients
of the capital and the proxy. All the preliminarstiemators are used more than once and they
introduce noise into the estimation routine. We tls& bootstrap approach to estimate the
standard errors where the observed data are usggptoximate the true population distribution
of the data and are sampled repeatedly to comparedriability of the estimates across these

samples.

Data Description

10



Our dataset is sourced from the Colombian AnnuatiMcturers Survey (AMS) covering 1982
to 1998. The AMS is an unbalanced panel of plaetsic quantities and prices for both output
and inputs, and is suitable for estimating the gmsput physical production frontier. The data
are provided byDepartamento Administrativo Nacional de Estadisti@ANE) and were

created originally to study the impact of structureforms on productivity and profitability

enhancing reallocation in the Colombian manufaontuindustry (Eslava et al. 2004). The same
database is used by Eslava et al. (2010) to imyedstithe plant-level adjustment dynamics of
capital and labor and their joint interactions inetcontext of deregulated Colombian

manufacturers.

The dataset is comprised of Colombian manufactuptents with more than 10
employees or sales over US$35,000 in £988d contains annual plant-level information om th
following: i) the value of output and prices chatder each product; ii) cost and prices paid for
each material used; iii) energy consumption inwdtt per hour and energy prices; iv) number
of workers and payroll; and v) book values of calpstock (buildings, structures, machinery, and
equipment). In contrast to the literature measuring prodiigtiby deflating sales by an
industry-level price index, these data eliminate@nmon source of measurement error in

production function estimation.

The plant-level price indices of output and materiare constructed using Tornqgvist
indices. While the quantities of materials and attpre constructed by dividing the cost of
materials and value of output by the correspondinge indices, the quantities of energy
consumption are directly reported in the data. Tapital stock variable is constructed by the
perpetual inventory method using the book values$ @apital expenditure together with gross
capital deflators and the depreciation rate of tehpiCapital in periodt is calculated by

11



combining deflated investment in new capital witpreciated capital fromi—1.> Labor is

measured as total hours of employment, which isrgmovement over the number of employees
as a labor variable. Since these data do not preserker hours, a sector-level measure of
average hours per laborer is constructed as the oatearnings per worker and the sectoral

wage, which is obtained from the Monthly ManufattgrSurvey of various years.

This study focuses on the Colombian meat, dairydgets, bakery products, and
confectionary industry indicated by 4-digit ISICdes 3111, 3112, 3117, and 3119, respectively.
We estimate the production frontier model at thaiglt ISIC level to address as homogenous a
sample of producers as possible. These data amgalatime-series observations for 93 meat
manufacturing firms with 1032 observations, 99 ydirms with a total of 1219 observations,
363 bakery firms with 4049 observations, and 46colaie and confectionary firms with 551
observations. Summary statistics for the key véemhbre presented in Table 1 where the means
and standard deviations of the logarithm of plawel physical quantity and price of output and
input variables are presented. The units for eneagpgumption and labor use are kilowatt hours
and hours of employment, respectively. Output, teipand materials are expressed in thousands
of pesos based on the constant price index for @82y 100. The level of inputs and output
differs across the food sub-sectors. Meat and daiogluct firms are comparatively large in
terms of average annual output, capital and empdoymThere are significant differences in
material and energy consumption among the seckdeat and dairy product firms are more

material- and energy-intensive than bakery andemi@nary product firms.

The prices for output, materials, and energy amgessed as real prices relative to the
yearly producer price index (PPI) to discount itila. The mean of this relative price should be
close to zero if appropriately weighted by outpiice the PPI value is dominated by

12



manufacturing industries. A positive price varialkn be interpreted as an increase in price
relative to yearly PPI, whereas, a negative priaeable shows a decrease in price relative to

yearly PPI.

These constructed price indices are used to olptamt-specific physical quantities by
deflating the value of output and inputs and regmean important advantage over deflating sales
by industry-level aggregate price deflators. In nle@t section we use these variables to estimate
the production parameters and the technical effayieoy using a capital-labor-energy-material

(KLEM) physical production frontier.
Estimation Results

Table 2 presents the stochastic production froremameter estimates using the traditional
production frontier and the endogeneity correcteddpction frontier method. The standard
errors are reported in parentheses and all depeadenindependent variables are in log form.
As a baseline, the traditional production fronpiarameters are estimated using the Battese and
Coelli (1992) error component model and the maxintikelihood method with time-varying
technical efficiency. The endogeneity correctedisastic production frontier is estimated by the
two-stage semi-parametric method outlined earlidrene energy acts as proxy for the
productivity shock The coefficients of labor and materials are estéd in the first stage
whereas the coefficients of capital and energyeatienated in the second stage of the estimation
procedure. The parameters of the production fromtiee significantly different across the four
industries, but none have radically different pastimates. The estimates from both methods
differ and provide insights into the endogeneiguisin stochastic production frontier estimation.

As the semi-parametric approach points out, thdastigties are likely to be biased if

13



productivity shocks are correlated with input clesicThe coefficient of materials is the largest
and lies in the range 0.7-0.8 for all individuabdbindustries and the aggregate food sector. The
output elasticities of labor and material are simvithin the four industries, but that of energy i
different in both methods. The coefficient of capiis consistently higher in the endogeneity
corrected method than in the traditional stochdstiotier method in all four industries and the
food manufacturing sector in aggregate. Comparethéo endogeneity-corrected model, the
estimates of the traditional stochastic frontierdeds find labor and materials coefficients to be
equivalent or slightly overestimated for all indies. The energy coefficients, on the other hand,
are underestimated for 4 out of the 5 regressionthe traditional stochastic frontier model.
Consistently better log-likelihood values are geatent with the endogeneity-corrected method

than in the traditional method across industries.

For a two-input production function, with one véil@ input and one quasi-fixed (say
capital) input, Marschak and Andrews (1944) sugtest the coefficient of the variable input is
likely to be biased upward while the capital estenia likely to be biased downward, provided
the capital is not correlated or weakly correlateath this period’s productivity shock. But in the
presence of endogeneity, it is generally imposdiblsign the biases of the production function
coefficients when there are many inputs (Levinsahd Petrin 2003). All of the inputs may be
correlated with the error to varying degrees. Thenetion bias of the production function
coefficients depends not only on the correlationtrd input variables with the unobserved
productivity shock but also on the correlation betw the input variables. With the energy proxy
controlling for the unobserved productivity shodlatt is correlated with variable inputs, the
evidence suggests that addressing the endogesgity matters in stochastic production frontier

estimation to generate consistent estimates of uyotaxh parameters for this sample of

14



Colombian food industry firms. The average ratéechnical progress in all food manufacturing
sectors is positive. For the industry-level estiorgtthe average rates of technical progress for
meat and dairy product sectors are higher thanfoindtakery and confectionary product sectors.
The annual rate of technical progress is highesttenrmeat industry with an estimate of 2%, and
lowest in the bakery product industry with an estienof 1.2%. The returns to scale estimates for
the four food industries are 1.035, 1.118, 1.234d 4.173 for meat, dairy, bakery, and
confectionary product sectors, respectively, algioestimates are not significantly different

from constant returns to scale as judged by thed\i¢sit at the 5% significance level.

Technical efficiency is estimated for each obseovabased on maximum likelihood

estimation in the first stage. The point estim&bortechnical efficiency is calculated as the mean

of the conditional distribution ofi, givenV, —y,. The coefficienty denotes the variance of the
inefficiency component divided by total variancettod composed error term. The estimateg of

in Table 2 for all industries and the sector inraeggte are statistically significant at least &t th
5% significance level, implying that technical ifieiency exists in all food sectors regardless of
whether or not endogeneity is corrected for. Themedes of the time-varying efficiency

component{ , are negative and statistically significant fdriatlustries, implying that technical

efficiency in Colombian food manufacturing secttmranding toward being less efficient. The
significant coefficienty, along with negative and significafht implies that technical efficiency
is present and decreases over time. Estimatescbhital efficiency vary considerably both
across firms and across time periods. The avesdmical efficiency for all food industry firms
is 62.1%. Meat and bakery product industries hdnee Highest average technical efficiency
estimates, both being 66%, and the dairy sectortiradowest average technical efficiency
estimate, 56%. Firm-level point estimates of téechrefficiency are higher for most firms in the

15



endogeneity corrected method than in the traditi@tachastic frontier model for all food
industries we examined. Figure 1 provides kernekiy plots of technical efficiency for both
the traditional stochastic frontier and the endeggncorrected stochastic frontier methods. The
plots show that the distributions of TE for the egeneity corrected method are shifted
rightward consistently for all the sectors. Themfilevel estimates of technical efficiency
increase because of the correction of endogengitgdnditioning out correlated unobserved
shocks in production in stage 1 of the estimatioocedure. Overall, low technical efficiency

estimates indicate that the rate of technologydi€in in Colombian food firms was slow.

The average technical efficiency is found to besdetating through the sample period
for all selected food manufacturing sectors. The td technical efficiency change consistently
hovers around -1%, resulting in a steady negatiygact on technological progress. Firm-level
net effect of technological progress and techretitiency change for the selected Colombian
food manufacturing sectors are summarized by defmin Table 3. The results indicate that the
gains in technological progress were reduced byddeease in technical efficiency over time,
but the net effects were positive for most fooanér Due to slow technological progress in
bakery and confectionary product industries, thimdiin the lowest quintile face a net loss
effect. Overall, annual technological progress @% is offset by the negative estimate of
average technical efficiency change of -1%, resgltin a net annual shift of 0.6% for all

Colombian food manufacturing firms.

The competitive environment suggests that a timghvg specification of technical
efficiency is desirable, particularly if a long ghmataset is available. Differences in managerial
ability and education can impact the firm’s teclahiefficiency (Mundlak, 1961; Stefanou and
Saxena, 1988; Battese and Coelli, 1995; Kalaitzaakles and Dunn, 1995). Evidence of

16



deteriorating technical efficiency is not new irethterature. Other studies finding decreasing
technical efficiency over time include Spanish gaiarming (Cuesta, 2000), Korean textile

manufacturing (Kim and Han, 2001), and Malaysiamufacturing (Kim and Shafii, 2009).

Concluding Comments

In order to correct for the endogeneity of inpubick problem in the stochastic production
frontier estimation, this study controls for theobserved productivity shock using an
intermediate input as a proxy and compares theltsesoncerning the information about
endogeneity in the stochastic frontier frameworle IMd that the output elasticity of capital is
consistently higher when correcting for endogeneiympared to the traditional stochastic
frontier method in all four food sectors. The ttamhal stochastic frontier analysis approach
tends to underestimate the output elasticity oftahpnd firm-level technical efficiency for the
Colombian food manufacturing industry. Although tteefficients of variable inputs are not
widely different in the two methods, labor and miale are slightly overestimated in the
traditional stochastic frontier method. The digitibns of firm-level technical efficiency are
found to be shifted rightward in endogeneity camdcmethod because of the correction of
endogeneity in stage 1 of the estimation procedtite.average technical efficiency for all food
industries is approximately 62% and is found tadb&eriorating through time. The results also
suggest that the gains in technological progressraduced by the decrease in technical
efficiency over time, resulting in a modest netwadrshift for all Colombian food manufacturing
firms. Low technical efficiency estimates indicdlat the rate of technology diffusion in the

Colombian food firms is slow. Hence, it is impottdn encourage policies that promote the

17



efficient use of the existing technology to catghta the technology frontier in the Colombian

food manufacturing industry.

The level of efficiency speaks to the competitienef plants and their ability to
compete, survive and grow. More efficient sectas exploit greater gains from the resources
expended, with greater efficiency translating imtooductivity gains. Correcting for the
endogeneity of input choice leads to an increasestimated technical efficiency for plants in
each industry. By providing a methodology andneation algorithm for correcting endogeneity
of input choice problem, this study overcomes aomhjnitation in existing stochastic frontier
research and provides more accurate estimateoadfigion parameters and technical efficiency
that are critical for policy analysis. The eviderstggests that addressing the endogeneity issue
matters in the stochastic production frontier eation to generate consistent estimates of

production parameters and technical efficiency.
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Table 1. Industry-wise Summary Statistics of Key Variables

. Butchering and Dairy Bakery Cocoa,
Variables Meat Canning Products Products ghowlqteand All Food
onfectionary
Output 11.582 12.035 9.779 10.637 10.976
(1.580) (1.673) (1.287) (1.937) (1.809)
Capital 9.259 9.912 7.717 8.633 8.828
(1.655) (1.648) (1.558) (2.104) (1.949)
Labor 11.244 11.541 10.508 10.956 10.881
(1.239) (1.086) (1.015) (1.298) (1.198)
Energy 12.404 13.195 11.183 11.362 12.211
(1.580) (1.454) (1.186) (1.961) (1.719)
Materials 11.276 11.687 9.341 10.140 10.637
(1.695) (1.690) (1.252) (1.962) (1.857)
Output prices -0.109 -0.024 0.110 0.050 0.053
(0.299) (0.287) (0.338) (0.432) (0.328)
Energy prices 0.394 0.365 0.381 0.425 0.349
(0.489) (0.430) (0.425) (0.396) (0.455)
Material prices -0.143 -0.083 0.014 -0.012 -0.018
(0.331) (0.223) (0.221) (0.284) (0.268)
No. of p|ants 93 99 363 46 1029
No. of obs. 1032 1219 4049 551 10772

Note: This table reports mean and standard dexm({io the brackets) of the log of quantity varesbl
and log of prices deviated from yearly producecgindices to discount inflation. The units of thkbor
and energy variables are hours of employment dodé&it hours respectively. The other variables are
expressed in thousands of pesos based on constaniruex for 1982 being 100.
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Table 2. Stochastic Production Frontier Estimates

Variables Butcheg;ggi?]réd meat Dairy Products Bakery Products %gr(;‘ceoc!t?gr’]grg All Food
~ Endogeneity ~ Endogeneity ) Endogeneity ~ Endogeneity ~ Endogeneity
Stochastic  corrected | Stochastic  oorrected | Stochastic  corrected | Stochastic  orrected | Stochastic  corrected
frontier  gochastic | frontier  gochastic | frontier  gochastic | frontier  gochastic | frontier  gochastic
frontier frontier frontier frontier frontier
Const. -0.817 -1.214 -0.459 -0.522 -0.693
(0.293) (0.308) (0.172) (0.491) (0.139)
InL 0.106 0.107 0.187 0.168 0.116 0.111 0.224 0.236 0.138 310.1
(0.017) (0.032) (0.019) (0.037) (0.010) (0.020) (0.027) 083%) (0.007) (0.013)
InM 0.760 0.758 0.787 0.780 0.862 0.852 0.772 0.777 0.821 160.8
(0.014) (0.023) (0.015) (0.032) (0.009) (0.020) (0.021) 042) (0.0086) (0.012)
InE 0.056 0.030 0.015 0.080 -0.002 0.200 -0.008 0.020 0.013  .03®
(0.014) (0.015) (0.015) (0.016) (0.007) (0.225) (0.020) 303 (0.005) (0.015)
InK 0.057 0.140 0.042 0.090 0.024 0.070 0.052 0.140 0.033 800.0
(0.012) (0.046) (0.013) (0.049) (0.005) (0.029) (0.016) 067) (0.004) (0.029)
t 0.020 0.020 0.021 0.018 0.015 0.012 0.012 0.014 0.018 160.0
) (0.003) (0.004) (0.003) (0.006) (0.002) (0.003) (0.005) 0(m) (0.002) (0.002)
O 0.139 0.140 0.135 0.126 0.124 0.126 0.223 0.240 0.135 370.1
(0.024) (0.025) (0.017) (0.016) (0.009) (0.010) (0.061) of®) (0.007) (0.008)
Y 0.746 0.747 0.699 0.691 0.720 0.727 0.820 0.835 0.728 320.7
(0.045) (0.047) (0.040) (0.040) (0.022) (0.023) (0.050) 0863) (0.015) (0.016)
H 0.497 0.480 0.759 0.729 0.651 0.569 0.675 0.607 0.764 870.6
(0.093) (0.094) (0.074) (0.073) (0.056) (0.043) (0.159) 168) (0.042) (0.040)
¢ -0.037 -0.037 -0.037 -0.036 -0.038 -0.038 -0.036 -0.043 .030 -0.036
(0.008) (0.008) (0.005) (0.005) (0.003) (0.003) (0.009) 00®) (0.002) (0.003)
mean TE 0.653 0.660 0.562 0.581 0.633 0.663 0.624 0.645 0.585 0.621
(0.126) (0.126) (0.137) (0.131) (0.134) (0.138) (0.154) (0.161) (0.131) 1@%)
LLR 112.460 113.930 75.904 105.932 535.462 548.676 27.679 82.57 654.374 683.705
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Table 3. Firm-level Net Effect of Technical Change and Technical Efficiency Change Corrected for Endogeneity

Butchering and

Chocolate and

Quintile Meat canning Dairy Products  Bakery Products Confectionary
Net change 1 (lowest) 0.007 0.006 -0.001 -0.001
2 0.009 0.006 0.000 0.000
3 0.010 0.007 0.001 0.002
4 0.011 0.008 0.003 0.004
5 (highest) 0.014 0.011 0.007 0.008
TEC 1 (lowest) -0.013 -0.013 -0.013 -0.015
2 -0.011 -0.012 -0.012 -0.014
3 -0.010 -0.012 -0.011 -0.012
4 -0.009 -0.011 -0.009 -0.010
5 (highest) -0.006 -0.007 -0.006 -0.006
TP 1 (lowest) 0.020 0.018 0.012 0.014
2 0.020 0.018 0.012 0.014
3 0.020 0.018 0.012 0.014
4 0.020 0.018 0.012 0.014
5 (highest) 0.020 0.018 0.012 0.014
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Figure 1. Kernel density plotsof TE for endogeneity corrected and standard stochastic frontier for 4 sectors
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Appendix A

A stochastic frontier production model represenpagel data can be written as
Y, = X exp(y - y )

Taking logarithmic transformation and writing logrms in small letters

(Al) Yy =xB+4

where &, =v, —U, is composed error. Following Battese and CoelB9¢), time varying

technical inefficiency can be written as
(A2) u =gy =expl¢ (t-Ty ; We)i=12,.N)

where {'is an unknown scalar parameter to be estimatedgindepresents the set dftime

periods among the total T periods for which obstowafor the i firm are obtained. Assuming

v, ~iidN(0,07) andy ~iidN* f ¢7 andu’s andV, s are independent

(A3) &=V, - Zit y

. 1 _Yfu-p)
AT T e, 2[ ”

I S B TR
(A5) f(V)_(ZZT)MO'V exp{ Z[UJ

\

Since u and v are independent, the joint densitiyedgproduct of their individual densities
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(A6) f(u,v)= 1 exp{—}[ﬂj —}[lj]
[1—F(—0_—‘:)]2nrfua'V 2\ o, 2\ o,

In (A3) the density function of u is independent tohe whereas the density of v is time

dependent. In vector notation, lgtbe the (T, x1)vector of v,’s for T, observations for the ith

firm v =(v,,....\; J. Using the results from multivariate normal disttion when there arg,

independent observations, we obtain

(A7) fu,y)= S | e A A
-F2)en ™ 2aal 1 2 a, ) 2|

Using &, =V, —{, Y and & being T, x1 vector of&, s for . number of observations or

&= =Y, ¥, — ¢ y) andin vector formy =& +{y whered isT x 1 vector of,

or {; =({i1,---4;r, ), the joint distribution oy and & is given by

A8) f(u,e)= 1 _ oxp — L[ WH] _ 1 (6+44) (5 +4y)
[L-F(-&12m"?0,0] 2\ o 2 o2

u \

The marginal density function &f is obtained by integrating owtor f (&) :I f(u,g)dy

0

o) ren] exp[‘é (5 1{2) %) }}
(A9) [1-Fo) ] ol ot +¢/¢0t | o; ) \a) \a

where

2 _ 7! 2
(AlO) ,ui*:’ua" Zi‘s.ia-u

2 ! 2
Uv + Zi Zi 0-u
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9,0,

(ALl) g% =——"v —
J\f + Zi Zi Juz

The conditional density ofi given & is

(A12) f(ule)=-Wné) 1 ex _}(L\-*M*J
fle) n-FENEms 2\ o

This is the density function of the positive trutica of the N(x ,0,%) . Hence the estimation of

technical efficiency of the ith firm at time periads given by

Elexp(-u,) & 1= [ exped, y )f @ 5 )y
(A13) °

{1— FICo (4 1)

SO expG U 307
-F(-4 I0) } PGk 340" }

The density function ofy,, a T, x1vector of y, s for the ith firm, can be obtained from (A9) by
substituting (y, - x' 8) for &, where xis a T, xkmatrix of x,'s for the ith firm. The log

likelihood function for the sample observatiops (y,, ¥, ,..., }, ) iS given by

L@ y) =3 Dn@m) -3

i=1 i

(T-D)In@2)-3Y In@? +¢/¢07)

(AL4) N INEF € b, BY. INEF (4 5]

N

32 W-XxB)Y-xB)B7 PN B S+ K o)

z

{0\
JLLY

whered =(g,0%,0%,u,{)
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Appendix B
Estimation algorithm

Stage one:

3 3
1. Create a third-order polynomials in k and the prexyr g(e, k)= > > g Ke.

i=0 j=0
2. Run Battese and Coelli maximum likelihood estimatiath no intercept using the freely
variable inputs (except the proxy) and the consddipolynomial terms as independent

variables.

The key estimated parameters from this stage btieeaireely variable inputs except the

proxy and the technical (in)efficiency, gﬁ‘ ,B’m, J, andd, .
Stage two:

1. Choose starting candidate values (6%, 5,) say (5., 5.) for estimation algorithm.

Although starting value is not critical, a good gsiéor beginning would be OLS
estimates.

2. Computea:;r\vII =y, -BlL -Bm -Be-LA k-t 7, We call this variable ‘A’

3. Computed, ,=@,,—/Ae,_,—f k,_,and call the variable ‘B,

4. Regress ‘A’ on ‘B’ using locally weighted least sges. Take the predicted value and
call it ‘C’ which is equal toE(a, | g, ;).

5. Computed, +v,(8) =Y, Ak -Am -A&-A k-0t Y- Eal a,) whichis

basically ‘A’- ‘C’. This enters into moment equaticn GMM estimator.
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6. Perform a grid search to obtain the global minimafrthe GMM objective function and

iterate the previous steps by allowing the candidatues forg, and g, from 0.01 to

0.99, in increments of 0.01.

The key estimated parameters from this stage aseqw input (energy) and capital.

! The within-year variation of the price indices mtput, material and energy are fairly tight,iwét coefficient of
variation falling in the 15-20% range on averagensequently, we can reasonably expect that thedeetaare
perfectly competitive.

2 Local least squares regression is a nonparankemel-based estimation method is discussed iafPagd Ullah
(1999).

% For a more detailed description of the data, staV&, et al. (2004).

* We treat plants as firms although there are nplétit firms in the sample because of data restriclThe AMS
does not provide any information on which plantsfaims and which plants belong to a firm (or grpup

® Industry-level depreciation rates are obtainechffombo (1999).

® We also estimate the model using materials apritwey and find the parameters of the productionties to be
very similar. We present the estimation resultagiginergy as the intermediate proxy for transmiptexdiuctivity
shock.
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