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Abstract
A new era of research is being devoted to deciphering

endogenous mediators and mechanisms that are in place to

resolve the inflammatory response. Accruing evidence

indicates that galectins fall into this category of immuno-

regulatory mediators signifying their use as prospective novel

anti-inflammatory agents. The focus of this review is to depict

the immunoregulatory bioactivities of three members of the

galectin superfamily, Galectin (Gal)-1, Gal-3 and Gal-9.
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Emphasis is given to the studies investigating the properties

of these endogenous lectins. Gal-1, Gal-3 and Gal-9 are

emerging as pertinent players in the modulation of acute and

chronic inflammatory diseases, autoimmunity and cancer,

and thus being increasingly recognised as molecular targets for

innovative drug discovery.

Journal of Endocrinology (2009) 201, 169–184
Galectins – generalities; biochemistry; cell sources

Members of the galectin family of proteins are classified by

their ability to bind b-galactosides and by a conserved

sequence of approximately 130 amino acids within their

carbohydrate recognition domains (CRDs) (Barondes et al.

1994). To date, 15 members have been identified, which

based on their structure and number of CRDs, are subdivided

into one of three groups (Fig. 1). The prototype galectins

contain a single CRD and can form homodimers, whereas

the tandem-repeat galectins consist of two non-identical

CRDs joined by a short peptide, and the unique chimera-

type galectin-3 contains a single CRD with an extended

N-terminus (Barondes et al. 1994).

In contrast to the selectins, galectin binding to carbo-

hydrates is calcium independent (Hughes 2001). Galectins

bind to N-acetyllactosamine (Galb1, 3GlcNAc or Galb1,

4GlcNAc), a common disaccharide found on many N- or

O-linked glycans (Elola et al. 2005). The mere presence of

galactose residues in glycoconjugates is not sufficient to

promote high-affinity binding, and a fine specificity in

binding is evident by the limited set of glycoconjugates

to which they bind. In addition, many galectins can bind to

carbohydrates in a bivalent or multivalent style, allowing

cross-linking and redistribution of cell surface glycoproteins

(Yang et al. 2008). Galectins can also bind their ligands in

a carbohydrate-independent manner. This is often the case
intracellularly, where ligand binding occurs predominantly

through protein–protein interactions (see Liu et al. 2002 for

review). An intriguing aspect of galectin biology is that,

although these proteins lack a signal peptide and therefore do

not exit the cell via the classical secretory pathway, they are

known to be actively secreted from cells (Cho & Cummings

1995). Various models for exportation of the different

members of the galectin family have been proposed (reviewed

by Elola et al. 2007).

Galectins have been isolated from a number of species

ranging from vertebrates to sponges, suggesting that they

perform essential roles in basic cellular function (Cooper &

Barondes 1999, Houzelstein et al. 2004). Nuclear localisation

of Gal-1 and Gal-3 is possibly connected with a role in the

regulation of pre-mRNA splicing (Vyakarnam et al. 1997,

Wang et al. 2004), while extracellular location indicates

functions in cell–cell and cell–matrix interactions (Hughes

2001, reviewed by Elola et al. (2007)). A diverse range of

biological functions involved in immune and inflammatory

responses and tumour development have been reported for

galectins over the last decade including roles in cellular

adhesion, migration and survival (see Elola et al. 2007, Yang

et al. 2008 for recent reviews).

Within the immune system, Gal-1 is specifically localised

in lymphoid organs (Baum et al. 1995b), T cells (Blaser

et al. 1998, Fuertes et al. 2004), activated macrophages

(Rabinovich et al. 1998) and endothelial cells (Lotan et al.
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Figure 1 Subtypes of the galectin family. Galectins can be divided into three subtypes based
on their structure. Schematic examples of prototype galectins: Gal-1 has one carbohydrate
recognition domain and can function as a monomer or homodimer; Gal-3 is the only
chimeric galectin with a carbohydrate recognition domain and an extended N-terminus
through which it can form pentamers; tandem-repeat galectins (e.g. Gal-9) consist of two
non-identical CRDs joined by a short peptide.
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1994, Baum et al. 1995b). Furthermore, expression of Gal-1

in endothelial cells can be modulated by several inflam-

matory agents, supporting its role in inflammatory

incidences (Baum et al. 1995b). Gal-3 is expressed by

virtually all immune cell types, including endothelial cells,

lymphocytes (Lotan et al. 1994, Baum et al. 1995b),

neutrophils (Truong et al. 1993), monocytes and macro-

phages (Liu et al. 1995), mast cells (Craig et al. 1995)

and dendritic cells (Flotte et al. 1983). Gal-3 expression has

been found to be increased in neutrophils upon adhesion

to the endothelium (Gil et al. 2006b), which also coincided

with a relocalisation of Gal-3 to the plasma membrane

in endothelial cells (Gil et al. 2006b). Such relocalisation

to the membrane of endothelial cells has also been

observed upon adhesion of tumour cells (Glinsky et al.

2001). Gal-9 is also distributed in certain cells fundamental

to the inflammatory response: endothelial cells (Imaizumi

et al. 2002), T cells (Matsumoto et al. 1998) and fibroblasts

(Asakura et al. 2002). Knockout mice have been

generated for these three galectins and have provided a

tool for researchers to investigate their roles under

inflammatory conditions. Table 1 outlines the phenotypes

of these mice.

Finally, the keen reader could refer to recent excellent

reviews on galectins’ biology (Elola et al. 2007, Yang et al.

2008). Here, we will dwell on recent understanding of the

impact of galectins, mainly Gal-1, Gal-3 and Gal-9, on the

immune response.
Inflammation and anti-inflammation:
a balancing act!

During an inflammatory response, individuals experience the

cardinal signs of inflammation; pain, fever, redness and

swelling and in chronic conditions, this can ultimately lead

to loss of function. These symptoms are a result of a complex

set of microscopic events that take place both at the site of

inflammation and systemically. Inflammatory reactions are

generally protective and serve to maintain tissue homeostasis,

although if uncontrolled they become deleterious to the host.
Journal of Endocrinology (2009) 201, 169–184
In nearly all cases, the fundamental cause of tissue damage is

leukocyte accumulation. Leukocyte recruitment in both

homeostatic and inflammatory situations is a highly regulated

process that requires specific and sequential molecular

interactions between leukocytes and the vascular endo-

thelium. Insights into the cellular and molecular processes

involved in each step of the cascade have been provided by a

range of experimental approaches performed both in vitro and

in vivo. These include antibody inhibition studies, static

adhesion assays, parallel-plate flow chamber models, as well as

using intravital microscopy of small animals to visualise live

interactions of leukocytes with the vessel wall. These studies

have helped to elucidate that i) initial leukocyte–endothelial

interactions (capture and rolling) are instigated primarily by a

family of molecules called selectins along with their

oligosaccharide ligands, and ii) firm adhesion and transmigra-

tion are mediated by leukocyte integrins interacting with the

endothelial immunoglobulin superfamily of adhesion

molecules.

The reparative and resolving phase of inflammation is not

merely a passive process as once believed, but actively takes

place. While an array of pro-inflammatory mediators exist to

initiate inflammation, a repertoire of anti-inflammatory

mediators and mechanisms operate in the host to promote

and control the phase of resolution, by inhibiting leukocyte

migration and promoting clearance of inflammatory cells

(Gilroy et al. 2004, Serhan et al. 2007). Accumulating

evidence indicates that galectins fall into this category of

immunoregulatory mediators signifying their potential use as

novel anti-inflammatory agents. Their actions on cells of the

vascular system are outlined in Fig. 2. We will summarise now

the current knowledge on the properties of endogenous Gal-

1, Gal-3 and Gal-9 as evidenced from integrated system

biology analyses.
Anti-inflammatory and pro-inflammatory galectins

Generally, Gal-1 is known to bestow a range of anti-

inflammatory effects on various cells types, inhibiting cell

trafficking, inducing apoptosis and modulating the release of
www.endocrinology-journals.org
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Table 1 Phenotype of galectin null mice

Disease model/inflammogen Phenotype References

Null mouse
Galectin-1 Peritonitis Increased neutrophil recruitment www.functionalglycomics.org/

IL1B-inflamed cremaster Increased leukocyte adhesion and emigration Cooper et al. (2008)
Experimental allergic

encephalomyelitis
Increased susceptibility, ‘hyper’ Th1 and Th17

responses
Toscano et al. (2007)

Delayed-type hypersensitivity Increased oedema and lymphocyte infiltration
to the inflamed paw

Norling et al. (2008)

Galectin-3 Diabetes Accelerated glomerulopathy in a model of
streptozotocin-induced diabetes with
pronounced increases in circulating and
renal/glomerular AGE levels

Pugliese et al. (2001)

Peritonitis Reduced neutrophil recruitment Colnot et al. (1998a,b)
Endotoxic shock Increased susceptibility, with increased production

of pro-inflammatory cytokines and NO
Li et al. (2008)

Bacterial infection Reduced neutrophil recruitment to the lungs
following S. pneumoniae infection

Nieminen et al. (2008)

Parasite infection Decreased inflammation following T. Gondii infec-
tion, higher Th1 response with increased levels
of IFNG and IL12. Reduced granuloma formation
following infection with Schistosomiasis

Bernardes et al. (2006) and
Breuilh et al. (2007)

Prion infection Increased survival, following intracerebral and
peripheral scrapie infection

Mok et al. (2007)

Galectin-9 Arthritis Enhanced incidence, increased numbers of
TIM-3CCD4CT cells

Seki et al. (2008)

Endotoxic shock Increased mortality Tsuboi et al. (2007)
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mediators. By contrast, Gal-3 is widely pro-inflammatory

provoking leukocyte activation, whereas Gal-9 is most

commonly known for its chemotactic activity towards

eosinophils, and has more recently been revealed as a negative

regulator of Th1 cells. Specific effects of Gal-1, -3 and -9 will

be addressed in succession.
Actions of exogenous galectin-1

ApplicationofexogenousGal-1 (LGALS1)has shownimmuno-

suppressive and anti-inflammatory efficacy in various experi-

mental models of inflammation and autoimmunity, including

colitis (Santucci et al. 2003), concanavalin A-induced hepatitis

(Santucci et al. 2000), arthritis (Rabinovich et al. 1999b),

diabetes (Perone et al. 2006), experimental autoimmune

encephalomyelitis (EAE) (Offner et al. 1990), myasthenia gravis

(Levi et al. 1983) and uveitis (Toscano et al. 2006).

Using gene or protein therapy strategies, Gal-1 has been

shown to attenuate paw swelling, clinical score and

histopathological symptoms of collagen-induced arthritis

(Rabinovich et al. 1999b). Investigation into the molecular

mechanisms involved in this process revealed that Gal-1

treatment increases T-cell susceptibility to activation-induced

apoptosis and promotes a shift from a T-helper cell type 1

(Th1) to a Th2-polarised immune response, characterised

by an increase in IL5 and a concomitant reduction in IL2 and

IFNG levels (Rabinovich et al. 1999b). In a model of hepatitis,

Gal-1 pre-treatment (40 mg; 30min) prevented liver injury

and tissue infiltration of T cells. These effects were associated

with apoptosis of activated T cells and inhibition of
www.endocrinology-journals.org
concanavalin A-induced TNF and IFNG secretion (Santucci

et al. 2000). Indeed, several studies have implicated Gal-1 to

modulate the T cell cytokine repertoire. Low concentrations

of Gal-1 (10–100 nM) can inhibit IFNG and TNF

production by IL2-activated T cells in vitro (Rabinovich

et al. 1999a) and production of cytokines such as TNF, IL1B,

IL12 and IFNG in vivo (Santucci et al. 2003). Additionally,

treatment of T cells with Gal-1 is associated with increased

mRNA and protein expression of IL10 (vander Leij et al. 2004),

and an inhibition of IL2 secretion (van der Leij et al. 2007).

The anti-inflammatory and immunosuppressive effects of

Gal-1 in models of T cell-driven pathologies are often

deemed to be due to the pro-apoptotic nature of this lectin,

and thus these studies are complemented by a much larger

series of in vitro studies. Regulation of cell death by apoptosis

is vital for normal cell turnover and maintenance of

homeostasis. Apoptosis occurs during T cell maturation in

the thymus to remove potentially autoaggressive cells, as

failure to do so may lead to various autoimmune diseases if

these cells escape to the periphery. In relation to this, early

studies showed Gal-1 synthesis by thymic epithelial cells

caused apoptosis of immature thymocytes (Baum et al. 1995a).

Together, these results suggest a functional role of Gal-1 in the

process of positive and/or negative selection in the thymus

(Perillo et al. 1997). Indeed, current investigations have

highlighted that Gal-1 can selectively promote negative

selection and oppose positive selection by reducing and

enhancing the TCR signalling threshold respectively (Liu

et al. 2008). In addition, activated mature T cells undergo

apoptosis to prevent an overactive immune response.
Journal of Endocrinology (2009) 201, 169–184

Downloaded from Bioscientifica.com at 08/22/2022 09:37:00PM
via free access



Figure 2 Events controlled by Gal-1, Gal-3 and Gal-9 on the blood and vascular cells during
inflammation. Gal-1, Gal-3 and Gal-9 have been reported to have numerous effects on the
cells of the vascular system. Gal-1 has been reported to inhibit PMN adhesion and T-cell
adhesion and emigration, while Gal-3 promotes PMN adhesion both to endothelial cells and
components of the extracellular matrix. Gal-9 has been found to promote eosinophil
recruitment. All three galectins induce T-cell apoptosis, while Gal-1 and Gal-3 also induce
phosphatidylserine exposure on PMN in the absence of apoptosis. The pro-inflammatory
actions of Gal-3 are further substantiated by its ability to induce IL1 production by
monocytes, mast cell degranulation and ROS and IL8 generation by PMN. Gal-9 has also
been found to induce ROS generation by eosinophils. Gal-1 appears to have concentration-
dependent effects; at high concentrations, Gal-1 induces ROS generation by exudated PMN.
Gal-3 may also play a role in the resolution of inflammation by enhancing phagocytosis of
apoptotic PMN by macrophages and phagocytosis of bacteria by PMN.
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Various studies have indicated that exogenous Gal-1

induces apoptosis of mature and activated, but not resting,

T cells (Blaser et al. 1998, Rabinovich et al. 1998), by specific

recognition of the differentially glycosylated CD45RO

isoform of PTPRC displayed by memory T cells (Perillo

et al. 1995). These results may well explain the in vivo efficacy

of Gal-1; however, it must be noted that relatively high

concentrations (10 mM) are often used to attain these effects,

and that the apoptotic effect is dependent on cross-linking

specific cell surface glycoproteins (Symons et al. 2000).

Whether Gal-1 levels could be so high in vivo is questionable

and further studies are required to elucidate the mode of

Gal-1 actions, although it could be postulated that these

concentrations might be reached within specific intracellular

and paracellular microenvironments.

Aside from its apoptotic role, it has been documented that

Gal-1 also exerts its anti-inflammatory effects via apoptotic-

independentmechanisms. At concentrations below its apoptotic

threshold (10–100 nM), Gal-1 inhibits T-cell adhesion to

extracellular matrix (ECM) glycoproteins (Rabinovich et al.

1999a) and TNF and IFNG secretion by activated T cells

(Rabinovich et al. 1999b).
Journal of Endocrinology (2009) 201, 169–184
Interestingly, Gal-1 also plays a pivotal role in the innate

immune response-promoting resolution of acute inflam-

mation. First, experimental evidence was seen in a rat

model of paw oedema induced by bee venom phospho-

lipase A2 (Rabinovich et al. 2000). Local administration of

Gal-1 repressed the inflammatory response in a dose-

dependent manner. This effect was not abrogated when

Gal-1 was pre-incubated with 100 mM lactose, but could

be reversed with Gal-1 anti-serum, showing a specific yet

carbohydrate-independent effect. Immunohistochemical

assessment of the inflamed paws showed a dramatic

reduction in PMN infiltration, degranulated mast cells

and overall tissue damage with a 30 min pre-treatment

of Gal-1. To investigate the mechanism of its anti-

inflammatory properties, tests were performed in vitro on

LPS-stimulated macrophages, and showed that Gal-1 inhibits

arachadonic acid and PGE2 secretion, in a dose-dependent

and carbohydrate-independent fashion (Rabinovich et al.

2000). Further investigations to elucidate the anti-

inflammatory activities of Gal-1 on activated rat peritoneal

macrophages showed that this protein inhibits inducible

nitric oxide synthase expression and potentiates the
www.endocrinology-journals.org
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arginase pathway of L-arginine metabolism, thus inducing

an ‘alternative activation’ of these macrophages (Correa

et al. 2003).

Unlike its effects on T cells, Gal-1 does not induce

neutrophil apoptosis, although it does cause exposure of

phosphatidylserine on the cell membrane, which significantly

promotes phagocytosis of apoptotic neutrophils by mouse

macrophages (Dias-Baruffi et al. 2003). This study highlights

an important facet of Gal-1 in leukocyte turnover, hence

possessing the ability to aid in the resolution of inflammation.

Not all of Gal-1s actions are anti-inflammatory, at high

concentrations (R40 uM range), it activates the NAD(P)H

oxidase and subsequently superoxide generation in extra-

vasated (but not peripheral) neutrophils (Almkvist et al. 2002),

indicating that the activated leukocyte might expose Gal-1

receptors. Moreover, a recent paper has revealed a unique

function of Gal-1 as a platelet activator (Pacienza et al. 2008).

Research from our laboratory has shown that Gal-1 inhibits

the initial interactions of PMNs with endothelial cells of the

post-capillary venule in an experimental model of inflam-

mation (La et al. 2003). Mice treated with a low dose (0.3 mg

corresponding to w21 pmol) of hr-Gal-1 showed a potent

reduction in the effect of IL1B on cell flux, cell adhesion and

emigration of PMNs. In vitro assays further confirmed that

incubation of PMNs with hr-Gal-1 inhibited IL8-induced

PMN chemotaxis and transendothelial migration (La et al.

2003). We have also demonstrated that incubation of PMNs

with low concentrations of hr-Gal-1 (27–270 nM) results in a

significant inhibition in their capture, rolling and adhesion

on endothelial cells under conditions of shear stress (Cooper

et al. 2008). Furthermore, the reverse effect is observed

when Gal-1 protein levels are knocked down using small

interference RNA (siRNA) in HUVEC, with a marked

increase (w90%) in cell recruitment.

Of great interest, these effects could be mimicked also

when peripheral lymphocytes were flown over the endo-

thelial monolayers, both in terms of pharmacological effect of

added hr-Gal-1 and physiological properties revealed when

endothelial Gal-1 levels were markedly reduced with siRNA

(Norling et al. 2008).

Collectively, these results are strongly suggestive that

endothelial Gal-1 is present on the membrane to mitigate

an overzealous recruitment of lymphocytes (Norling et al.

2008). Incidentally, this inhibitory effect is also evident in

static conditions, where decreased lymphocyte transmigration

was observed when endothelial Gal-1 was overexpressed in

response to prostate cancer cell-conditioned media (He &

Baum 2006). This effect was not associated with cell death,

and could be inhibited by antiserum to Gal-1. These findings

illustrate a potent inhibitory action for exogenous Gal-1 on

lymphocyte recruitment, an additional property for Gal-1

that may underscore its efficacy in models of immune-

mediated inflammation. Studies describing the actions of

administration of recombinant Gal-1 in vivo are outlined

in Table 2.
www.endocrinology-journals.org
Gal-1 and the in vivo immune response

The exact role of Gal-1 with regards to inflammatory and

immune functions in vivo is currently unclear as targeted

disruption of the Gal-1 gene in knockout mice produces

animals that develop normally and are viable and fertile.

The absence of major inflammatory phenotypic abnormal-

ities under physiological conditions suggests that other

proteins may potentially compensate for Gal-1 (Poirier &

Robertson 1993). Utilisation of Gal-1 null mice has proved to

be an important tool for assessing its function in immune

responses, and has provided further evidence that this protein

plays a key role in inflammation.

The functional relevance of endogenous Gal-1 was

recently demonstrated in a model of peritonitis, whereby a

30 min pre-treatment of anti-Gal-1 serum prior to admin-

istration of carrageenin augmented the neutrophil influx into

the peritoneum at 48 h (Gil et al. 2006a). It has also been

documented on the Functional Glycomics Consortium that

Gal-1 null mice display an increased neutrophil recruitment

into the inflamed peritoneum 72 h post-injection with

peptone (www.functionalglycomics.org/).

Using intravital microscopy of the mouse cremaster, an

increase in leukocyte adhesion and emigration in Gal-1 null

mice was observed following IL1B-induced inflammation

(Cooper et al. 2008). Moreover, recent unpublished data from

our laboratory visualising the PAF-inflamed cremaster

demonstrated enhanced leukocyte emigration in Gal-1 null

mice compared with controls during a 2 h time course,

indicating that the heightened leukocyte infiltration in these

null mice is not stimulus or tissue site specific. Short-term

homing assays further implicate Gal-1 as a negative regulator

of leukocyte recruitment during homeostatic and inflam-

matory conditions. Gal-1 null mice displayed a significant

increase in the proportion of labelled splenocytes within the

mesenteric lymph nodes under naive conditions. Under

inflammatory conditions, increased numbers of methylated

BSA-sensitised lymphocytes were recruited to the inflamed

paw in Gal-1null mice compared with their WT counter-

parts, as assessed 5 h post-challenge (Norling et al. 2008).

Altogether, we believe that endogenous Gal-1 acts as a break

signal in counteracting the extent of leukocyte trafficking

in the early stages of inflammation; its source and localisation

is the endothelium, but it is yet unclear whether these

effects result from a direct inhibition on the leukocyte or are

indirectly determined by a non-genomic alteration of the

phenotype of the endothelial cell.

Aside from its role in leukocyte recruitment, Gal-1 has

recently been demonstrated as an important factor for

angiogenesis. Current research has shown that knockdown

of endothelial Gal-1, using specific antisense oligonucleo-

tides, inhibits endothelial proliferation and migration

(Thijssen et al. 2006). Additionally, Gal-1 null mice display

impaired tumour progression due to decreased neovascular-

isation (Thijssen et al. 2006). In this respect, endothelial Gal-1

may be a novel way of targeting various cancers for
Journal of Endocrinology (2009) 201, 169–184
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Table 2 In vivo actions of exogenous galectins

Inflammogen Treatment Effect References

Disease model/species
Paw oedema rat Phospholipase A2 Pre-treatment of hr-Gal-1

(30 min; 5–160 ng) or
co-injection (40–80 ng)
with PLA2

Inhibited oedema. Reduced
infiltration of PMN and
mast cell degranulation.

Rabinovich
et al. (2000)

Peritonitis mouse IL1B Co-injection of hr-Gal-1
(0.3–3mg) with IL1B

Reduced PMN migration into
the peritoneum

La et al. (2003)

Colitis mouse Trinitrobenzene
sulphonic acid

Prophylactic: hr-Gal-1
(0.04–4 mg/kg) daily i.v.
for 7 days. Therapeutic:
hr-Gal-1 i.v. daily for
7 days, 2 weeks after
colitis induction

Prevented/reverted wasting
syndrome. Inhibition of
pro-inflammatory cytokine
production (TNF, IL1B,
IL12, IFNG).

Santucci
et al. (2003)

Hepatitis mouse Concavalin A Pre-treatment of hr-Gal-1
(30 min; 5–40 mg)

Prevents liver injury. Inhibits
T-cell infiltration. Inhibition
of TNF and IFNG pro-
duction

Santucci
et al. (2000)

Nephritis rat Rabbit anti-glomerular
BM serum

Gal-1 (1 mg/kg) i.p. on
alternate days for
2 weeks

Reduced crescent formation,
proliferation of glomerular
cells and macrophage
infiltration

Tsuchiyama
et al. (2000)

Autoimmune uveitis
mouse

Interphotoreceptor
retinoid-binding
protein

50 mg Gal-1 i.p. during
afferent (days 2,4,6) or
efferent (days 14,16,18)
phases

Prevents ocular pathology.
Decreases leukocyte
infiltration

Toscano
et al. (2006)

Pneumonia mouse S. Pneumoniae 5 mg of Gal-3 intratracheally
at time of infection

Decreased lung injury and
bacteraemia. Reduced
levels of IL6 and TNF in
BAL fluid.

Farnworth
et al. (2008)

Arthritis mouse Collagen type II Gal-9 (10 mg) i.v. daily from
second immunisation
at day 21

Increased number of apoptotic
cells in joint. Reduced
clinical score and cellular
infiltrate

Seki
et al. (2007)

Experimental allergic
encephalomyelitis
mouse

Myelin oligodendrocyte
glycoprotein

Stable Gal-9 (100 mg) i.p.
daily from day 3 to 7

Decreased antigen-specific
IFNG producing Th1 cells.
Reduced mortality and
disease severity

Zhu
et al. (2005)

Asthma mouse Dermatophagoides
farinae allergen

Stable Gal-9 (10–100 mg)
i.v. 24 h or 1 h before
and 8 h after intranasal
antigen challenge

Inhibited Th2 cell infiltration
into the lung. Reduced
airway hyperresponsiveness

Katoh
et al. (2007)

Nephritis rat Rabbit anti-glomerular
BM serum

Gal-9 (1 mg/kg) i.p.
on alternate days for
2 weeks

Induced apoptosis of CD8ACT
cells. Inhibited macrophage
infiltration and crescent
formation

Tsuchiyama
et al. (2000)

Skin transplant mouse Allogeneic skin grafts Gal-9 (100 mg) daily
post-transplant

Induced apoptosis of CD8ACT
cells. Prolonged skin graft
survival

Wang
et al. (2007)
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therapeutic applications (Thijssen et al. 2007). This report

supports the notion that endothelial Gal-1 should be

suppressed in tumours, whereas hr-Gal-1 or Gal-1 mimetics

should be targeted to the endothelium during chronic

inflammation to prevent over-reactive immune responses.

Recent studies have shown that Gal-1 null mice display an

attenuated response in a model of chronic hypoxia-induced

pulmonary hypertension, highlighting a likely role for Gal-1

in vascular remodelling (Case et al. 2007).

An intriguing critical role for Gal-1 has recently been

demonstrated in fetomaternal tolerance, with Gal-1 null mice
Journal of Endocrinology (2009) 201, 169–184
displaying increased foetal loss. Gal-1 was shown to induce

the development of tolerogenic dendritic cells early on in

successful pregnancies therefore promoting expansion of

IL10-producing regulatory T cells (Blois et al. 2007).

Relevantly, elevated placental Gal-1 levels have been

demonstrated in patients with severe pre-eclampsia, implicat-

ing a role for Gal-1 in fetomaternal tolerance in humans

(Than et al. 2008).

Following antigen-induced activation of murine T cells,

Gal-1 synthesis is upregulated and consequently inhibits

antigen-induced proliferation of naive and memory
www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 08/22/2022 09:37:00PM
via free access



Galectins and inflammation . L V NORLING and others 175
CD8ACT cells, thus acting as an autocrine negative feedback

loop on T-cell reactivity (Blaser et al. 1998). Further analysis

clarified that Gal-1 arrests cell cycle progression between the

S and G2/M phases, thereby switching off T-cell effector

functions (Allione et al. 1998). This mechanism may be in

place to ensure that the immune response mounted declines

appropriately after antigen is cleared. It is therefore likely that

the adaptive immune response would be overactive in Gal-1

null mice. Supporting this concept, a recent study indicates

that Gal-1 modulates the Th1 and Th17 but not the Th2 life

span, thus Gal-1 null mice exhibit ‘hyper’ Th1 and Th17

responses thereby making them more susceptible to an

experimental model of multiple sclerosis (Toscano et al. 2007).

Additionally, emerging data have illuminated an important

suppressive function of Gal-1 in regulatory T cells, thus acting

as a negative regulator of the adaptive immune response

(Garin et al. 2007). The phenotype of the Gal-1 null mice is

outlined in Table 1.
Actions of exogenous galectin-3

Gal-3 (LGALS3 antigen, IGE-binding protein, carbohydrate

binding protein-35, epsilon BP, HL-29, RL-29) was first

identified as an antigen expressed on the surface of murine

thioglycollate-elicited macrophages (Ho & Springer 1982).

In contrast to Gal-1, Gal-3 has been largely purported to have

a pro-inflammatory role with its increased expression in a host

of inflammatory/immune disorders underscoring its potential

roles in inflammation.

Increased levels of Gal-3 have been detected in: bronch-

oalveolar lavage (BAL) fluid in OVA-challenged mice with

macrophages being major cell type containing Gal-3 (Zuberi

et al. 2004), in prion-infected brain tissue (Mok et al. 2007), in

thymus following Trypanosoma cruzi infection (Silva-Monteiro

et al. 2007) as well as synovial tissue from RA patients

(Ohshima et al. 2003). Levels as high as 50 mg/ml have been

detected in the BAL fluid of mice after infection with

Streptococcus pneumoniae (Farnworth et al. 2008). In addition,

Gal-3 expression has been linked to increased malignancy in a

number of tumours (Inohara et al. 2008, Saussez et al. 2008)

and may be of use as a marker for determining stages of certain

tumours (Balasubramanian et al. 2008, Matsuda et al. 2008).

The role of Gal-3 in innate immunity is supported by studies

showing that neutrophil and macrophage recruitment is

attenuated in in vivo models of peritonitis conducted in mice

nullified for this lectin (Colnot et al. 1998b, Hsu et al. 2000).

This is further corroborated by in vitro studies in which

recombinant Gal-3 promotes neutrophil–endothelial

interactions (Sato et al. 2002).

During inflammation Gal-3 is released into the extracellular

space where it may activate inflammatory cells or contribute to

their retention by increasing cellular interactions with

extracellular matrix glycoproteins. In line with a pro-

inflammatory role, exogenous Gal-3 has been demonstrated

to activate numerous cell types involved in the inflammatory/

immune response; namely, inducing mast cell degranulation
www.endocrinology-journals.org
(Frigeri et al. 1993, Suzuki et al. 2008), IL1 and superoxide

production in monocytes (Jeng et al. 1994, Liu et al. 1995) and

superoxide and IL8 generation and L-selectin shedding in

neutrophils (Yamaoka et al. 1995, Nieminen et al. 2005,

Farnworth et al. 2008). Indication for a positive loop at the

level of the neutrophil has emerged: Gal-3 increases cellular

expression of CEACAM1 and CEACAM8, which then act as

receptors for transducing Gal-3-mediated activation of

NAD(P)H oxidase activity (Feuk-Lagerstedt et al. 1999,

Fernandez et al. 2005). Interestingly, primed neutrophils are

then capable of deactivating Gal-3 by causing its cleavage

mainly via the serine protease elastase (Nieminen et al. 2005).

As well as promoting cellular activation, exogenous Gal-3

also promotes cellular adhesion. Administration of hr-Gal-3

promotes adhesion of neutrophils to laminin in a carbo-

hydrate-dependent, calcium-independent manner, while in

the presence of divalent cations Gal-3 activates neutrophils

increasing their adhesion to other ligands such as fibronectin

(Kuwabara & Liu 1996). Gal-3 also promotes neutrophil

adhesion to endothelial cells in vitro and may play an important

role in beta-2 integrin-independent neutrophil extravasation

in vivo (Sato et al. 2002). These results, along with a decreased

cellular infiltrate observed in numerous in vivo models of

inflammation performed in Gal-3 null mice, provide evidence

for a role for this galectin in mediating leukocyte recruitment

during an inflammatory response (Colnot et al. 1998a,b,

Bernardes et al. 2006, Nieminen et al. 2008)

With regards to apoptosis, Gal-3 appears to function

differently in relation to its localisation, i.e. whether it is

inside or outside the cell. Intracellular Gal-3 would inhibit

apoptosis, which may then lead to persistence of blood-borne

cells at the sites of inflammation. Inhibition of apoptosis is

thought to be due to Gal-3 localising to the mitochondria,

preventing cytochrome c release (Moon et al. 2001, Yu et al.

2002). This protective effect of intracellular Gal-3 appears to

function in numerous cell types and in response to a wide range

of apoptosis-inducing agents. Overexpression of Gal-3 in

human leukaemic T cells conferred resistance to apoptosis

induced by anti-FASN antibody and staurosporine (Yang et al.

1996), while overexpression in breast carcinoma cells increased

resistance against cisplatin and free radical-induced apoptosis

(Akahani et al. 1997, Moon et al. 2001). Accordingly, cells that

lack intracellular Gal-3 are more susceptible to apoptosis as

shown by increased apoptosis of peritoneal macrophages from

Gal-3 null mice and increased UVB-induced apoptosis of

Gal-3 null keratinocytes (Saegusa et al. 2008), an effect thought

to be consequent to suppression of Erk phosphorylation and

enhancement of Akt activation.

Like Gal-1, exogenous Gal-3 induces phosphatidylserine

exposure and apoptosis of T cells (Fukumori et al. 2003,

Stillman et al. 2006, Stowell et al. 2008). Gal-1 and Gal-3 both

bind numerous receptors on T cells with some overlap,

although while CD7 has been linked to Gal-1-induced

apoptosis (Pace et al. 2000), Gal-3 does not bind this receptor.

It does however, interact with ITGB1, SPN, PTPRC and

TFRC, all of which have been linked – in various ways – to
Journal of Endocrinology (2009) 201, 169–184
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apoptosis. Stillman et al. (2006) found, however, that ITGB1

and SPN were not required for Gal-3-induced apoptosis,

while cells lacking PTPRC did not respond to Gal-3

application with apoptosis. TFRC also appears to play a

role with clustering of this receptor observed in all apoptotic

cells. Following infection with T. cruzi recombinant, Gal-3

induced increased levels of death in cortical immature

thymocytes while thymuses from Gal-3 null mice did not

show cortical depletion after parasite infection in vivo

(Silva-Monteiro et al. 2007). Treatment with hr-Gal-3

(R100 nM for 18–44 h) can induce apoptosis of mast cells

in a carbohydrate, RAGE and caspase-3 dependent manner

(Suzuki et al. 2008). The effect of Gal-3 on neutrophil

apoptosis is not fully defined with one report showing that

hr-Gal-3 enhances the apoptotic rate of this cell type

(Fernandez et al. 2005), and more recent studies have reported

that Gal-3, similar to Gal-1, induces phosphatidylserine

exposure on neutrophils without inducing apoptosis (Stowell

et al. 2008): in fact Farnworth et al. (2008) found that Gal-3

could delay neutrophil apoptosis. It is plausible that these

differences may be due to the concentration and treatment

duration of Gal-3 used in these assays, with low concen-

trations for a short pre-incubation period (0.4 mg/ml, 15 min)

enhancing apoptosis (Fernandez et al. 2005) and higher

concentrations for more prolonged incubation periods

(30 mg/ml, 18 h) delaying it (Farnworth et al. 2008).

In line with its effects on cellular activation and adhesion,

Gal-3 also promotes chemotaxis of monocytes in vivo and

macrophages in vitro (1 mM) (Sano et al. 2000) as well as

eosinophils in OVA-induced asthma (Zuberi et al. 2004).

One facet of inflammation where Gal-3 appears to have

beneficial effects is phagocytosis. Phagocytosis is necessary to

clear pathogens, foreign bodies and cellular debris, thus

allowing inflammation to resolve. Gal-3 has been found to

play a critical role in macrophage phagocytosis with Gal-3

null macrophages demonstrating decreased phagocytosis of

IgG-opsonised erythrocytes and thymocytes in vitro; more-

over, Gal-3 null mice display reduced phagocytosis of red

blood cells by kupffer cells in a model of haemolytic anaemia

(Sano et al. 2003). Treatment with hr-Gal-3 increases

phagocytosis of apoptotic neutrophils by monocyte-derived

macrophages (Karlsson et al. 2008), and this is in agreement

with the fact that Gal-3 null macrophages demonstrate

reduced phagocytosis of apoptotic neutrophils (Farnworth

et al. 2008). As well as increasing macrophage phagocytosis,

Gal-3 also enhances the phagocytic capabilities of neutrophils,

a fact that may in part account for the protective role of Gal-3

in infections such as S. pneumoniae (Farnworth et al. 2008).

The anti-inflammatory nature of Gal-1 is thought to

be due, at least in part, to its ability to skew the Th1/Th2

balance in favour of a Th2-type response. By contrast,

Gal-3 suppresses type-2-mediated inflammation by inhibiting

IL5 production by eosinophils and antigen-specific T-cell

lines, suggesting a potential role in allergic inflammation

(Cortegano et al. 1998). In line with this, gene therapy

experiments have shown that treatment of asthmatic rats with
Journal of Endocrinology (2009) 201, 169–184
a plasmid encoding Gal-3 improves the eosinophil count in

these animals and normalises airway hyper-responsiveness to

methacholine (Lopez et al. 2006). However, a previous study

in Gal-3 null mice suggested a pro-inflammatory role for

Gal-3 with increased levels of IFNG and decreased levels of

IL4 in OVA-challenged mice, which is indicative of a higher

Th1 response; these mice also had lower eosinophilic

infiltration and airway hyper-responsiveness (Zuberi et al.

2004). The differences between these two studies may result

from differing effects of the endogenous protein when

compared with Gal-3 overexpression or compensatory

mechanisms in the Gal-3 null mice by other members of

the galectin family. Gal-3 has also been shown to modulate

T-cell behaviour; inhibition of Gal-3 using antisense

technology blocks proliferation of TCR-stimulated T cells

( Joo et al. 2001). The strongest evidence has arisen from

mice deficient in mannosyl (alpha-1,6-)-glycoprotein beta-

1,6-N-acetyl-glucosaminyltransferase (Mgat5); these mice

show increased TCR activation, susceptibility to autoimmune

disease and an enhanced Th1 response, all attributable to

inefficient formation of multivalent lattices of Gal-3 and

N-glycans in the TCR complex (Demetriou et al. 2001).

One area of Gal-3 biology that could potentially be

exploited positively is during the resolution of inflammation.

Alternative activation of macrophages drives resolution

and occurs when macrophages are stimulated with the Th2

cytokines IL4 or IL13. Such activation has been implicated in

a number of pathologies including host response to parasitic

infections, asthma, wound repair and fibrosis in granuloma-

tous disease. Gal-3 appears to be required for alternative

activation of macrophages as siRNA depletion of Gal-3

blocks IL4-mediated alternative activation as measured

by arginase activation and alternative marker expression;

classical activation induced by IFNG/LPS was not affected

(MacKinnon et al. 2008). Furthermore, alternative activation

with IL4 and IL13 stimulates Gal-3 expression and release

while classical activation with IFNG/LPS inhibits Gal-3

expression. Studies describing the actions of administration of

recombinant Gal-3 in vivo are outlined in Table 2.
Galectin-3 and the in vivo immune response

Gal-3 null mice, like their Gal-1 null counterparts, develop

normally and are viable and fertile (Colnot et al. 1998a),

indeed Gal-1/Gal-3 double knockouts are also viable (Colnot

et al. 1998a). It has recently been found, however, that Gal-3

null mice spontaneously develop pathological changes in the

liver at 6 months of age typical of non-alcoholic fatty liver

disease. These changes may be due to the function of Gal-3

as a receptor for advanced glycation end products (AGEs),

with levels of AGE and the AGE receptor RAGE increased in

Gal-3 null mice (Nomoto et al. 2006). Numerous studies

have, however, now been carried out using these mice and

comparisons between wild-type and Gal-3 null mice have

supported the concept that this lectin plays a predominantly

pro-inflammatory role in vivo.
www.endocrinology-journals.org
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Several studies have shown that Gal-3 null mice exhibit a

reduced inflammatory response compared with wild-type

mice, thus emphasising the pro-inflammatory nature of this

protein. Lower numbers of neutrophils are recruited to the

peritoneum following injection of thioglycollate (Colnot

et al. 1998b) and to the lungs following S. pneumoniae

infection (Nieminen et al. 2008). Neutrophil recruitment in

S. pneumoniae is independent of b2 integrin whereas the b2

integrin-dependent recruitment in Escherichia Coli infection

was not affected by the lack of Gal-3 (Nieminen et al. 2008).

Increased survival of Gal-3 null mice has been observed

following intracerebral and peripheral scrapie infection (Mok

et al. 2007), while Gal-3 null mice have reduced granuloma

formation following infection with Schistosomiasis (Breuilh

et al. 2007), a disease normally characterised by a Th2-driven

response. Gal-3 null mice, however, mounted a biased Th1

response as demonstrated by increased IFNG and IgG2b

levels. Gal-3 appears to alter strength of immune response

triggered by DCs. Mature DCs from null mice induced

increased proliferation as well as enhanced production of

IFNG and Il4 by T cells. Infection of Gal-3 null mice with

another parasite, T. Gondii again resulted in decreased

inflammation and a higher Th1 response evident by increased

levels of IFNG and IL12 (Bernardes et al. 2006). Decreased

survival of null mice when the parasite was given an i.p.

injection was associated with a deficient influx of PMN and

macrophages into the peritoneal cavity.

Although Gal-3 appears to play a deleterious role in a host

of inflammatory and immune conditions, the opposite

appears to be the case in conditions such as diabetes where

advanced glycation end products (AGEs) play a role in disease

pathogenesis (Pugliese et al. 2001, Iacobini et al.2004). AGEs

are formed as a result of hyperglycaemia and are known to be

pathogenic mediators of most complications that result from

diabetes (Peppa et al. 2003). Gal-3 has been identified as an

AGE receptor (AGE-R3) (Vlassara et al. 1995) that binds

AGEs with high affinity leading to their internalisation and

degradation. Thus, the Gal-3–AGE R pathway is believed to

act as a protective mechanism toward AGE-induced injury

(Pugliese et al. 2001). In support of this, Gal-3 null mice

develop accelerated glomerulopathy in a model of streptozo-

tocin-induced diabetes with pronounced increases in circu-

lating and renal/glomerular AGE levels (Pugliese et al. 2001).

Gal-3 may also influence expression of other AGE-binding

proteins, this being supported by the observation that non-

diabetic Gal-3 null mice have reduced renal/glomerular levels

of AGE-R1 (DDOST) and MSR1 (implicated in AGE

removal) and increased AGE-R2 (PRKCSH) and RAGE

(AGER) (mediate cell activation). As a result, the cell’s ability

to remove AGEs may be compromised. Not all of the effects

of Gal-3 in diabetes occur as a result of its function as an AGER.

Canning et al. (2007) showed significantly less diabetes-

mediated inner blood-retinal barrier dysfunction in Gal-3

null mice than wild-type counterparts at 2 weeks, a time point

at which AGE levels are comparable with non-diabetic

controls, it was therefore suggested that Gal-3 may alter
www.endocrinology-journals.org
vascular cell function independently of AGE binding due to

its numerous pro-inflammatory actions. Suppression of

angiogenesis during diabetes is a recognised phenomenon.

Retinal ischaemia and neovascularisation were studied in a

murine model of oxygen-induced proliferative retinopathy in

wild-type and Gal-3 null mice after perfusion of preformed

AGEs. Ablation of Gal-3 abolished the AGE-mediated

increase in ischaemia and restored the neovascular response

to that seen in controls (Stitt et al. 2005). Independent of AGE

binding, Gal-3 has been shown to increase angiogenesis

(Nangia-Makker et al. 2000); therefore, it may only be anti-

angiogenic in a diabetic environment.

In contrast to its pro-inflammatory nature, Gal-3 null mice

are more susceptible to endotoxic shock than wild-type mice

with increased production of pro-inflammatory cytokines and

NO (Li et al. 2008). Gal-3 has been found to bind LPS of

numerous bacteria including Klebsiella pneumoniae, Salmonella

typhimurium and E. Coli (Mey et al. 1996). These interactions

are thought to occur via both the CRD and N-terminal

domain of Gal-3. Gal-3 null macrophages had elevated LPS-

induced signalling and cytokine generation compared with

wild-type cells that was inhibited by recombinant Gal-3,

while blocking Gal-3 with a neutralising Ab in wild-type cells

increased their production of cytokines in response to LPS.

By contrast, Gal-3 was found to favour salmonella survival

(Li et al. 2008). Gal-3 null mice developed an increased Th1

response in response to salmonella infection, which might

have contributed to its reduced replication in the Gal-3 null

mice. The phenotype of the Gal-3 knockout mice is outlined

in Table 1.

As well as binding LPS, Gal-3 also interacts with Candida

albicans through b-1,2 mannosides. Gal-3 was found to localise

at the level of phagocytic cups formed around yeasts and at the

periphery of ingested yeasts ( Jouault et al. 2006). The data

suggest that macrophages differentially sense C. albicans and

S. cerevisiae through a mechanism involving TLR2 and Gal-3,

which were shown to be associated in differentiated

macrophages following incubation with C. albicans.
Actions of exogenous galectin-9

Gal-9 (LGALS9) was originally identified as a potent

eosinophil chemoattractant produced and released by

antigen-stimulated T cells (Matsumoto et al. 1998). Further-

more, this lectin was also shown to act directly on eosinophils,

inducing aggregation, superoxide production and prolonging

their survival (Matsumoto et al. 2002). Yet, the role of Gal-9

in allergic inflammation has yet to be fully characterised.

There are some discrepancies regarding the relationship

between Gal-9 and asthma, since this galectin seemed not to

be involved in the pathology of airway hypersensitivity using

a guinea pig model (Yamamoto et al. 2007), while, in murine,

mite allergen-induced asthma Gal-9 was shown to reduce

airway hyper-responsiveness and lung inflammation, an effect

thought to be therapeutically linked to its ability to modulate

T-cell infiltration into the airway (Katoh et al. 2007).
Journal of Endocrinology (2009) 201, 169–184
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Gal-9 has been shown to be a potent activator of dendritic

cell maturation and hence an initiator of the adaptive

immune response. Comparative to LPS, Gal-9 caused an

upregulation of maturation markers and co-stimulatory

molecules on DC, and induced IL12 secretion in a dose-

dependent manner, eliciting the secretion of Th1 cytokines

by allogeneic CD4CT cells (Dai et al. 2005). Similarly to

Gal-1, Gal-9 is also known to induce apoptosis of

thymocytes (Wada et al. 1997) and peripheral T cells (Kashio

et al. 2003), implicating a role in both T-cell maturation and

in the modulation of T-cell-mediated immune reactions.

However, these two galectins require different ligands

and utilise distinct intracellular cell death pathways to

induce apoptosis, due to their distinct structural features

(Bi et al. 2008).

Gal-9-mediated apoptosis has been demonstrated in a

nephrotoxic serum nephritis animal model (Tsuchiyama

et al. 2000) and a model of diabetic nephropathy (Baba et al.

2005), producing efficacious outcomes in both models.

Daily administration of Gal-9 improved survival of

allogeneic skin grafts in mice, which was proposed to be

due to apoptosis of host cytotoxic CD8ACT cells (Wang

et al. 2007). A beneficial effect of Gal-9-induced apoptosis

was also demonstrated in a model of collagen-induced

arthritis, suppressing pannus formation, bone erosion and

inflammatory infiltrate (Seki et al. 2007). Indeed, apoptotic

cells were identified within RA synovial tissue implanted

into SCID mice following Gal-9 treatment. Gal-9 was

shown to preferentially induce apoptosis of fibroblast-like

synoviocytes isolated from RA compared with OA patients,

indicating a potential mechanism for the suppression of

RA (Seki et al. 2007).

A novel binding partner for Gal-9 was identified in 2005 by

Zhu and colleagues; T-cell immunoglobulin and mucin-

domain-containing protein-3 (HAVCR2; previously known

as TIM3), shown to be expressed on terminally differentiated

Th1 cells (Zhu et al. 2005). In a HAVCR2-dependent

manner, Gal-9 triggered calcium entry, aggregation and

apoptosis of Th1 cells. Pathological relevance was demon-

strated with exogenous administration of Gal-9, which

decreased disease severity and mortality in an experimental

allergic encephalitis model (Zhu et al. 2005). Importantly,

Gal-9 is involved in a negative feedback loop, whereby IFNG

that is known to induce Gal-9 (Asakura et al. 2002, Imaizumi

et al. 2002) consequently suppresses Th1 cells, thus preventing

prolonged inflammation and allowing efficient resolution. An

exciting recent report has revealed that Gal-9 specifically

induces the formation of regulatory T cells, while simul-

taneously repressing the generation of pro-inflammatory

Th17 cells in a model of collagen-induced arthritis (Seki

et al. 2008). Treatment with Gal-9 significantly decreased the

formation of pro-inflammatory IL17, IL12 and IFNG within

the joint, and lowered the percentage of peripheral blood

CD4C HAVCR2CT cells. Studies describing the actions

of administration of recombinant Gal-9 in vivo are outlined

in Table 2.
Journal of Endocrinology (2009) 201, 169–184
Galectin-9 and the in vivo immune response

Only a limited number of studies have been performed

utilising the Gal-9 null mouse to date. Strikingly, Gal-9-

deficient mice have an enhanced incidence of developing

collagen-induced arthritis; most notably, this phenotype is

evident in a C57BL/6J strain, which is normally resistant

to CIA. These null mice have increased numbers of

HAVCR2CCD4CT cells compared with wild-type mice,

substantiating the role of Gal-9 in the modulation of Havcr2-

positive cells in vivo (Seki et al. 2008). Functionality of Gal-9

during infection has recently been highlighted in LPS-

induced inflammation. Mice treated with Gal-9 had greatly

improved survival rates, whereas Gal-9 null mice were prone

to increased mortality and died within 72 h of LPS induction.

The proposed target cell for Gal-9-mediated suppression in

this model is PMN, because neutropenic mice were no longer

protected from the beneficial effects of Gal-9 (Tsuboi et al.

2007). The phenotype of the Gal-9 null mice is outlined

in Table 1.
Targets (receptors) for Gal-1, Gal-3 and Gal-9

The extracellular matrix (ECM) consists of numerous

components including collagen, glycosaminoglycans, lami-

nin, fibronectin and many other glycoproteins. Its classical

function is to provide structural support for tissues, but it is

also shown to play a more active role in regulating the

behaviour of cells that contact it (Streuli 1999). Two main

ways in which this is achieved is by direct cell–ECM

interactions and by its association with growth factors

(Taipale & Keski-Oja 1997). Several ECM components

have been identified as ligands for Gal-1 and Gal-3,

including laminin and fibronectin (Zhou & Cummings

1993, Ozeki et al. 1995, Kuwabara & Liu 1996). Association

of Gal-1 with ECM proteins causes a direct reduction in

leukocyte adhesion, as well as inhibiting T-cell migration

through the ECM (He & Baum 2006), whereas Gal-3

localisation with ECM enhances leukocyte adhesion. Gal-9

has also been shown to reduce tumour cell adhesion by

preventing binding to ligands on the endothelium and ECM

(Nobumoto et al. 2008).

Other acceptors/ligands for galectins include membrane

proteins such as integrins, lysosome-associated membrane

proteins (LAMPs) and even certain gangliosides. The Gal-1

ligand ganglioside GM1 has recently been identified as

important for endocytosis of Gal-1 in Jurkat cells, a process

mediated by clathrin and lipid raft-dependent mechanisms,

although the reason for internalisation remains to be

established (Fajka-Boja et al. 2008). Gal-1 binds to a number

of leukocyte cell surface molecules including CD4, CD7,

SPN and PTPRC (Perillo et al. 1995, Hernandez & Baum

2002, Stillman et al. 2006). However, the precise carbohydrate

structures on these macromolecules, which are recognised by

galectins, are not well defined. Studies utilising biotinylated
www.endocrinology-journals.org
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galectins have illustrated binding partners for Gal-1 and Gal-3

on the lymphocyte. Pre-incubation of lymphocytes with

Gal-3 results in a partial displacement in binding of Gal-1

(Stillman et al. 2006), suggesting some binding sites are Gal-1

specific, or alternatively that Gal-1 has a higher affinity

for these sites than Gal-3. Indeed, it is well known that

the galectins display differing oligosaccharide-binding speci-

ficity due to the subtle differences in their CRDs (Hirabayashi

et al. 2002).

The study of He & Baum (2006) illustrated that Gal-1

clusters SPN on the T-cell surface, which is thought to retard

SPN redistribution to the trailing edge during transmigration

and hence inhibit this process. During lymphocyte–

endothelial interactions, lymphocytes become polarised due

to chemokine activation and form a cellular projection at the

rear referred to as a uropod where certain proteins are

relocated including SPN, CD44 and PTPRC (del Pozo et al.

1997). It is therefore intriguing to hypothesise that due to

Gal-1 preventing the relocalisation of these bulky glyco-

proteins to the uropod, this could result in steric hindrance to

molecules such as LFA1 from interacting with endothelial

adhesion molecules (Manjunath et al. 1995).

It is also possible, however, that Gal-1 could signal through

one/or both of these receptors to decrease lymphocyte

recruitment. Of particular interest, a parallel was found

between upregulated PTPRC expression on lymphocytes

that have rolled over the activated endothelium and the

degree of binding of biotGal-1, suggesting that the two

events are closely interlinked (our unpublished observations).

This raises important questions about the downstream

signalling events transmitted by Gal-1 binding. PTPRC is

the prototype tyrosine phosphatase expressed on T cells, and

regulates the activity of p56Lck (LCK) kinase by depho-

sphorylating the negative regulatory tyrosine residue (Y505).

PTPRC activity itself can be regulated through autoinhibi-

tion by dimerisation (Mustelin et al. 2005). Reports indicating

that binding of Gal-1 to PTPRC causes clustering and a

decrease in its intrinsic protein tyrosine phosphatase (PTP)

activity (Walzel et al. 1999, Fouillit et al. 2000, Amano et al.

2003) suggest that Gal-1 would function to decrease LCK

activity. Indeed, pre-treatment of lymphocytes with an LCK

kinase inhibitor mimicked the effects of exogenous hr-Gal-1

in inhibiting lymphocyte recruitment within the flow

chamber. Combining the two treatments of hr-Gal-1 and

the LCK kinase inhibitor were not additive, suggesting

sharing of the same or similar pathway(s). These inhibitor

studies suggest that Gal-1 acts on PTPRC to possibly cause

inhibition of the Src kinase p56Lck, thereby bringing about its

inhibitory effect on lymphocyte adhesion. It is also possible to

hypothesise that Gal-1 would bind to another receptor, and

then activate a signalling cascade that would impact on

PTPRC activity. Notably, the Src kinase p56Lck is a key

determinant for a high-affinity state of VLA4 on circulating

lymphocytes, allowing rapid response to chemokines on the

endothelium (Feigelson et al. 2001).
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An opposing mechanism has been proposed for Gal-3,

which is thought to cause redistribution of the large MUC1

antigen on cancer cells, thus allowing topological accessibility

of ligands on these cancer cells to interact with endothelial

counter receptors, enhancing adhesion (Yu et al. 2007).

Further evidence for this mechanism was demonstrated

by pre-treatment of HUVEC with anti-E-selectin or

anti-CD44H antibodies, which caused a reduction in

Gal-3-mediated cell adhesion (Yu et al. 2007).

Of interest, studies by Katoh and colleagues have

demonstrated efficacy of Gal-9 in a model of mite allergen-

induced asthma, an effect therapeutically linked to its ability

to modulate CD44-mediated functions. Gal-9, but not other

members of the galectin family, has been shown to directly

inhibit CD44 from binding to its ligand hyaluronan, in a

carbohydrate-dependent fashion (Katoh et al. 2007). CD44 is

normally expressed in an inactive form on naive lymphocytes,

which lacks ligand-binding activity, and can be converted to

an active form upon lymphocyte activation (English et al.

1998). This receptor on activated lymphocytes mediates

rolling on hyaluronate, and functions as an additional

mechanism to the canonical selectin-mediated rolling during

inflammation. (DeGrendele et al.1996, 1997).

Galectin research to date has largely focused on the role of

these proteins in animal models of disease such as collagen-

induced arthritis, EAE, diabetes and infection by various

parasitic organisms. To date, clinical data are restricted to the

expression of these proteins in human tissue biopsy samples

with increased expression of Gal-3 and Gal-9 detected in

synovium taken from rheumatoid arthritis patients compared

with the less inflamed osteoarthritic synovium (Ohshima et al.

2003, Seki et al. 2007), while Gal-1 expression is down-

regulated in synovium from patients with juvenile idiopathic

arthritis (Harjacek et al. 2001). Expressions of Gal-1 and Gal-9

have also been observed in numerous tumours and may be

linked to malignancy. Due to the immune modulatory

properties of Gal-1, Gal-3 and Gal-9, it is likely that all three

have some role in malignancy (for an extensive review on

galectins in tumour progression, see Liu & Rabinovich 2005).
From patho-physiology to pharmacology, oppor-
tunities for new anti-inflammatory therapeutics

As outlined in this review, overwhelming experimental

evidence demonstrates that galectins play key roles in

immune, infectious and inflammatory reactions, by providing

stimulatory or inhibitory signals. The temporal and spatial

expression of Gal-1, -3 and -9 during inflammatory episodes

is likely to be in place to co-ordinate and finely regulate the

host response. The individual galectins discussed here have

distinct biological actions due to their unique structural

features, and hence their binding preferences for different

ligands. The same galectin may also display differing effects

depending on cellular compartmentalisation, concentration

in the local milieu and differentiation status of the target cell.
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Indeed, the regulated expression of glycosyltransferases leads

to creation (or masking) of different galectins ligands during

differentiation and activation of T cells, accordingly Gal-1, -3

and -9 act on different subsets demonstrating lineage-specific

recognition and bioactions. It is plausible that cell-to-cell

crosstalk might lead to the identification of a galectin network in

inflammation such that, for instance, Gal-9 expression might

be under the control of other members of the galectin family.

In any case, deciphering how specific galectins exert their

biological effects should provide insights into how they can be

exploited for therapeutic interventions, and potentially have

major clinical implications for the treatment of immune and

inflammatory conditions.
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