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a b s t r a c t 

Endogenous cycles in standard growth models with capital accumulation of the Solow or the OLG type 

occur only when there is some degree of heterogeneity among consumers, differential savings, income di- 

versity, or market specialization. Otherwise, without income effects or distribution effects long run steady 

states are mostly asymptotically stable predicting stable balanced growth for many of the commonly ac- 

cepted growth models under most aggregative concave neoclassical production functions. 

This paper provides an attempt to exhibit a full richness of bifurcation scenarios for endogenously 

generated cycles using minimal extensions concerning preferences, technologies, and ownership of capital 

by extending the models of Kaldor, Pasinetti, and others to allow for ownership of capital among OLG 

consumers of workers and capitalists. 

It is shown that, under a sufficiently low but constant elasticity of substitution, the interaction of the 

nonlinear income distribution with heterogeneous logarithmic intertemporal preferences of consumers 

causes a variety of local bifurcation scenarios (Neimark–Sacker, fold, period doubling), multi-stability, as 

well as a rich variety of complex global dynamic features, such as homoclinic tangles, periodicity re- 

gions originating from Arnold tongues, closed curve attractors, and complex basins. The paper provides 

a detailed numerical analysis under a CES production scenario of several global bifurcations arising from 

heterogeneity which does not exist under the specific ownership restrictions imposed in the original 

Kaldor/Pasinetti models. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Endogenous cycles in neoclassical growth models with capi- 

tal accumulation either of the Solow/Swan type [24,27] or with 

overlapping generations of consumers (the OLG type) occur only 

when there is differential savings, i.e. under behavioral heterogene- 

ity among consumers and a nonconstant functional income distri- 

bution between wages and capital returns along the growth path. 

Without differential behavior or distributional variations of in- 

comes, long run steady states in such models are typically asymp- 

totically stable predicting noncyclical convergence to balanced 

growth paths for many of the commonly discussed growth models 

under most aggregative concave neoclassical production functions 

[3] . The issue of differential savings between groups of agents was 
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originally posed within the Harrod-Domar model [11] while the 

work by Stiglitz JE. [25] considered the Solow model and analyzed 

how different savers’ wealth and income evolved. More recently, 

[5,6] investigated the neoclassical growth model of the Solow type 

where the different saving rates of workers and capitalists is cou- 

pled with a endogenous labor force growth rate. Another paper 

that also bears resemblance to the present one is [7] whose au- 

thors, starting from the Solow-Pasinetti growth model, depart from 

the original setup by considering two types of agents, namely cap- 

italists and workers, who have different saving decisions based on 

an optimizing behaviour. In particular, an infinitely lived dynasty 

of capitalists saves on the basis of an altruistic motive, while work- 

ers’ savings decisions are driven by a life-cycle motive. Three types 

of long-run equilibria are found and their stability properties are 

analyzed. Moreover, flip and Neimark–Saker bifurcations can also 

occur depending on the degree of substitutability between produc- 

tive factors, giving rise to complex and eventually chaotic dynamics 

Thus, when introducing modifications in these areas, the com- 

plexity of the ensuing scenarios of cycles and bifurcations always 
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depend on the interaction of the degree or strength of the devia- 

tions from homogeneity in the savings behavior and from the isoe- 

lastic production functions. Most papers on economic growth con- 

sidering the neoclassical model used the Cobb–Douglas specifica- 

tion of the production function, which describes a process with a 

constant elasticity of substitution between production factors equal 

to one. With this formulation the system monotonically converges 

to the steady state (i.e. the capital per capita equilibrium) so nei- 

ther cycles nor complex dynamics can be exhibited. In this respect, 

many papers have examined the role of the elasticity of substitu- 

tion for the long-run behavior of the economy and the speed of 

convergence to the balanced growth path [see, e.g., [15,16,20] ], es- 

pecially by considering the Constant Elasticity of Substitution (CES) 

production function. The elasticity of substitution between produc- 

tion factors turns out to be relevant since it represents one of 

the determinants of the economic growth level. Accordingly, in the 

present work, when dealing with a specific technology, we shall 

also make use of the CES production function since it can account 

for the presence of growth cycles. 

This paper provides an attempt to exhibit a full richness of pos- 

sible bifurcation scenarios for endogenously generated cycles us- 

ing minimal extensions concerning preferences, technologies, and 

ownership of capital by extending the models of [13,14 , 21,23] and 

others to allow for general ownership of capital among OLG con- 

sumers of workers and capitalists. 

The paper analyzes the impact of differential savings behav- 

ior due to heterogeneity of consumers in growing economies with 

overlapping generations of two types of consumers, workers and 

capitalists, who own the capital in the economy. Constant profit 

shares of capital owners induce a two-dimensional model of cap- 

ital accumulation with a three-class ownership structure of capi- 

tal implying a generalization of the growth models by Kaldor and 

Pasinetti. 

When factor substitution is low under a CES technology the 

relative income distribution between factor shares is a monotonic 

function of aggregate capital with a sigmoid shape of the wage 

function and a unimodal function of the return to capital. In this 

case three different savings propensities influence the dynamics in 

a crucial way with dynamic features beyond the models by Kaldor 

and Pasinetti. 

The focus of our paper is on the extension of the Kaldor–

Pasinetti framework along three directions: the introduction of 

the different saving propensities, the incomplete profit control of 

young capitalists, and the CES production function. These elements 

constitute the core of our model capable to generate growth cy- 

cles and endogenous fluctuations, which are of relevance when ex- 

plaining the emergence of phases of growth followed by phases of 

recession in the course of the real economy. 

It is shown that under sufficiently low but constant elastic- 

ity of substitution the interaction of the nonlinear income dis- 

tribution with heterogeneous logarithmic intertemporal prefer- 

ences of consumers causes a variety of local bifurcation scenarios 

(Neimark–Sacker, fold, period doubling), multi-stability, as well as 

a rich variety of complex global dynamic features, such as homo- 

clinic tangles, periodicity regions originating from Arnold tongues, 

closed curve attractors, and complex basins. The paper provides 

a detailed numerical analysis of several global bifurcations aris- 

ing from heterogeneity which cannot exist in the Kaldor/Pasinetti 

model. 

The rest of the paper is organized as follows: Section 2 de- 

scribes the generic model and presents the conditions for the exis- 

tence of steady states; Section 3 introduces a specific production 

function and reports the local stability conditions of the steady 

state; in Section 4 numerical simulations present the emergence of 

endogenous growth cycles and complex dynamics; Section 5 con- 

cludes. 

2. Heterogeneous consumers: workers and capitalists 

We consider an extension of the standard neoclassical one- 

sector growth model in the spirit of [12,13] and [21] by assigning 

capital ownership to heterogeneous cohorts of overlapping genera- 

tions of consumers in the spirit of [22] and [8] . Two types of con- 

sumers populate the economy, namely workers W and capitalists 

C , with equal group size each growing at the same rate n > −1 . 

Both groups live for two consecutive periods, called young and old , 

and have logarithmic intertemporal preferences, implying a con- 

stant saving propensity 0 ≤ ˜ s w ≤ 1 and 0 ≤ ˜ s c ≤ 1 (independent on 

expectations on capital returns) out of total income when young. 

Workers supply one unit of labor when young and consume in 

both periods; when young, they receive income from working (as 

competitive wage) plus a share 0 ≤d w ≤1 of current capital return 

(marginal product of capital) from capital ownership; additionally, 

they finance their second period consumption by saving/investing 

into capital when young. Likewise, young capitalists receive a share 

0 ≤ d s ≤1 of capital income from ownership of capital as well to 

finance their second period consumption by saving/investing into 

capital. 

The capital is embodied in the single firm and it depreciates 

at the rate 0 ≤ δ ≤1. The ownership of capital is divided among 

old workers and capitalists, that is K w and K c . Moreover, old con- 

sumers (either workers or capitalists) receive a share (1 − d w ) and 

(1 − d c ) , respectively, of the current return on capital (the profit), 

while the shares d w and d c are paid to the respective young gen- 

erations. The ownership of a firm can be transferred either by be- 

quests or by selling to the young. In particular, with bequests no 

compensation between young and old is paid, while, with a capital 

market, the young generations of workers and capitalists purchase 

the depreciated capital (1 − δ) K w and (1 − δ) K c respectively from 

the old generations. Thus, at each date in time, the economy is a 

standard private ownership economy with given capital equipment 

and labor force which operates under competitive conditions and 

full employment at a stationary profit distribution given by 0 ≤ ( d w , 

d c ) ≤1. 

Let L t denote the total number of workers, K t = K c t + K w t the 

distribution of capital ( K c t ≥ 0 and K w t ≥ 0 ) and Y t = F (K t , L t ) = 

L t f (K t /L t ) the production function which is homogeneous of de- 

gree one and concave. It is assumed that the wage rate equals the 

marginal product of labor, that is 

W t = f (k t ) − k t f 
′ (k t ) , 

and the competitive rate of return equals the marginal product of 

capital, i.e. 

R t = f ′ (k t ) . 

Hence, the gross savings of young consumers, workers and capital- 

ists, are respectively given by 

S w = ˜ s w [ W t + d w R t K 
w 
t /L t ] = ˜ s w 

(

f (k t ) − k t f 
′ (k t ) + d w f 

′ (k t ) k 
w 
t 

)

(1) 

S c = ˜ s c d c (R t K 
c 
t /L t ) = ˜ s c d c f 

′ (k t ) k 
c 
t (2) 

with k i t := K i t /L t , i = w, c and k c t + k w t = k t . 

Let us define s w := ˜ s w , s p := d w ̃  s w , s c := d c ̃  s c . Then, the capital 

accumulation laws for the two groups are given by the following 

equations 

k c t+1 = 
1 

1 + n 

[

(1 − δ) k c t + s c k 
c 
t f 

′ (k t ) 
]

(3) 

k w t+1 = 
1 

1 + n 

[

(1 − δ) k w t + s w 
(

f (k t ) − k t f 
′ (k t ) 

)

+ s p k 
w 
t f 

′ ( k t ) 
]

. 

(4) 
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Table 1 

Savings propensities, shares of profits, and capital distributions in parametric growth models. 

d w = 0 0 < d w < 1 d w = 1 

d c = 0 
δ = 1 , all profits consumed 

DIAMOND 

s c = s w = s p 
SOLOW 

0 < d c < 1 

0 < (d c , d w ) < 1 

s p ≥ s c s w 
OLG with capital ownership 

d c = 1 
s c � = s w ; s p = 0 

KALDOR 

s c � = s w ; s w = s p 
PASINETTI 

They constitute a two-dimensional discrete time dynamical system 

in the state variables k c t and k 
w 
t , for any profit distribution 0 ≤ ( d c , 

d w ) ≤1 and with parameters n > 0 (population growth rate), δ (cap- 

ital depreciation rate), s c (saving propensity of capitalists), s w (sav- 

ings propensity on workers’ wage income) and s p (saving propen- 

sity on workers’ profit income). Table 1 displays the relationship 

between four standard neoclassical models of economic growth as 

boundary cases of parameters of the current generalization. The la- 

bels DIAMOND, SOLOW, KALDOR, and PASINETTI identify the four 

original models of these authors as cases with specific profit dis- 

tributions of private ownership economies (in the Arrow-Debreu 

sense) with OLG consumers and producers using embodied capi- 

tal. 

Some parameter restrictions apply for our analysis. Since the 

payout ratio d w is typically less than one, 0 < s p < s w holds. There- 

fore, accumulation occurs as if workers save with different propen- 

sities from their two income sources, wage and profit. Then, de- 

pending on whether a capital market exists or not, the dynamical 

system has essentially three ( s c , s w , s p ) or four relevant parame- 

ters s c , s w , s p , δ). This implies a rich economic structure of the in- 

teraction between profit distributions and savings/investment de- 

cisions when 0 < d w , d c < 1. The situation with 0 < d c = d w < 1 an- 

alyzed in detail in this paper seems to be an interesting special 

case. However, this imposes restrictions on the range of ( s c , s w , s p ). 

The equalities s p = d w ̃  s w and s c = d c ̃  s c imply 

s p = ds w = 
s c 
˜ s c 
s w ≥ s c s w . (5) 

2.1. Existence of steady states: general results 

In general notation, for any concave differentiable production 

function f , the map defined by (3) and (4) can be written with state 

variables (k c t , k 
w 
t ) as 

T : 

{ 

k c t+1 = 
1 

1+ n 

[

(1 − δ) k c t + s c k 
c 
t f 

′ (k t ) 
]

k w t+1 = 
1 

1+ n 

[

(1 − δ) k w t + s w 
(

f (k t ) − k t f 
′ (k t ) 

)

+ s p k 
w 
t f 

′ ( k t ) 
]

(6) 

The associated possible steady states are characterized in the fol- 

lowing proposition. 

Proposition 1. The map T may exhibit steady states (0, k ws ), called 

Solow equilibria, 1 defined by solution(s) k ws > 0 of 

f ( k w ) 

k w 
= 

n + δ

s w 
(

1 − e f ( k w ) 
)

+ s p e f ( k w ) 
, 

where e f ( k 
w ) := k w f ′ ( k w )/ f ( k w ) is the elasticity of the production func- 

tion f evaluated at k w . 

In addition, if 

(1 − e f ( k 
∗) )(s c − s p ) > 0 

( s c − s p ) e f ( k 
∗) − s w 

[

1 − e f ( k 
∗) 

]

> 0 , 

1 We call a Solow equilibrium a steady state in which capital ownership is con- 

centrated in only one group, i.e. in the group of workers. 

there exists a unique steady state ( k c∗, k w ∗) = (k ∗ −

k w ∗, s w 
s c −s p 

1 −e f (k 
∗) 

e f (k 
∗) 

k ∗) ≫ 0 , called a Pasinetti equilibrium, 2 satisfy- 

ing k ∗ = k c∗ + k w ∗ and 

f ′ (k ∗) = 
n + δ

s c 
. 

Finally, an additionally boundary equilibrium ( k c ∗∗, 0) exists when 

e f (k 
c∗∗) = 1 . 

Proof. It is immediate to observe that the k w −axis is trapping for 

the map T , that is, T ( 0 , k w ) = ( 0 , k w ) . In fact, the one-dimensional 

map describing the capital accumulation in the economy where 

only workers are acting is the restriction to the k w -axis of the map 

T in (6) , i.e. 

k w t+1 = g ( k w t ) 

= 
1 

n + 1 

[

( 1 − δ) k w + s w 
(

f ( k w ) − k w f ′ ( k w ) 
)

+ s p k 
w f ′ ( k w ) 

]

(7) 

It is immediate to observe that the trivial steady state k w = 0 exists 

iff f ( 0 ) = 0 . Moreover, if they exist, the non-trivial Solow equilibria 

are the solutions of the equation 

f ( k w ) 

k w 
= 

n + δ

s w 
(

1 − e f ( k w ) 
)

+ s p e f ( k w ) 
. (8) 

A further steady state ( k c ∗, k w ∗) ≫0, labeled Pasinetti equilibrium, 

is given by the solutions of 
{

f ′ ( k c + k w ) = 
n + δ
s c 

(n + δ) k w − s p 
n + δ
s c 

k w = f (k c + k w ) s w (1 − e f (k 
c + k w )) 

. (9) 

Setting k ∗ the solution of 

f ′ ( k ) = 
n + δ

s c 
, (10) 

we end up with the following equilibrium 

(k c∗, k w ∗) = 

(

k ∗ − k w ∗, 
s w 

s c − s p 

1 − e f (k 
∗) 

e f (k ∗) 
k ∗

)

which is positive if 

(1 − e f ( k 
∗) )(s c − s p ) > 0 

( s c − s p ) e f ( k 
∗) − s w 

[

1 − e f ( k 
∗) 

]

> 0 . 

Finally, it is straightforward to see that system (9) admits an addi- 

tional solution when k w = 0 and e f (k 
c ) = 1 . �

Our results on existence and stability of steady states are in ac- 

cordance with those provided by Böhm V et al. [3] and by Bri- 

anzoni S et al. [5,6] . In fact, our model may also feature multi- 

ple steady states depending on the savings propensities (e.g. when 

capitalists save more than workers) which reflect the different con- 

sumer preferences. Finally, we remark that it is possible to obtain 

2 We call a Pasinetti equilibrium a steady state in which capital ownership is 

strictly divided among workers and capitalists. 
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the stability conditions of the steady states for the general case. 

However, for the sake of exposition, we restrict ourselves to the 

parametric case outlined in detail in the next section. 

3. Dynamics with the CES production function 

For the remaining analysis we shall consider a production func- 

tion with constant elasticity of substitution, the so-called CES pro- 

duction function, given in its intensive form by 

f ( k ) = 

{

A ( 1 − b + bk ρ ) 
1 
ρ , ρ ≤ 1 , ρ � = 0 

Ak b ρ = 0 
(11) 

where A > 0 represents the total factor productivity, 0 < b < 1 de- 

notes a distribution factor, and σ = 1 / (1 − ρ) is the elasticity of 

substitution. Its unique analytical form was derived by Arrow K, 

et al. [2] describing the class of all homogeneous production func- 

tions with two input factors and constant elasticity σ = 1 / (1 − ρ) , 

including as special cases the Cobb-Douglas production function 

( ρ = 0 ) and the Leontiev production function for zero substitutabil- 

ity as ρ → −∞ . 

The CES production function has been an important and one of 

the most frequently used homogeneous functions in many areas 

of economic theory to elicit the role of relative price effects and of 

factor shares in competitive environments depending on the curva- 

ture of associated level curves of concave homogeneous functions, 

in particular in production theory, in duality studies of cost min- 

imization and profit maximization, and in growth theory [for ex- 

ample 15,28 ]. 

The economic motivation behind the definition of σ (k ) ≡

1 / (1 − ρ) stems from the fact that it is equal to the elasticity 

of the cost-minimizing input demand k ≡K / L of a change in rel- 

ative factor prices W/R = ( f − k f ′ ) / f ′ , which is identical to the 

inverse of the elasticity of the monotonically increasing function 

( f (k ) − k f ′ (k )) / f ′ (k ) of supporting relative factor prices. The CES 

function captures these relationships in a transparent parametric 

form ( b versus ρ) which reveals one of the sources of the complex 

dynamic behavior for the numerical analysis. 

Let 

e f ( k ) := 
k f ′ ( k ) 

f ( k ) 
= 

bk ρ

1 − b + bk ρ
(12) 

denote the elasticity of the production function f evaluated at k 

and 

e f ′ ( k ) := 
k f ′′ ( k ) 

f ′ ( k ) 
= ( 1 − ρ) 

(

e f ( k ) − 1 
)

(13) 

the elasticity of its first derivative. The elasticity of substitution 

σ ( k ) of f , as a scale-invariant measure of curvature of the unit iso- 

quant of the homogeneous production function F ( K, L ) ≡ Lf ( K / L ), is 

defined as the ratio of two elasticities 

σ (k ) := 
1 − e f (k ) 

−e f ′ (k ) 
= 

1 

1 − ρ
. (14) 

Its constancy for the form (11) justifies its name. In addition, 

ρ = 0 marks the special case with e f (k ) = b, e f ′ (k ) = b − 1 , and 

σ (k ) = 1 for all k > 0. Since e f ( k ) is the share of capital income, this 

is a monotonically increasing (decreasing) function in k for ρ > 0 

( ρ < 0). Thus, all income fluctuations of labor and capital move 

one-to-one but in opposite direction with the aggregate capital in- 

tensity k . For the remainder of the analysis only negative values 

of ρ , i.e. elasticities of substitution less than one, are considered. 

Only those imply the necessary income variations favoring capital 

returns which induce complex dynamical effects in the aggregative 

growth model. 

For the CES production function the map (6) specializes to: 

T : 

⎧ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩ 

k c t+1 = 
b k t 

ρ−1 (
b k t 

ρ
− b + 1 

)
1 
ρ −1 

s c k 
c 
t A + ( 1 − δ) k c t 

n + 1 
, 

k w t+1 = 
1 

n + 1 
s w 

(

(

b k t 
ρ

− b + 1 
)

1 
ρ A − b k t 

ρ−1 (
b k t 

ρ
− b + 1 

)
1 
ρ −1 

k c t A 

)

+ 
1 

n + 1 

(

bk 
ρ−1 
t 

(

bk 
ρ
t − b + 1 

)
1 
ρ −1 

( s p − s w ) k 
w 
t A + ( 1 − δ) k w t 

)

. 

(15) 

3.1. Existence and stability of steady states 

Let ρ < 0 and consider first the conditions for the existence of 

Solow equilibria. 3 Recalling Proposition 1 , condition (8) which de- 

fines Solow equilibria now reads 

A ( s w (1 − b) + s p b(k 
w ) ρ ) ( 1 − b + b(k w ) ρ ) 

1 
ρ −1 

= (n + δ) k w . (16) 

Calling the left hand side of the previous equation h ( k w ), it is pos- 

sible to show that, under the hypothesis of s w > s p , h (0) → 0, h ( k w ) 

has a horizontal asymptote (i.e. it is bounded) and it is increasing. 

Since the sign of h ′′ ( k w ) is not constant, we have to distinguish two 

possibilities. 

In the first case, if ρs w + (1 − ρ) s p > 0 , the function h ( k w ) is 

concave. Then, there exists a unique Solow equilibrium if h ′ (0) > 

n + δ. Taking the two conditions together, the unique Solow steady 

state exists if 

s p > max 

{

−ρ

1 − ρ
s w , 

n + δ

Ab 1 /ρ

}

. 

In Fig. 1 (a), h ( k w ) is concave and only one Solow fixed point 

exists. The black line represents the function (n + δ) k w . In the sec- 

ond case, i.e. when ρs w + (1 − ρ) s p < 0 , the function h ( k w ) is S - 

shaped. Accordingly one, no, or two positive steady states exist. In 

particular, equilibria arise when the function h ( k w ) first lies below 

the straight line (n + δ) k w , i.e. when s p < 
n + δ
Ab 1 /ρ

, and then becomes 

tangent to it. This occurs at 

s p = s tan p = s w −
(n + δ) ρ ( 1 − ρ) 

ρ−1 s 
1 −ρ
w 

A ρb ( −ρ) 
ρ . 

When s p > s tan p two steady states exist. This situation persists until 

h ′ (0) = n + δ and one steady state merges with the trivial equilib- 

rium (transcritical bifurcation). To sum up the conditions for the 

existence of the “Solow type” equilibria we can state that 

one equilibrium exists if 
n + δ

Ab 1 /ρ
< s p , 

two equilibria exist if s tan p < s p < 
n + δ

Ab 1 /ρ
, 

no equilibria otherwise. 

Since k w = 0 is invariant for the map, the Jacobian matrix evalu- 

ated at the Solow steady state is triangular. It is easy to obtain 

that the eigenvalue associated with the direction of the k w − axis 

is 

λ‖ = 
e f (k 

s ) s c 

e f (k s ) s p + s w 
(

1 − e f (k s ) 
)

and the one associated with the transverse direction is 

λ⊥ = 
e f (k 

s ) 
((

e f (k 
s ) + 1 

)

s p − e f ′ (k 
s ) s w 

)

e f (k s ) s p + s w 
(

1 − e f (k s ) 
)

3 The condition for the existence of the boundary equilibrium ( k c ∗∗ , 0), i.e. 

e f (k 
c ) = 1 , when considering a CES production function translates into b = 1 , which 

is a value that such parameter can not assume, since the distribution factor only 

takes value 0 < b < 1. 
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Fig. 1. The role of s p on the function h ( k w ); n = 0 , δ = 1 , A = 3 , ρ = −6 , b = 0 . 5 , s w = 0 . 4 . 

and to see that they are both positive. Hence, any Solow equilib- 

rium is locally stable if 
{

stab 1 = e f (k 
s ) ( 1 − rho ) ( s w − s p ) − s w < 0 

stab 2 = 1 − e f (k 
s ) ( s p − s c ) + s w 

(

1 − e f (k 
s ) 

)

> 0 

The crossing of the curve stab 1 = 0 corresponds to a fold bifur- 

cation which gives rise to two steady states since, the s tan p value 

satisfies such equation being e f (k 
s ) = b [ Abρ(s p − s w ) ] 

ρ/ (1 −ρ) at the 

bifurcation. Instead, the bifurcation occurring at the crossing of 

stab 2 = 0 is a transcritical one as we shall see below. 

Turning to the existence of Pasinetti equilibria with the CES 

production function, let the assumptions of Proposition 1 hold. A 

Pasinetti equilibrium ( k c ∗, k w ∗) ≫0 is given by 

k w ∗ = k ∗
s w 

s c − s p 

H − b 

b 
and k c∗ = k ∗

(

1 −
s w 

s c − s p 

H − b 

b 

)

where 

k ∗ = 

(

1 − b 

H − b 

)
1 
ρ

and H = 

(

n + δ

Abs c 

)
ρ

1 −ρ

Concerning the stability conditions for the Pasinetti equilibrium, 

the Jacobian matrix J ∗ of the map T evaluated at ( k c ∗, k w ∗) is given 

by 

J ∗ = J(P ) = 

⎡ 

⎢ 
⎣ 

e f ′ (k 
∗) 

(

1 −
s w ( 1 −e f (k ∗ ) ) 
e f (k ∗ ) ( s c −s p ) 

)

+ 1 e f ′ (k 
∗) 

(

1 −
s w ( 1 −e f (k ∗ ) ) 
e f (k ∗ ) ( s c −s p ) 

)

e f ′ (k 
∗ ) 

(

s w ( 1 −e f (k ∗ ) ) 
e f (k ∗ ) ( s c −s p ) 

−s w 

)

s c 

e f ′ (k 
∗ ) 

(

s w ( 1 −e f (k ∗ ) ) 
e f (k ∗ ) ( s c −s p ) 

−s w 

)

+ s p 

s c 

⎤ 

⎥ 
⎦ 

where 

T rJ ∗ = −
e f e f ′ s w − e f s p − e f e f ′ s c − e f s c + s w 

(

1 − e f 
)

e f ′ 

e f s c 

and 

DetJ ∗ = −
e f ′ s w − e f ′ s p − s p 

s c 
. 

Then, the Pasinetti equilibrium is locally asymptotically stable if 

the usual stability conditions on trace and determinant [see 19 ] of 

J P hold, i.e. if 

⎧ 

⎪ 
⎪ 
⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎪ 
⎪ 
⎩ 

1 − T rJ ∗ + DetJ ∗ = πtr = −
[(

1 − e f 
)

s w + e f ( s p − s c ) 
]

> 0 

1 + T rJ ∗ + DetJ ∗ = π f l = −
[(

1 − e f 
)(

1 + e f 
)

( ρ − 1 ) s w 

+ e f 
((

e f − 1 
)

ρ − e f − 1 
)

( s p + s c ) 
]

> 0 

1 − DetJ ∗ = πns = 
(

1 − e f 
)

ρ( s w − s p ) 

+ 
(

e f − 1 
)

s w + e f ( s c − s p ) + 
(

1 − e f 
)

s c > 0 

(17) 

Fig. 2 shows the stability region of the Pasinetti equilibrium in 

the ( s w , s p ) plane. The red lines split up the ( s w , s p ) parameter 

plane according to the number of the existing Solow type equilib- 

ria. In particular, the horizontal red line, denoted by �1 , refers to 

the condition s p = 
n + δ
Ab 1 /ρ

, and above such line only one Solow type 

equilibrium exists. Moreover, in the region bounded from above 

by the straight line �1 and on the left by the curve, denoted by 

�2 , s 
tan 
p = s w −

(n + δ) ρ ( 1 −ρ) ρ−1 s 1 −ρ
w 

A ρb ( −ρ) ρ
two Solow type equilibria exist, 

while on the left of the latter curve and below the horizontal red 

line, no Solow type equilibria exist. The green lines �1 and �2 

have been superimposed in order to highlight which part of the 

( s w , s p ) parameter plane is feasible. In particular, the feasible re- 

gion is located in the portion of the plane bounded by the con- 

ditions 0 < s p < s w < 1 and s p > s c s w , i.e., in the region between �1 

and �2 . Finally, the grey region highlights the stability region of 

the Pasinetti equilibrium. In particular, the boundaries of this re- 

gion are provided by the stability conditions in (16) and the cross- 

ing of each line is associated with a different type of stability loss, 

that can occur via Neimark–Sacker, flip or transcritical bifurcation 

as the black lines show in Fig. 2 . More precisely, the Pasinetti 

Fig. 2. Stability region (gray) of the Pasinetti equilibrium in the ( s w , s p ) parameter 

plane for b = 0 . 5 , A = 10 , ρ = −10 , s c = 0 . 3 , n = 0 and δ = 1 . 
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Fig. 3. Periodicity regions in the ( s w , s p )-plane; b = 0 . 5 , A = 10 , ρ = −10 , s c = 0 . 3 . In panel (a) the shaded area covers the unfeasible region, the labels 	i , i ∈ { tr, fl, ns } refer 

to the curves 	i = { (s w , s p ) : πi = 0 } , i ∈ { tr, fl, ns }, while the other labels are the same introduced for Fig. 2 . 

equilibrium may become unstable via transcritical bifurcation 

when the parameters ( s w , s p ) cross the curve πtr = 0 , denoted 

by 	tr , since it merges with a Solow steady state being k c∗ = 0 

and equation (8) equal to equation (9) , (see Proposition 1 ). The 

Pasinetti equilibrium may also be destabilized via a flip bifurca- 

tion crossing the curve π f l = 0 , denoted by 	fl, or via a Neimark- 

Sacker bifurcation, with complex eigenvalues, crossing the curve in 

πns = 0 , denoted by 	ns . 

4. Growth cycles and complex dynamics 

The remaining analysis will focus on the conditions under 

which the Pasinetti equilibrium loses stability and the parameters 

cross the curve πns = 0 . This is done by analyzing the global prop- 

erties of the map T . In particular, we focus our attention on the 

basins of attraction of the coexisting attractors and on their struc- 

tural changes due to the occurrence of global bifurcations. In the 

following analysis, we consider a constant size of the two groups 

of agents, i.e. n = 0 , and full depreciation, i.e. δ = 1 . 

We start presenting a 2D bifurcation diagram in the ( s w , s p ) pa- 

rameter plane to illustrate the overall bifurcation structure. In fact, 

Fig. 3 (a) shows such a diagram marking the yellow region as the 

one in which a stable steady state exists (inside the region PSR the 

Pasinetti equilibrium, outside a Solow one), the other colors are re- 

lated to attracting cycles of different periods and the white region 

corresponds either to chaotic attractors or to cycles of higher peri- 

odicity. Moreover, the Pasinetti equilibrium may lose stability also 

via flip bifurcation, crossing into the region colored in purple as- 

sociated with a cycle of period 2, arising when such equilibrium is 

destabilized. 

In the region where no Solow equilibrium exists, the character- 

istic shape 4 of periodicity regions, emanating from the curve πns = 

0 , is clearly visible. These curves resemble the Arnold tongues, 

which typically emanate from a Neimark–Sacker bifurcation curve, 

whose boundaries are saddle-node bifurcation curves and the is- 

suing point from the Neimark–Sacker curve is generally a cusp 

4 We refer to a tongue-shaped region that first appears narrow in the vicinity of 

the Neimark–Sacker bifurcation curve and then widens and opens out, sometimes 

overlapping. In fact, such tongues do not overlap as far as the parameters are close 

to the bifurcation curve, while they may overlap when the parameters are taken 

far enough from the bifurcation curve, denoting an increase of nonlinearity. On this 

topic we refer to [1,4,10,18,26] . 

point (except for the strong resonance cases 1: n , n = 1 , 2 , 3 , 4 ). 

More precisely, the boundaries of an m / n tongue 5 issuing from 

a Neimark–Sacker bifurcation curve are saddle-node bifurcation 

curves of a pair of n -cycles, and inside the tongue an attract- 

ing closed invariant curve may exist, made up by a saddle-node 

connection of the n -cycle. Between two tongues issuing from a 

Neimark–Sacker bifurcation curve of periodicity m 1 / n 1 and m 2 / n 2 
a particular (Farey) summation rule applies (see e.g. [9,17] ), and 

the tongue with periodicity (m 1 + m 2 ) / (n 1 + n 2 ) exists as well. The 

enlargement of Fig. 3 (b) illustrates a particular features of the pe- 

riodicity regions, due to a change in the initial conditions. Namely, 

the regions related to the rotation number 1/ n intersect the stabil- 

ity region of the Pasinetti equilibrium (thus signaling the possibil- 

ity of attractors coexistence) and the corresponding Arnold tongues 

are their subset. Moreover, one of the boundary of each of these 

periodicity regions is a flip bifurcation curve and, accordingly, we 

can observe a period doubling bifurcation followed by a Feigen- 

baum cascade. Hence, a possible dynamic behavior that immedi- 

ately arises is the coexistence of different attractors corresponding 

to a situation in which capital fluctuations, eventually chaotic, co- 

exist with trajectories dumping towards the Pasinetti equilibrium. 

An example for which the Pasinetti equilibrium coexists with a 

cycle is first detected through the 2D bifurcation diagram reported 

in Fig. 4 (a), where we observe the intersection of the tongue asso- 

ciated to the 3-cycle with the stability region of the steady state. 

And the corresponding attractors coexistence is reported in Fig. 4 b, 

where we depict the basin of attraction of the Pasinetti equilibrium 

P ∗ in yellow and the basin of the 3-cycle D in red. In particular, we 

observe that the basins of the two attractors are separated by the 

stable set of the period 3 saddle-cycle which has a complicated 

structure due to many oscillations occurring in a region quite far 

from P ∗. Then, if the value of the parameter s p is diminished, the 

phase space depicted in Fig. 4 (c) suggests that the Pasinetti equi- 

librium loses stability via a supercritical Neimark–Sacker bifurca- 

tion and an attracting closed invariant curve appears, surrounding 

the unstable fixed point. In fact, in Fig. 4 (c) the basin of attraction 

of the cycle D is still shown in red while the basin of the closed 

invariant curve 
 is in yellow. On the other hand, if we still re- 

5 We recall that the integer n denotes the period of the cycle while m denotes 

the number of laps around the fixed point which are necessary to complete the 

whole orbit. 
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Fig. 4. Multistability associated with a period 3 cycle; b = 0 . 5 , A = 10 , ρ = −10 , s c = 0 . 3 . 

main within the stability region of P ∗ and we exit the periodicity 

region from the flip bifurcation boundary, we observe a situation in 

which the Pasinetti equilibrium coexists with a three pieces chaotic 

attractor as portrayed in Fig. 4 (d). This occurs after the previously 

existing 3-cycle has undergone its period doubling cascade with 

the consequent route to chaotic dynamics. 

Fig. 5 displays the basins of attraction of three coexisting attrac- 

tors, still inside the periodicity region associated with the cycle of 

period 3: namely an attracting closed invariant curve, whose basin 

is depicted in yellow, a cycle of period 3, with the corresponding 

basin in red, and a chaotic attractor with its basin in white. The 

enlargement of Fig. 5 (b) allows us to observe better the shape of 

the chaotic attractor, which is made by several pieces and addi- 

tionally, such an attractor is very close to its basin boundary. This 

signals the occurrence of an incoming contact bifurcation. In fact, 

as we slightly increase the value of s p , the chaotic attractor disap- 

pears and the coexistence is now among two cycles, F and G , and 

the closed invariant curve which still exists (even if not visible in 

Fig. 5 (c)). 

Finally, a further situation of multistability may appear as the 

coexistence of cycles of different periodicity, since the Arnold 

tongues may intersect among them too (see Fig. 6 a, showing the 

intersections of the tongues associated with the 9-cycle and the 

13-cycle). An example is portrayed in the phase plane of Fig. 6 (b) 

in which, fixing the values s c = 0 . 3 and s w = 0 . 09119 , it is possible 

to observe a stable 9-cycle coexisting with a stable 13-cycle, while 

the Pasinetti equilibrium, denoted with P ∗, is unstable. The periodic 

points of these cycles are illustrated in the ( k c , k w ) phase plane as 

well as their basins of attractions: the blue color is used for the 

basin of the 9-cycle while the yellow color refers to the basin of 

the 13-cycle. The complicated basin structure resembles the one 

portrayed in Fig. 4 (b) due to the oscillations that take place in a 

region far from the Pasinetti equilibrium. 

4.1. Appearance/disappearance of closed invariant curve 

The occurrence of a Neimark–Sacker bifurcation has significant 

consequences both from an economic and a mathematical point of 

view. The real financial and economic systems show a lot of com- 

plex dynamical phenomena, such as, business cycle, financial cri- 

sis and irregular growth. In particular, when a Neimark–Sacker bi- 

furcation occurs, a steady growth can turn into quasi-periodic and 
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Fig. 5. Coexistence of three different attractors: b = 0 . 5 , A = 10 , ρ = −10 , s c = 0 . 3 and s w = 0 . 076 . 

Fig. 6. Coexistence of different cycles: b = 0 . 5 , A = 10 , ρ = −10 , s c = 0 . 3 and s w = 0 . 09119 . 

then, at least for some parameter combinations related to the dif- 

ferent saving propensities, into complex dynamics. Moreover, even 

if a Neimark–Sacker bifurcation may not have global effects (in the 

sense that after the bifurcation the trajectories of the points close 

to the unstable focus reach the attracting closed curve), it may also 

be the case the homoclinic tangencies and homoclinic tangles of 

saddles arise in the transition from local regular to global irregu- 

lar fluctuations, due to the increased complexity of the attractors. 

Then, if the map exhibits some multistability phenomena, as is the 

case of the present work, the invariant closed curve may interact 

with other attractors and interesting dynamic phenomena may oc- 

cur, often associated with homoclinic or heteroclinic tangles. These 

are the motivations at the ground of the analysis that we shall 

carry on in this subsection. 

We proceed in our analysis by investigating what happens 

when the boundary of the Arnold tongue associated with the cycle 

of period 9 is crossed, as the bifurcation path, marked by an arrow, 

indicates in Fig. 6 (a). In fact, differently from the previous case, 

this is effectively an Arnold tongue, as it issues from the Neimark–

Sacker bifurcation curve from a cusp point. To do so, we fix the 

values of the saving propensities s c = 0 . 3 and s w = 0 . 092 , while we 

decrease the values of the parameter s p . For this purpose, Fig. 7 

turns out to be useful in explaining the global bifurcations asso- 

ciated with the appearance/disappearance of an invariant closed 

curve when the parameter s p is varied. 

When we cross the bifurcation boundary of the Arnold tongue 

from above, a 9-cycle appears and coexists with the attracting 

closed curve Ŵ associated to a supercritical Neimark–Sacker bifur- 

cation. The 9-cycle arises via saddle-node bifurcation along with a 

saddle cycle and the boundary of its basin is given by the stable set 

of the saddle cycle, as shown in Fig. 7 (a). As we further decrease s p , 

the attracting closed curve is replaced by a saddle-focus connec- 

tion, that is, the stable cycle turned into a focus still coexists with 

a saddle cycle of period 9, and its periodic points are connected 

by the unstable set of the saddle cycle, as shown in Fig. 7 (b). 

In this figure we have considered the ninth iterate of the map 

in order to emphasize the behavior of the stable set of the sad- 

dle 6 which exhibits more oscillations far from the Pasinetti equi- 

librium while in the proximity of the closed curve it has a smooth 

behavior. 

We now investigate how the closed curve disappears as long 

as s p varies in order to discover whether any homoclinic tangle 

may be involved, as suggested by the enlargement of Fig. 7 (c). In 

fact, in such a figure we observe that the stable set of the sad- 

dle is very close to the closed curve, at which a branch of its un- 

stable set converges. This denotes that a qualitative change in the 

structure of the basin and in the nature of the attractor is going 

6 We recall that the stable sets of the saddles separate the basin of the nine fixed 

points of the map T 9 . 



A. Agliari, V. Böhm and N. Pecora / Chaos, Solitons and Fractals 130 (2020) 109435 9 

Fig. 7. Dynamics at the exit of the period 9 tongue; b = 0 . 5 , A = 10 , ρ = −10 , s c = 0 . 3 , s w = 0 . 092 . 

to occur, namely the disappearance of the curve. In order to prove 

the occurrence of a global bifurcation we consider the phase space 

obtained with an intermediate value of s p (see Fig. 8 (a)). In this 

figure, we notice the appearance of a fractal structure in the re- 

gion previously covered by the basin of the attracting closed curve, 

and this is due to a homoclinic bifurcation illustrated in the en- 

largements of Fig. 8 . Looking at the enlargement of Fig. 8 (b), the 

stable set of the saddle associated with the cycle C starts exhibit- 

ing some oscillations and approaches the invariant closed curve, 

with the occurrence of a homoclinic tangency between the sta- 

ble set of the saddle-cycle and the curve. Then, as the parame- 

ter s p decreases slightly more, the oscillations become more and 

more pronounced (see Fig. 8 (b)) giving rise to the homoclinic tan- 

gle; finally, as s p is further reduced, a second reverted homoclinic 

tangency occurs and no points of the unstable set of the saddle 

converge to the curve, which has now disappeared, as Fig. 8 (c) 

highlights. 

5. Concluding remarks 

Growth models are instrumental for explaining long term eco- 

nomic performance. These models generally lead to long term 

growth scenarios that may or may not include the possibility of 

cycles and endogenous fluctuations. In this paper we have con- 

sidered a standard neoclassical growth model along the lines of 

Kaldor, Pasinetti and others, which was extended to allow for own- 

ership of capital among OLG consumers of workers and capitalists 

as well as different savings propensities among agents. The results 

of our analysis show that the interaction of the nonlinear income 

distribution with heterogeneous logarithmic intertemporal prefer- 

ences of consumers causes a variety of local bifurcation scenarios, 

multistability, as well as a rich variety of complex global dynamic 

features. Fluctuations in this model originate from the different 

savings behaviors, s w � = s p � = s c , and from the features of technol- 

ogy related to the elasticity of substitution, which is a specific 
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Fig. 8. Homoclinic bifurcation associated with the disappearance of the closed curve; b = 0 . 5 , A = 10 , ρ = −10 , s c = 0 . 3 and s w = 0 . 09119 . 

feature of the employed CES production function. From the math- 

ematical viewpoint, besides the typical convergence to a steady 

state, we have shown that complicated endogenous dynamics such 

as growth cycles and even chaotic dynamics characterize a large 

portion of the parameters space. In particular, the coexistence of 

different attractors is of relevance since the Arnold tongues as- 

sociated with 1: n cycles are contained in wider periodicity re- 

gions crossed by the Neimark–Sacker bifurcation curve. This phe- 

nomenon is quite generic in presence of subcritical Neimark-Sacker 

bifurcation, but this is not the case here. Moreover, it is also note- 

worthy that one boundary of these periodicity regions is made up 

by a flip bifurcation curve, opening the onset of chaotic attractors 

coexisting with the stable Pasinetti equilibrium. 
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