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Abstract

Opioids are the most commonly used and effective analgesic treatments for severe pain, but they 

have recently come under scrutiny owing to epidemic levels of abuse and overdose. These 

compounds act on the endogenous opioid system, which comprises four G protein-coupled 

receptors (mu, delta, kappa, and nociceptin) and four major peptide families (β-endorphin, 

enkephalins, dynorphins, and nociceptin/orphanin FQ). In this review, we first describe the 

functional organization and pharmacology of the endogenous opioid system. We then summarize 

current knowledge on the signaling mechanisms by which opioids regulate neuronal function and 

neurotransmission. Finally, we discuss the loci of opioid analgesic action along peripheral and 
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central pain pathways, emphasizing the pain-relieving properties of opioids against the affective 

dimension of the pain experience.
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INTRODUCTION

Throughout human history, opioids have been used medicinally as an analgesic and 

recreationally as a euphorigenic. In the 1970s and 1980s, the efficacy of opioids to treat 

illness was vastly improved by advancements in modern medicinal chemistry and 

neuroscience. Specifically, the identification of the endogenous opioid peptides and 

receptors, accompanied by the development of new hyperselective and potent opioid drugs 

such as fentanyl and heroin, contributed both beneficial and detrimental effects on society 

and medicine. Today, opioids remain the mainstay analgesic treatment for severe acute, 

perioperative, and chronic pain. Paralleling the outstanding magnitude of pain in the United 

States (Institute of Medicine (US) Committee on Advancing Pain Research, Care, and 

Education 2011), the use of opioids for pain management has increased dramatically in the 

past two decades such that hydrocodone topped all prescriptions in 2011 (CDC 2013, 

Manchikanti et al. 2012). Unfortunately, opioids cause numerous detrimental effects, 

including analgesic tolerance, paradoxical hyperalgesia, nausea and vomiting, constipation, 

respiratory depression, and transition to addiction (Inturrisi 2002, Streicher & Bilsky 2017, 

Volkow & McLellan 2016). These side effects dramatically impact the quality of life of 

patients, and the number of deaths from opioid overdose now exceeds that of car accidents 

(CDC 2013). Elucidation of the neural mechanisms underlying opioid effects is urgently 

needed to develop innovative adjuvant therapies that dissociate opioid analgesia from side 

effects. In this review, we discuss the recent advancements made in understanding opioid 

mechanisms of function.

ENDOGENOUS OPIOID SYSTEM

Opioid Receptors

The endogenous opioid system comprises four seven-transmembrane G protein-coupled 

receptors (GPCRs): mu, delta, kappa, and nociceptin (MOPR, DOPR, KOPR, NOPR). Each 

receptor is encoded by a unique gene (Oprm1, Oprd1, Oprk1, Oprl1) but shares upward of 

60% of its amino acid composition (Al-Hasani & Bruchas 2011, Kieffer & Evans 2009, Toll 

et al. 2016). Importantly, each receptor has a distinct expression pattern throughout the 

nervous system (Mansour et al. 1994, Neal et al. 1999). The recent crystal structures of all 

four receptors illustrate with unprecedented detail several similar molecular characteristics 

that may open new avenues for novel drug design (Granier et al. 2012, Manglik et al. 2012, 

Thompson et al. 2012, Wu et al. 2012). In particular, the crystal structures for the inactive 

state of each receptor have been identified (Figure 1a). These studies provided the first 

glimpse into atomic-level details of the receptors necessary for pinpointing the unique opioid 

binding pockets that maintain ligand preferences. For example, the active state of MOPR has 
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been crystalized with nanobodies to stabilize the structure; comparisons of the active and 

inactive states can identify potential sites of action for different molecules. A recent 

computational docking and drug design study, based on the active MOPR structure, was 

used to identify novel biased opioid analgesics (e.g., PZM21) that preferentially promote 

unique active-state conformations and signaling pathways (Manglik et al. 2016). In the case 

of NOPR, the least well understood of the opioid receptors, structural crystallization has 

indicated the lack of a salt bridge, which is common to the other receptors, resulting in an 

overall shift in the conformation of the fifth and sixth helices. This shift may be relevant for 

NOPR’s lack of extracellular domain interactions with the other endogenous opioid ligands, 

which may be relevant for the development of receptor-specific drugs. Collectively, these 

results provide insight into how different agonists distinctly alter receptor conformations to 

direct downstream intracellular cascades, which may ultimately lead to more effective 

pharmacological treatments. Additionally, other mechanisms including alternative splicing 

and receptor interactions may contribute to the diversity of analgesic responses mediated by 

opioids (Fujita et al. 2015, Pasternak 2018, Samoshkin et al. 2015, Wieskopf et al. 2014).

Opioid Ligands

There are four major families of endogenous opioid ligands: β-endorphins, enkephalins, 

dynorphins, and nociceptin/orphanin FQ (Figure 1b). These opioid peptides along with their 

cognate receptors are widely expressed across the neuraxis and, in particular, pain pathways. 

In contrast to the amino acid or monoamine neurotransmitters, the opioid peptides are 

packaged into dense core vesicles in the soma and transported down to axon terminals. 

During this process, enzymatic splicing of the prepropeptides results in the formation of the 

diverse, receptor-specific peptide transmitters. The classic example of this process involves 

β-endorphin, the canonical mu-preferring ligand. β-Endorphin is cleaved from the parent 

molecule proopiomelanocortin (POMC), which is expressed in the arcuate nucleus and the 

nucleus of the solitary tract (Bloom et al. 1978, Lazarus et al. 1976). After packaging, 

POMC is cleaved into either proopiocorticotropin or adrenocorticotropin molecules, which 

are then again broken down into β-endorphin, α-melanocyte-stimulating hormone, and 

corticotropin-releasing hormone. These peptides act on MOPR, melanocortin, and 

corticotropin receptors, respectively. Additionally, 3-endorphin can be further cleaved into 

met-enkephalin, a nonselective agonist with affinity for both DOPR and MOPR.

Similar to β-endorphin, enkephalins and dynorphins arise from larger molecules that are 

broken down into more specific peptide transmitters. Preproenkephalin is cleaved into either 

met-or leuenkephalin (Bower et al. 1976). Prodynorphin can be cleaved into several KOPR-

selective ligands, includingdynorphin-A[1–17], dynorphin-B[1–13], and α-neoendorphin. 

Further complicating the relationship between opioid receptors and their ligands, dynorphin 

can also be cleaved into less-opioid-selective leu-enkephalin or dynorphin-A[1–8], 

essentially making dynorphin a potential agonist for MOPRs, DOPRs, and KOPRs (Chavkin 

2013, Goldstein et al. 1979). Last, nociceptin is derived from prepronociceptin and has a 

significantly higher affinity for NOPR than for the other opioid receptors (Meunier et al. 

1995). This selectivity is likely due to the Phe amino acid in the first position of the 

nociceptin peptide sequence (James et al. 1982).
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Contrasting with the tight, spatially controlled synaptic transmission of small-molecule 

transmitters such as glutamate or dopamine, opioids are thought to rely on volumetric 

release into synaptic and extrasynaptic spaces and diffuse toward their receptors (Banghart 

& Sabatini 2012, Duggan 2000). Indeed, electron microscopy illustrates that most MOPRs 

are extrasynaptic, being hundreds of microns away from release sites (Glass et al. 2009, 

Mansour et al. 1988, Svingos et al. 1996). That is, they are not found in the bed of 

symmetric or asymmetric synapses but rather shifted over, next to the synapse. Similarly, 

dynorphin release has been suggested to travel up to nearly 100 μm from the released 

terminal (Chavkin 2013, Drake et al. 1994), implying that opioid synapses may include a 

much broader area than typical fast transmitter synapses. The mechanisms that command the 

spatial and temporal dynamics of opioid release, and that direct peptides to these distant 

receptors, remain some of the biggest and exciting mysteries in the field.

SIGNALING

General Principles

Here, we briefly summarize the basic signaling properties of the four opioid receptors 

(Figure 2). Extensive reviews of opioid receptor signaling can be found elsewhere (Al-

Hasani & Bruchas 2011, Lamberts & Traynor 2013, Toll et al. 2016, Williams et al. 2013). 

All four opioid receptors couple to the inhibitory G proteins (Gαi and Gαo). Upon activation 

by agonists, either endogenous or exogenous, the Gα and Gβγ subunits dissociate from one 

another and subsequently engage a variety of effectors and intracellular signaling cascades 

that typically depress neural functions. Note that MOPR, DOPR, and KOPR have been 

shown to signal through an agonist-independent mechanism called constitutive activity, 

including during persistent pain and stress (Corder et al. 2013, Polter et al. 2017, Yao et al. 

2016). Although further in vivo studies are needed to understand the initiation mechanisms, 

constitutive activity of MOPR and DOPR is also observed after prolonged exogenous opioid 

stimulation (Liu & Prather 2001, Meye et al. 2012, Shoblock & Maidment 2006) and likely 

involves lowering the energy barrier to assume the active conformation, as predicted by the 

crystal structure (Manglik et al. 2012). Such activity might result from a variety of 

mechanisms, including changes in receptor density, changes in receptor phosphorylation, 

modulation of allosteric binding sites, or changes in interactions with accessory proteins 

such as β-arrestin and Src (Kenakin 2001, Walwyn et al. 2007).

Opioid receptor activity inhibits adenylate cyclase (AC), thereby reducing cyclic AMP 

production (Minneman & Iversen 1976), as evidence of pertussis toxin sensitivity was 

established in later experiments. Further studies revealed that guanine nucleotides such as 

GTP modulate agonist binding to opioid receptors in membrane preparations from brain 

tissue and that opioids stimulate GTPase activity (Barchfeld & Medzihradsky 1984, Childers 

& Snyder 1978). Beyond coupling to Gi and Go proteins, all four opioid receptors engage 

other G proteins that modulate a multitude of effectors in addition to AC (Al-Hasani & 

Bruchas 2011, Toll et al. 2016, Williams et al. 2013).

Corder et al. Page 4

Annu Rev Neurosci. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ion Channel Mechanisms

One of the most highly conserved pathways that opioid receptors use to alter neuronal 

function is the modulation of ion channels (Figure 2a). All four opioid receptors inhibit in 

N-, P/Q-, and L-type voltage-gated calcium channels (Rusin et al. 1997). This process, 

which occurs via the Gβγ subunit inhibition of the channel, decreases the presynaptic 

calcium-dependent fusion of synaptic vesicles with the membrane terminal and subsequent 

neurotransmitter release. In dorsal root ganglion (DRG) neurons, N-type calcium channels 

along with opioid receptors can be co-internalized following prolonged agonist exposure, 

which may further reduce neurotransmitter release and the transmission of pain signals to 

the central nervous system (CNS) (Altier et al. 2006). Postsynaptically, opioids also cause a 

Gβγ-mediated activation of G protein gated inwardly rectifying potassium (GIRK) channels 

(Torrecilla et al. 2002). This process is particularly important in postsynaptic compartments 

where dendritic hyperpolarization filters synaptic input. Mutant mice lacking GIRK 

channels, or expressing dysfunctional channels, show reduced opioid antinociception, 

establishing the importance of G protein-mediated potassium conductance modulation for 

opioid analgesia (Lujan et al. 2014, Nagi & Pineyro 2014).

Although the acute action of opioids on calcium and potassium channels typically reduces 

neurotransmission within seconds to minutes, chronic (hours to days) or abruptly interrupted 

opioid signaling can also facilitate excitatory synaptic plasticity. For example, withdrawal of 

exogenous opioids can elicit long-term potentiation (LTP) of synaptic transmission between 

primary afferent DRG nociceptors and second-order spinal cord neurons (Drdla et al. 2009, 

Zhou et al. 2010). This form of spinal LTP is considered a major substrate for opioid-

induced hyperalgesia (OIH), a paradoxical decrease in pain threshold following opioid 

administration, and might also contribute to analgesic tolerance. The detailed molecular 

mechanisms underlying OIH and analgesic tolerance are not fully resolved, but they require 

presynaptic MOPRs in nociceptors (Corder et al. 2017) and involve the activation of 

microglia and molecules, including pannexin1, P2X4, and Toll-like receptors, that 

differentially contribute to OIH and tolerance in these cells (Burma et al. 2017, Trang et al. 

2015). Finally, spinal LTP is also induced by peripheral injuries and represents a major 

mechanism of pathological pain. In this setting, a high dose of MOPR agonist can 

depotentiate synaptic transmission and erase spinal pain memory (Drdla-Schutting et al. 

2012, Ruscheweyh et al. 2011).

Desensitization and Trafficking

Following activation, opioid receptors are phosphorylated by GPCR kinases, leading to β-

arrestin 2 or 3 recruitment (Figure 2b). Arrestin molecules are key proteins that bind to 

phosphorylated GPCRs to regulate their G protein signaling through desensitization and 

internalization. The interaction of an opioid receptor with arrestin is thought to depend on 

the cellular context, agonist type, and model system studied. Importantly, mice that lack β-

arrestin 2 show enhanced morphine antinociception and increased conditioned place 

preference (Bohn et al. 1999, 2003). Additionally, studies examining the aversive qualities of 

KOPR stimulation have shown that GRK3 knockout mice show no conditioned place 

aversion to KOPR agonists, and that phosphorylation of the receptor is required for these 

effects, implicating arrestin signaling in behavioral function (Bruchas et al. 2007a, 2011). 
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Remarkably, and contrary to previous models, internalized GPCRs are not inactive but may 

still signal, including from endosomal compartments (Eichel et al. 2016, Irannejad et al. 

2013). These observations suggest, on the basis of the intracellular fate and signaling of 

internalized receptors (Bahouth & Nooh 2017, Irannejad & von Zastrow 2014), an additional 

level of complexity through which distinct ligands acting on the same opioid receptor can 

produce different cellular effects.

Arrestin Signaling

Whereas arrestin and opioid-receptor interactions were originally defined by their ability to 

regulate receptors, more recent studies have shown that arrestin is in fact a key signal 

effector at these receptors, mediating an array of cellular and behavioral responses. 

Phosphorylated arrestin-bound GPCR complexes recruit alternate, critically important 

downstream signaling cascades, including the mitogen-activated protein kinase (MAPK) 

cascade (Figure 2b). These MAPKs, which consist ofthree major proteins [extracellular 

signal regulated kinase 1 and2 (ERK1/2), c-Jun N-terminal kinase 1–3 (JNK 1–3), and p38], 

notably modulate cell proliferation, differentiation, apoptosis, transcription factor regulation, 

ion channel regulation, neurotransporter regulation, and protein scaffolding (Raman et al. 

2007). MAPKs can regulate these effects over either short or long temporal domains to 

affect intra-and extracellular functions. All the opioid receptor subtypes stimulate 

phosphorylation of ERK 1/2, as well as JNK and p38 (Al-Hasani & Bruchas 2011, Bruchas 

et al. 2006, Chen et al. 2008, Eisinger & Ammer 2008, Macey et al. 2006). However, recent 

studies have reported that JNK phosphorylation by MOPR and KOPR can additionally 

engage noncanonical, arrestin-independent signaling pathways that inhibit G protein 

signaling at these receptors for long periods (Bruchas et al. 2007b, Melief et al. 2010, 

Schattauer et al. 2017).

Recent efforts have aimed to take advantage of the G protein versus arrestin signaling 

pathways by creating biased opioid receptor ligands. G protein-biased ligands could have 

fewer adverse effects, including constipation, respiratory depression, and even abuse liability 

(Brust et al. 2016, Manglik et al. 2016, Raehal et al. 2011, Schmid et al. 2017, Spangler & 

Bruchas 2017). However, the utility of biased agonists toward mitigating complex side 

effects, such as analgesic tolerance and OIH, remains controversial as numerous alternate 

signaling pathways and compensatory mechanisms are likely to be involved (Chen et al. 

2016, Roeckel et al. 2016). Finally, how these biased agonists work in vivo, within selected 

circuits, remains to be dissected.

NEUROANATOMICAL SUBSTRATES FOR OPIOID ANALGESIA

Somatosensory Neurons of the Dorsal Root Ganglia

A remarkable feature of opioid receptors is that they are present at virtually all neural loci 

contributing to the pain experience. Neurons of the DRG and trigeminal ganglia innervate 

peripheral organs and relay somatosensory information, including pain, to the spinal cord 

and medulla (Basbaum et al. 2009). All four opioid receptors are expressed by DRG 

somatosensory neurons (Arvidsson et al. 1995a,b; Zhu et al. 1998), and their activation by 

intradermal or intrathecal agonists produces antinociception (Chan et al. 2017, Gunther et al. 
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2017, Stein et al. 2009) (Figure 3a). Opioid receptor activation depresses glutamate and 

neuropeptide release from somatosensory afferents onto CNS neurons. Initial studies had 

suggested that the different types of opioid receptors, particularly MOPR and DOPR, were 

coexpressed by the same class of DRG neurons, namely unmyelinated peptidergic 

nociceptors. These neurons detect noxious stimuli in skin and internal organs and express 

the neuropeptides substance P and calcitonin gene-related protein (CGRP) and the heat-and 

capsaicin-sensitive transient receptor potential cation channel subfamily V member 1 

(TRPV1) (Chen & Pan 2008, Ueda 2006, Vetter et al. 2006). MOPR expression in these 

cells is thought to contribute to the remarkable utility of mu agonists for perioperative pain 

management (Figure 2c). In recent years, this coexpression model has been reappraised 

following the emergence of novel techniques to investigate opioid receptor expression, 

particularly reporter mice expressing fluorescent opioid receptors and single-cell RNA 

sequencing (scRNA-seq) (Erbs et al. 2015, Scherrer et al. 2006, Usoskin et al. 2015). These 

studies suggest that each opioid receptor is differentially distributed among different DRG 

neuron classes, implying that receptor classes preferentially control distinct types of pain 

and somatosensory modalities. For example, delta opioid receptor-green fluorescent protein 

(DOR-GFP) knockin mouse line and scRNA-seq indicate that DOPR is enriched in 

myelinated mechanosensory neurons that project to the skin and that have been implicated in 

tactile hypersensitivity (allodynia) in the setting of chronic inflammatory or neuropathic pain 

(Bardoni et al. 2014, Scherrer et al. 2009, Usoskin et al. 2015). Note, however, that the 

expression pattern and function of DOPR in DRG remain debated and differ between 

species (Francois & Scherrer 2017, Gendron et al. 2015). MOPRs in DRG can be targeted 

by peripherally restricted agonists (i.e., limited blood-brain barrier permeability) to produce 

analgesia without CNS-derived side effects (DeHaven-Hudkins & Dolle 2004, Vadivelu et 

al. 2011). Recently, Spahn et al. (2017) refined this approach and developed an opioid 

analgesic with a low acid dissociation constant, such that this compound selectively activates 

MOPRs at acidic inflammation sites. Interestingly, however, studies using conditional 

knockout mice with a selective deletion of MOPRs in DRG nociceptors, but intact receptor 

expression in the CNS, showed that these MOPRs in DRG are not necessary for the 

antinociception resulting from systemic morphine (Corder et al. 2017, Weibel et al. 2013). 

Instead, MOPRs in DRG are important contributors to two of the adverse side effects 

associated with chronic MOPR agonist treatments, tolerance and OIH (Araldi et al. 2018, 

Corder et al. 2017; but see also Weibel et al. 2013). Other brain regions, including the 

periaqueductal gray and rostral ventromedial medulla, contribute to opioid analgesia, 

tolerance, and OIH (Connor et al. 2015, Eidson et al. 2013, Gaspari et al. 2018, Lane et al. 

2005, Morgan et al. 2006, Vanderah et al. 2001, Wilson-Poe et al. 2017). However, 

activation of MOPR in peripheral nociceptor populations appears to be the key molecular 

event that initiates pathological plasticity within CNS pain circuits, thereby facilitating the 

onset of opioid antinociceptive tolerance, physical dependence, and the pronociceptive 

effects of opioids (Chu et al. 2008, Joseph et al. 2010, Kandasamy & Price 2015, Ossipov et 

al. 2005).

KOPR expression and function in DRG can now also be investigated with reporter mice (Cai 

et al. 2016, Liu-Chen 2017). Multiple preclinical studies provided evidence that KOPR in 

DRG may control visceral pain and suggested the use of peripherally restricted kappa 
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agonists for these types of pain (Kivell & Prisinzano 2010, Vanderah 2010). The function of 

NOPR in DRG is not well understood, but the recent generation of a NOPR-enhanced GFP 

(eGFP) receptor revealed a broad distribution of NOPR in DRG neurons, including in 

unmyelinated peptidergic nociceptors, and in several populations of myelinated neurons that 

may include cutaneous mechanoreceptors and proprioceptors (Ozawa et al. 2015).

Spinal Cord Dorsal Horn Circuits

Opioid receptors are expressed by second-order neurons of pain pathways (Figure 3b). 

MOPR has long been known to be expressed by nociceptive dorsal horn neurons, including 

excitatory interneurons and lamina I projection neurons of the anterolateral tract that relay 

nociceptive information to the lateral parabrachial nucleus, thalamus, and periaqueductal 

gray matter (Aicher et al. 2000, Spike et al. 2002). Immunohistochemical studies suggested 

that DOPR expression in the dorsal horn was restricted to primary afferent terminals (Dado 

et al. 1993), whereas DOR-GFP mice, as well as in situ hybridization and 

electrophysiological recordings in wild-type mice, support the idea that DOPR is expressed 

by multiple classes of spinal neurons (Wang et al. 2018). Specifically, DOPR expression in 

somatostatin-positive excitatory interneurons that gate mechanosensory inputs (Duan et al. 

2014) contributes to the analgesic properties of DOR agonists. Additionally, DOPR and 

MOPR coexpression in projection neurons of the anterolateral tract (Wang et al. 2018) 

suggests that these two receptors may cooperate postsynaptically in cells receiving 

convergent inputs from segregated delta-positive and mu-positive afferents. The use of an 

antibody against the phosphorylated form of KOPR suggested expression of this receptor in 

inhibitory interneurons and spinal astrocytes (Xu et al. 2007), and electrophysiological 

recordings documented KOPR-selective, agonist U50488H-responsive neurons in the dorsal 

horn (Eckert & Light 2002). The development of reporter mice for KOPR, along with 

transcriptomic approaches, will enable the definitive identification of these neurons.

Dynorphin and enkephalin are expressed by distinct classes of dorsal horn interneurons 

(Boyle et al. 2017, Francois et al. 2017) and are upregulated in the spinal cord following 

peripheral injury to modulate chronic pain (Lai et al. 2008, Podvin et al. 2016, Xu et al. 

2004). Additionally, recent evidence suggests that dynorphin, released by dorsal horn 

inhibitory interneurons, is an essential mediator of itch (Kardon et al. 2014). The NOPR-

eGFP diffuse fluorescence signal throughout laminae I−III strongly suggests that NOPR 

may be expressed by dorsal horn neurons in addition to primary afferents (Ozawa et al. 

2015), but the precise identity of these neurons, as well as the endogenous source of 

nociceptin peptide that acts on NOPR in laminae I−III, remains to be established. This 

identification of NOPR-expressing DRG and spinal neurons is likely to clarify the 

mechanisms by which NOPR agonists can facilitate or counteract mu-mediated 

antinociception (Toll et al. 2016).

Opioid Action in Brain Circuits for Pain Affect: Remodeling of Pain Percept

Painful experiences are both personal and complex; they are not linearly correlated to 

noxious input but rather are constructed from neural information relating sensory, emotional, 

interoceptive, inferential, and cognitive information, which coalesce into a unified 

perception of pain (Craig 2003, Wiech 2016).
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A major site of action of mu opioid analgesics is the descending pain modulatory system, 

which includes the ventrolateral periaqueductal gray (vlPAG), rostral ventromedial medulla 

(RVM), and spinal cord (Basbaum & Fields 1984). Microinjection of mu opioids into the 

vlPAG, or the RVM, is sufficient to produce antinociception (al-Rodhan et al. 1992, Rossi et 

al. 1994). RVM neurons receive monosynaptic inputs from the vlPAG and have been 

categorized as on, off, or neutral cells on the basis of their action potential firing pattern, 

pronociceptive or antinociceptive properties, and response to opioids (Basbaum & Fields 

1984, Cheng et al. 1986, Fang et al. 1989, Morgan et al. 1992). Mu opioids can inhibit on 

cells, and indirectly disinhibit off cells, to produce antinociception. Using endogenous 

opioids, genetic approaches have begun to molecularly identify RVM neuron subpopulations 

and clarify the synaptic mechanisms by which these neurons regulate pain thresholds at the 

spinal level. These studies showed that at least two populations of RVM GABAergic neurons 

project to the spinal cord and modulate pain (Figures2c and 3b). The first population 

coexpresses preproenkephalin (Penk) and projects directly onto nociceptor terminals in the 

dorsal horns to inhibit pain (Zhang et al. 2015); they functionally correspond to off cells. In 

contrast, the second population, which expresses MOPRs, projects onto Penk-positive dorsal 

horn interneurons that then presynaptically inhibit mechanosensory neurons to facilitate 

mechanical pain (Francois et al. 2017).

Furthermore, rostral, subcortical, and cortical sites appear to be especially important for 

affective processing of pain, as well as the affective and rewarding aspects of pain analgesia 

(Cahill et al. 2013, Fields & Margolis 2015, Hummel et al. 2008, Kupers et al. 1991, Price et 

al. 1985) (Figure 3c). Clinical studies suggest that opioids produce pain relief by altering 

affective and somatic responses. For example, patient self-reports of morphine analgesia 

reveal that the sensation of pain is still present but affective aversive qualities are reduced 

(Price et al. 1985). Interestingly, this experience appears to be a dose-dependent 

pharmacological phenomenon, whereby progressively increasing doses of opioids 

diminishes first pain affect, then pain sensation (Cobos et al. 2012, LaGraize et al. 2006, 

Navratilova et al. 2015). Consistent with this, human functional MRI (fMRI) studies showed 

that much higher doses of opioids are required to reduce blood-oxygen-level-dependent 

activity in sensory brain regions than in limbic regions (Oertel et al. 2008).

Human positron emission tomography (PET) binding and fMRI studies of the anterior 

cingulate cortex (ACC) reveal that endogenous opioid release occurs during sustained pain 

experiences and largely correlates with analgesia against pain affect (Borras et al. 2004, 

Zubieta et al. 2005). This finding is also true for placebo analgesia (Bingel et al. 2006, 

Wager et al. 2007, Zubieta et al. 2005). Rodent models have further pinpointed the role of 

MOPR signaling in the ACC toward the relief of pain-induced aversion (LaGraize et al. 

2006, Navratilova et al. 2015). Injection of naloxone, an opioid antagonist, into the ACC 

reduces the positive affect associated with pain relief, including by nonopioid analgesics, 

suggesting that endogenous opioids not only reduce nociceptive processes but also facilitate 

the reinforcing features of exogenous analgesia (Remeniuk et al. 2015). This feature of the 

endogenous opioid system is further supported by the result thatMOPR blockade reduces 

dopamine release in the nucleus accumbens (NAc) that accompanies pain relief (Navratilova 

et al. 2012). Opioid analgesics thus act on multiple cortical and subcortical sites to influence 

dopaminergic neurotransmission between the ventral tegmental area (VTA) and NAc to 
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reduce pain aversion. Adding to this complexity, chronic pain is accompanied by changes in 

plasticity in the mesolimbic dopaminergic system. Inflammatory pain desensitizes MOPR in 

the VTA, promoting opioid consumption (Hipolito et al. 2015, Narita et al. 2005), and 

neuropathic pain is accompanied by decreased NAc dopamine release, an effect that involves 

microglial activation in the VTA (Taylor et al. 2015), as well as other negative regulators of 

dopamine transmission. Additionally, in the amygdala, a crucial node in affective brain 

circuits, MOPR is expressed by GABAergic neurons of the central nucleus and intercalated 

cell masses (Winters et al. 2017). Inhibition of these neurons by mu agonists may reduce 

aversive behavior and reduce amygdala inhibitory input onto descending brainstem pain 

pathway responses (Han et al. 2015, Namburi et al. 2015). Despite this progress, the precise 

aspects of the pain experience that are encoded in the NAc and amygdala (salience, valence, 

motivation, analgesia), and the identity ofMOPR-expressing neurons that modulate pain in 

the ACC, NAc, amygdala, and VTA, remain to be determined.

KOPRs, DOPRs, and NOPRs also modulate pain supraspinally (Miaskowski et al. 1991, 

Yamamoto et al. 2001). KOPR activation in the dorsal raphe nucleus mediates descending 

antinociception (Land et al. 2009, Zhao et al. 2007). Additionally, the KOPR system gates 

affective information relating to stress and anxiety from the basolateral amygdala to the bed 

nucleus of the stria terminalis, as well as from inputs from the locus coeruleus (Crowley et 

al. 2016, McCall et al. 2017, Nygard et al. 2016). Although it is not yet fully understood for 

pain perception, the KOPR system is well positioned within the NAc circuitry to modify the 

hedonic value of nociceptive events and shape motivational behaviors in response to painful 

experiences (Al-Hasani et al. 2015, Castro & Berridge 2014, Negrete et al. 2017, Park et al. 

2015). The dynorphin-kappa system regulates stress, aversion, mood, and relapse to drug-

seeking for all major classes of abused drugs (Bruchas et al. 2010; Land et al. 2008, 2009) 

and may also contribute to shaping pain-induced negative affect (Massaly et al. 2017) and to 

driving comorbid depression and addiction. Interestingly, a recent study supports the idea 

that KOPR antagonists could be used to prevent stress-induced migraine (Xie et al. 2017). 

DOPRs and NOPRs are broadly expressed in pain affect and descending control circuits and 

are particularly enriched in the amygdala and ACC (Goody et al. 2002, Mansour et al. 1994, 

Ozawa et al. 2015, Scherrer et al. 2006, Toll et al. 2016); however, how these different 

receptor populations alter the different dimensions of pain experience requires further 

clarification.

CONCLUSIONS: DISSOCIATING DELETERIOUS SIDE EFFECTS FROM 

ANALGESIA

There are currently two main research paths to battle the opioid epidemic: discovering 

nonopioid analgesic therapies that could replace opioids or improving current opioid 

analgesics. For both paths, the complete resolution of opioid analgesics’ mechanism of 

action, at the circuit, neural ensemble, synaptic, and molecular levels, will be a decisive step. 

For instance, the identification of MOPR-expressing neuronal populations in affective 

circuits that mediate opioid-induced reductions in pain affect will enable transcriptional and 

proteomic studies to uncover novel nonopioid analgesic targets. These studies are facilitated 

by the development of genetically engineered mouse lines for visualizing and manipulating 
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opioid receptor-expressing neurons (Cai et al. 2016, Erbs et al. 2015, Scherrer et al. 2006). 

Similar tools can now be used in vivo to study the cells that endogenously release 

enkephalins, dynorphins, endorphins, and nociceptin (Al-Hasani et al. 2015, Cowley et al. 

2001, Francois et al. 2017).

By contrast, improving current opioid treatments requires an understanding of the 

mechanisms that underlie their deleterious side effects. At the cellular level, the development 

of conditional knockout mice lacking opioid receptors in defined cell types will greatly 

facilitate an understanding of the CNS structures that mediate OIH, antinociceptive 

tolerance, respiratory depression, and transition to addiction (Convertino et al. 2015, Corder 

et al. 2017, Gaveriaux-Ruff et al. 2011, Nygard et al. 2016, Weibel et al. 2013). At the level 

of signaling, biased agonists will clarify which signaling pathways need to be engaged to 

facilitate analgesia and limit deleterious effects such as respiratory depression, addiction, 

and constipation (Bohn & Aube 2017, Manglik et al. 2016, Schmid et al. 2017, Siuda et al. 

2017, Spangler & Bruchas 2017). Collectively, this suite of novel genetic and 

pharmacological tools, together with the development of new behavioral paradigms for 

evaluating the pain experience and opioid analgesia in animal models (see the sidebar titled 

Translational Hurdles in Pain and Opioid Research), will likely yield insights into previously 

unanswerable questions. These advances are likely to lead to the development of more 

effective and safer analgesic treatments.
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TRANSLATIONAL HURDLES IN PAIN AND OPIOID RESEARCH

Current preclinical models of pain have elucidated detailed mechanisms for sensory 

detection and spinal encoding of nociceptive information. Unfortunately, a disconnect 

exists between clinical and preclinical assessments of pain: Human studies primarily use 

patient self-reports, whereas animal models typically use withdrawal reflexes or other 

indirect measures of pain. This raises the concern that animal models do not capture the 

holistic (i.e., sensory and affective) experience of pain in patients. This limitation has 

likely hampered the discovery of novel analgesic strategies to dampen pain negative 

affect in the clinic. Looking forward, efforts need to be directed toward dissecting the 

brain circuits of pain and require the development of measures of pain in animal models 

that more accurately reflect the in-the-moment and perceptual qualities of what it is like 

to experience pain. Tight modulation of neural circuits in vivo (e.g., optogenetic 

holography), paired with high-resolution, mesoscale monitoring of brain activity, may 

hold tremendous promise for determining how neural networks encode various 

dimensions of pain. Indeed, the combination of human functional imaging, behavior, and 

machine learning has already led to important advances in linking dynamic brain states to 

pain, thus paving a new avenue for preclinical research to follow in kind.

Corder et al. Page 21

Annu Rev Neurosci. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The endogenous opioid system. (a) Crystal structures of the inactive state of all four opioid 

receptors (DOPR, KOPR, NOPR, and MOPR). When an opioid agonist enters the binding 

pocket of its cognate receptor, a conformational change in the transmembrane domains 

allows for intracellular effector molecules to bind and activate signaling cascades that 

modulate neural function. The addition of stabilizing nanobodies to the crystal preparation 

has elucidated the active state of MOPR. Images courtesy of Dr. Aashish Manglik (UCSF) 

and used with his permission. (b) Chemical structures of the four main classes of opioid 

peptides: met-enkephalin, dynorphin-A, nociceptin, and β -endorphin. Abbreviations: 

DOPR, delta opioid receptor; KOPR, kappa opioid receptor; MOPR, mu opioid receptor; 

NOPR, nociceptin opioid receptor.
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Figure 2. 
Opioid modulation of signaling and synaptic transmission. (a) Presynaptic and postsynaptic 

effects of opioids on nociception. (Left) Noxious stimuli trigger action potential firing along 

DRG nociceptors. Upon reaching the synaptic terminal, VGCCs (yellow) open, facilitating 

neurotransmitter release. These neurotransmitters (e.g., glutamate) then open postsynaptic 

AMPA and NMDA receptors, which continue the nociceptive signals along pain circuits. 

(Right) Activation of opioid receptors promotes dissociation of inhibitory Gα and Gβγ 
protein subunits. Gα subunits suppress adenylate cyclase, and Gβγ subunits presynaptically 

inhibit VGCC opening and postsynaptically activate GIRK channels, resulting in reduced 

neurotransmitter release and membrane hyperpolarization, respectively. (b) Biased signaling 

pathways. Agonist binding to opioid receptors causes conformational changes that promote 

distinct recruitment of G protein and arrestin effector signaling cascades. While G proteins 
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mediate the inhibitory action of opioid signaling on neurotransmission, arrestin signaling is 

required both for internalization of opioid receptors and for kinase activities. The balance 

between G protein and arrestin signaling is thought, in part, to determine the analgesic 

versus detrimental effects of opioids. (c) Within pain circuits opioid receptors are activated 

by opioid analgesics such as enkephalin (endogenous) or morphine (exogenous). 

Endogenous opioids, such as enkephalins, can be released from infiltrating immune cells at 

the site of injuries and from neurons in the central nervous system. Abbreviations: AMPA, 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; DRG, dorsal root ganglion; EPSC, 

excitatory postsynaptic current; ERK, extracellular signal regulated kinase; GIRK, G protein 

gated inwardly rectifying potassium; JNK, c-Jun N-terminal kinase; NMDA, N-methyl-D-

aspartate; RVM, rostral ventromedial medulla; VGCC, voltage-gated calcium channel.
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Figure 3. 
Neuroanatomical substrates of pain perception and remodeling by opioids. (a) A large 

interconnected neural network of supraspinal brain circuits transforms nociceptive 

information ascending from the spinal cord into an aversive, painful experience. (b) The 

opioid system is well positioned within this brain network to modify the perception of pain. 

The different opioid receptors and peptides are distinctively, though broadly, expressed in 

different sites, the function of which is under intense investigation. Relative opioid receptor 

(circles) and peptide (triangles) expression levels are denoted by the size of the shapes. (c,d) 
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Opioid receptor types and peptides are also distributed in distinct subpopulations of (c) DRG 

neurons, identified with the indicated markers such as TRPV1, and (d) second-order spinal 

cord dorsal horn neurons. NF marks large-diameter DRG neurons with myelinated axons. 

Striped neurons coexpress different opioid receptor types. Abbreviations: CGRP, calcitonin 

gene-related peptide; DRG, dorsal root ganglion; DOPR, delta opioid receptor; DYN, 

dynorphin; END, p-endorphin; ENK, enkephalin; KOPR, kappa opioid receptor; MOPR, mu 

opioid receptor; MrgD, Mas-related G protein-coupled receptor member D; NF, 

neurofilament; NOC, nociceptin/orphanin FQ; NOPR, nociceptin opioid receptor; Ret, Ret 

proto-oncogene; TrkC, tropomyosin receptor kinase C; TRPV1, transient receptor potential 

cation channel subfamily V member 1.
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