
NBER WORKING PAPER SERIES

ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS

Zhiguo He
Konstantin Milbradt

Working Paper 18408
http://www.nber.org/papers/w18408

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2012

For helpful comments, we thank Nittai Bergman (MIT), Bruce Carlin (UCLA), Hui Chen (MIT), Richard
Green (CMU), Nicolae Garleanu (UC Berkeley), Barney Hartman-Glaser (Duke), Burton Hollifield
(CMU), Gustavo Manso (UC Berkeley), Holger Mueller (NYU), and seminar participants of the MIT
Sloan lunchtime workshop, NYU lunchtime workshop, Columbia GSB lunchtime workshop, NBER
Microstructure meeting, ASU winter conference, Duke-UNC asset pricing conference, Texas Finance
Festival, UNC, Boston University, University of Colorado at Boulder, INSEAD, Imperial College
London, UCLA Anderson, WFA 2012, SED 2012, NBER SI Asset Pricing meeting, and Gerzensee
ESSFM 2012. We are especially grateful to Rui Cui for excellent research assistance. Zhiguo He acknowledges
financial support from the Center for Research in Security Prices at the University of Chicago Booth
School of Business. The views expressed herein are those of the authors and do not necessarily reflect
the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2012 by Zhiguo He and Konstantin Milbradt. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



Endogenous Liquidity and Defaultable Bonds
Zhiguo He and Konstantin Milbradt
NBER Working Paper No. 18408
September 2012
JEL No. E44,G01,G12

ABSTRACT

This paper studies the interaction between fundamental and liquidity for defaultable corporate bonds
that are traded in an over-the-counter secondary market with search frictions. Bargaining with dealers
determines a bond's endogenous liquidity, which depends on both the firm fundamental and the time-to-maturity
of the bond. Corporate default decisions interact with the endogenous secondary market liquidity via
the rollover channel. A default-liquidity loop arises: Earlier endogenous default worsens a bond's secondary
market liquidity, which amplifies equity holders' rollover losses, which in turn leads to earlier endogenous
default. Besides characterizing in closed form the full inter-dependence between liquidity premium
and default premium for credit spreads, we also study the optimal maturity implied by the model based
on the tradeoff between liquidity provision and inefficient default.

Zhiguo He
University of Chicago
Booth School of Business
5807 S. Woodlawn Avenue
Chicago, IL 60637
and NBER
zhiguo.he@chicagobooth.edu

Konstantin Milbradt
Sloan School of Management
MIT
100 Main Street  E62-633
Cambridge, MA 02142
milbradt@mit.edu



1 Introduction

The recent 2007-2008 financial crisis and the ongoing sovereign crisis have vividly demonstrated the

intricate interaction between asset fundamental and asset liquidity in financial markets. Liquid-

ity tends to dry up for assets with deteriorating fundamentals when solvency becomes a concern,

reflected by soaring liquidity premia and/or prohibitive transaction costs in trading. In the mean

time, asset fundamentals worsen further due to endogenous reactions (say, default) of market par-

ticipants in response to worsening liquidity in financial markets.

The fundamental-liquidity spiral is at the center of the academic policy research on financial

crises, and this paper aims to deliver such a feedback loop in the context of corporate bond markets.1

It has been well documented that secondary corporate bond markets – which are mainly over-the-

counter (OTC) markets – are much less liquid than equity markets.2 On the one hand, Edwards,

Harris, and Piwowar (2007) and Bao, Pan, and Wang (2011) document a strong empirical pattern

that the liquidity for corporate bonds (measured as the transaction cost) deteriorates dramatically

for bonds with lower fundamental, i.e., bonds that are issued by firms closer to default (reflected

by higher credit derivative swaps, CDS). On the other hand, the recent financial crisis of 2007-2008

illustrates that the deterioration of secondary market liquidity, through adversely affecting the

refinancing operations of firms, can exacerbate the incentives of equity holders to default (He and

Xiong (2012b), hereafter HX12). Taken together, these two observations imply a positive feedback

loop between the secondary market liquidity and asset fundamentals for corporate bonds.

To deliver such an default-liquidity spiral effect, we adopt two standard ingredients from the

existing literature. First, we model the endogenous liquidity in the secondary corporate bond

market as a search-based over-the-counter (OTC) market á la Duffie, Garlenau, and Pedersen
1Corporate bond markets, for both financial and non-financial firms, make up a large part of the U.S. financial

system. According to flow of funds, the values of corporate bonds reaches about 4.7 trillion in the first quarter of
2010, which consists of about one third of total liabilities of U.S. corporate businesses.

2For instance, Edwards, Harris, and Piwowar (2007) study the U.S. OTC secondary trades in corporate bonds and
estimate the transaction cost to be around 150 bps, and Bao, Pan, and Wang (2011) find an even larger number. The
fact that equity markets–while being presumably subject to more asymmetric information problems–are more liquid
imply the importance of search friction in corporate bond markets. Other empirical papers that investigate secondary
bond market liquidity are Hong and Warga (2000), Schultz (2001), Green, Hollifield, and Schurhoff (2007a,b); Harris
and Piwowar (2006).
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(2005). Bond investors who are hit by liquidity shocks prefer early payments, and with a certain

matching technology they meet and trade with an intermediary dealer at an endogenous bid-ask

spread. A novel feature is that the endogenous liquidity for the secondary bond market depends

on both the firm’s distance-to-default and the bond’s time-to-maturity.

The second important ingredient for the feedback between fundamental and liquidity is the

endogenous default decision by equity holders. This mechanism is borrowed from the standard

Leland-type corporate finance structural models, i.e., Leland (1994) and Leland and Toft (1996)

(hereafter LT96). More specifically, a firm rolls over (refinances) maturing bonds by issuing new

bonds of the same face value. When firm fundamentals deteriorate, equity holders will face heavier

rollover losses due to falling prices of newly issued bonds. Equity holders default optimally when

absorbing further losses is unprofitable, at which point bond investors with defaulted claims step

in to recover part of the firm value subject to dead-weight bankruptcy cost.

The secondary market liquidity of defaulted bonds, i.e., bonds of firms that have defaulted,

is important in deriving the endogenous bond liquidity before the firm defaults. We model the

(il)liquidity of defaulted bonds based on the fact that bankruptcy leads to a delay in the payout

of any cash due to lengthy court proceedings, as for example in the Lehman Brothers bankruptcy

(see footnote 15). This serves as one of the boundary conditions needed to solve the system of

partial differential equations (PDEs) that describes the bond valuations.3 We solve for debt and

equity valuation, the endogenous default boundary, and the endogenous liquidity in closed form in

Section 3.

Consistent with empirical findings in Edwards, Harris, and Piwowar (2007) and Bao, Pan, and

Wang (2011), we show in Section 4.2 that the endogenous bid-ask spread is decreasing with the

firm’s distance-to-default, holding the time-to-maturity constant; and decreasing in the bond’s

time-to-maturity, holding the distance-to-default constant. Moreover, our model produces a novel

testable empirical prediction that the slope with respect to time-to-maturity of the bid-ask spread
3This arises because bond valuations depend on firm fundamental, the bond’s time-to-maturity, and the liquidity

state of bond holders.
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will be greater for bonds with higher distance-to-default. Intuitively, as the stated maturity of

corporate bonds plays no role in bankruptcy procedures, the difference between bonds with different

time-to-maturities vanishes when firms are close to default.

The derived endogenous liquidity allows us to study the positive feedback loop between liquidity

and default. Imagine an exogenous negative cash flow shock that pushes the firm closer to default,

lowering the bond’s fundamental value. More importantly, because bonds of defaulted firms suffer

greater illiquidity, the outside option of bondholders when bargaining with the dealer declines.

This worsens the secondary market liquidity and lowers the bond prices even further. The wider

refinancing gap between the newly issued bond prices and promised principals gives rise to heavier

rollover losses, which causes equity holders to default earlier and thus pushes the firm even closer

to default. As a result, lower distance-to-default reduces the fundamental value of the corporate

bonds even further, and so forth. The outcome of these spirals is a unique fixed point bankruptcy

threshold at which equity holders default.

The feedback loop between fundamental and liquidity is important in understanding the endoge-

nous link between liquidity and solvency in modern financial markets. More specifically, our paper

characterizes a full inter-dependence between liquidity and default components in the credit spread

for corporate bonds. This contrasts with the widely-used reduced-form approach in the empirical re-

search, where it is common to decompose firms’ credit spreads into independent liquidity-premium

and default-premium components (e.g., Longstaff, Mithal, and Neis (2005), Beber, Brandt, and

Kavajecz (2009), and Schwarz (2010)). Our fully solved structural model calls for more structural

approaches in future studies on the impact of liquidity factors upon the credit spread of corporate

bonds; indeed, our ongoing project suggests that our positive spiral may amplify small liquidity

frictions into quantitatively significant liquidity and default premia.

Our paper belongs to the literature on the role of secondary market trading frictions in structural

models of corporate finance (Black and Cox (1976), Leland (1994) and LT96). Ericsson and Renault

(2006) analyze the interaction between secondary liquidity and the bankruptcy-renegotiation in a

LT96 framework. HX12 take the simplified secondary market friction introduced in the classic
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article of Amihud and Mendelson (1986), i.e., bond investors hit by liquidity shocks are forced sell

their holdings immediately at an exogenous and constant proportional transaction cost. Because in

HX12 the bond market liquidity is modeled in an exogenous way, that paper can only speak to the

one-way economic channel from exogenous liquidity to default. In contrast, our paper endogenizes

the secondary market liquidity by micro-founding the bond trading in a search-based secondary

market, and derives the equilibrium liquidity jointly with equilibrium asset prices.4

We investigate the model performance for BB rated corporate bonds, and show that the pos-

itive feedback mechanism between fundamental and liquidity can be quantitatively important for

structural models with credit risk. In our model with the full positive spiral between liquidity and

default, the credit spread is calibrated to 320 bps to roughly match the observed credit spread of a

BB rated bond. As one benchmark, in LT96 model where the secondary corporate bond markets

are perfectly liquid, the implied credit spread is only about 181 bps. This implies that incorpo-

rating illiquidity of corporate bonds can be important in explaining about a half of the observed

credit spread. As more stringent benchmark, the HX12 model with exogenous and constant bond

illiquidity produces a credit spread of about 288 bps. Therefore, our calibration suggests that the

positive spiral between liquidity and default (which only exists in our model, not in HX12) can

help understand about (320− 288)/320 = 10% of the observed credit spread.

Our paper also makes a contribution to the search based asset-pricing literature, as represented

by Duffie, Garlenau, and Pedersen (2005, 2007); Weill (2007); Lagos and Rocheteau (2007, 2009);

Biais and Weill (2009); Feldhutter (2011). To our knowledge, this literature with concentration

on OTC markets has thus far focused on the determinants of contact intensities and behavior of

intermediaries, while eschewing time-varying asset fundamentals and asset maturities. Undoubt-
4Another possibility to micro-found secondary market liquidity is to assume some adverse selection with regard

to the bankruptcy recovery value, a path we do not pursue in this model due to the difficulties inherent in tracking
persistent private information. Well-known endogenous market illiquidity models based on private information are
Kyle (1985), Glosten and Milgrom (1985), and Back and Baruch (2004). Besides the advantage of being able to be
integrated seamlessly into the dynamic firm setting in LT96, the search based framework is suitable for the secondary
market for corporate bonds, especially considering the fact that equity markets have much higher liquidity while being
subject to more severe asymmetric information problems. For adverse selection in search markets, see Lauermann and
Wolinsky (2011) and Guerrieri, Shimer, and Wright (2010) (in directed search, rather than random as we assumed
here).
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edly, asset-specific dynamics are important for the corporate bonds market, and we fill this gap by

incorporating the firm’s distance-to-default and the bond’s time-to-maturity in deriving the asset

(bond) valuations.5 Moreover, our paper demonstrates that, via the rollover channel, the endoge-

nous search-based secondary market liquidity can have a significant impact on the firms’ behavior

on the real side.

Positive feedback is an active research topic in different areas. For instance, strategic comple-

mentarity naturally gives rise to positive feedback effect in the global games literature (Morris and

Shin 2009), and a similar effect emerges in He and Xiong (2012a) who study dynamic coordinations

among creditors whose debt contracts mature at different times. Our paper is more related to

the literature that emphasizes the interaction between firms and financial markets. For example,

Goldstein, Ozdenoren, and Yuan (2011) show that market prices can feedback to firm’s investment

decisions through the information channel; Brunnermeier and Pedersen (2009) illustrate the posi-

tive feedback loop between funding liquidity and market liquidity; Cheng and Milbradt (2012) show

how managerial risk-shifting feeds back on bondholders decision to run, which in turn feeds back

on managerial incentives; and Manso (2011) points out that credit ratings affect a firm’s default

decision, which feeds back into the rating decision.

Our paper is also related to the literature of debt maturity structure (Diamond, 1993, Leland,

1998, etc). For the use of short-term debt with a higher rollover frequency, there exists a trade-off

between better liquidity provision and earlier inefficient default. Regarding the liquidity provision

of short-term debt, bond investors hit by liquidity shocks can either sell to dealers or sit out shocks

by waiting to receive the face value when the bond matures. Shorter maturity improves upon

the waiting option, resulting in a lower rent extracted by dealers and thus a greater secondary

market liquidity. On the other hand, equity holders are absorbing rollover gains/losses ex post. As
5The existing literature often assumes infinite maturity and constant asset payoffs; for instance, focusing on a very

different market, Vayanos and Weill (2008) use a search framework to explain the difference between off-the-run and
on-the-run treasury yields. As far as we know, the only paper with deterministic time dynamics in a search framework
is the contemporaneous Afonso and Lagos (2011), which introduces deterministic time dynamics via an end-of-day
trading close in the federal funds market. More importantly, endogenous default with stochastic fundamental is one
key building block for our paper. Because corporate bond payoffs are highly nonlinear in firm fundamentals, our
closed-form solution with stochastic fundamentals is nontrivial.
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shown in LT96 and emphasized in HX12, shorter-term debt with a higher rollover frequency leads

to heavier rollover losses in bad times, which pushes equity holders to default earlier and thus to

incur greater dead-weight bankruptcy costs. This tradeoff allows us to endogenize the firm’s initial

choice of debt maturity, and unlike traditional capital structure models an optimal finite maturity

structure arises.

The paper is organized as follows. Section 2 lays out the model, and Section 3 solves the model

in closed-form. Section 4 illustrates the positive feedback loop between fundamental and liquidity,

and Section 5 provides extensions and discussions. Section 6 concludes. All proofs can be found in

the Appendix.

2 The Model

2.1 Firm Cash Flows and Debt Maturity Structure

We consider a continuous-time model where a firm has assets-in-place that generate (after-tax)

cash flows at a rate of δt > 0, where {δt : 0 ≤ t <∞} follows a geometric Brownian motion under

the risk-neutral probability measure:

dδt
δt

= µdt+ σdZt, (1)

where µ is the constant growth rate of cash flow rate, σv is the constant asset volatility, and {Zt :

0 ≤ t <∞} is a standard Brownian motion, representing random shocks to the firm fundamental.

We assume the risk-free rate r to be constant in this economy.

We follow LT96 in assuming that the firm maintains a stationary debt structure. At each

moment in time, the firm has a continuum of bonds outstanding with an aggregate principal of p

and an aggregate coupon payment of c, where p and c are constants that we take as exogenously

given. We normalize the measure of bonds to 1, so that each bond has a principal face value of p

and a coupon flow payment of c. All bonds have an initial maturity T but differ in their current
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time-to-maturity τ ∈ [0, T ]. Expirations of the bonds are uniformly spread out across time;6 that

is, during a time interval (t, t + dt), a fraction 1
T dt of the bonds matures and needs to be rolled

over. Thus, 1
T is the firm’s rollover frequency on its debt. Denote by D(δ, τ) the value of one unit

of bond, which depends on firm fundamental δ and its time-to-maturity τ .

Following the LT96 framework, we assume that the firm commits to a stationary debt structure

denoted (c, p, T ). In other words, when a bond matures, the firm will replace it by issuing a new

bond with identical (initial) maturity T , principal value p, and coupon rate c, in the primary market

(to be modeled shortly). This simple stationary debt maturity structure gives us a convenient

dynamic setting to analyze the interaction between liquidity and default, and we believe the general

economic mechanism identified in this paper is robust to this assumption.

In the main analysis we take the firm’s debt maturity T as given; Section 5.1 discusses the

optimal ex-ante choice of debt maturity T ∗ that maximizes firm value.7

2.2 Secondary Bond Market and Search-Based Liquidity

As in Duffie, Garlenau, and Pedersen (2005), individual bond investors are subject to idiosyncratic

liquidity shocks, and once hit by shocks they need to search for market-makers/dealers to trade.

More specifically, at any time with intensity ξ an individual bond holder is hit by an idiosyncratic

liquidity shock. We model this sudden need for liquidity as an upward jump in the discount rate

from the common interest rate r to a higher level r > r.8 For simplicity, this higher discount rate

persists until either the agent manages to sell his debt-holdings, or the face value p is paid out

when the debt matures. After either event, the investor exits the market forever.9 It is important

to note that this individual liquidity shock is uninsurable and thus results in an incomplete market

and type dependent valuations as explained below.
6This staggered debt maturity structure is consistent with recent empirical findings (Choi, Hackbarth, and Zechner,

2012).
7One could also endogenize the firm initial leverage (c, p) based on the trade-off between tax benefit and bankruptcy

cost by following LT96. We leave this exercise for future research.
8A constant holding cost per unit of time once in the liquidity shocked state (as in Duffie, Garlenau, and Pedersen

(2005)) will deliver similar results.
9This assumption is for easier exposition, and can easily be relaxed as shown in the Appendix.
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We further assume an infinite mass of non-liquidity-shocked H type buyers (i.e., high valuation

agent) on the sidelines to simplify the calculations. Lastly, we simply assume that each bond

investor only holds one unit of bond, and indicate the investor who has been hit by a liquidity

shock by L (i.e., liquidity state or low valuation agent).

In practice, secondary corporate bond markets are less liquid than equity or primary debt

markets. Thus, we assume that the secondary debt markets are subject to the following trading

friction. An L bond investor who wants to sell his debt-holdings has to wait an exponential time

with intensity λ to meet a dealer. When they meet, bargaining occurs over the economic surplus

generated. We follow Duffie, Garlenau, and Pedersen (2007) and assume Nash-bargaining weights

β of the investor and 1− β of the dealer to model this bargaining.

The illiquidity of secondary bond markets give rise to wedges in bond valuations for different

investor types. Define DH (δ, τ) and DL (δ, τ) to be the valuations of debt of the high (or normal)

type and the low (or liquidity) type, respectively. Suppose that a contact between a type L investor

and a dealer occurs. We assume that the dealer faces a competitive inter-dealer market with a

continuum of dealers, and at any time they can (collectively) contact H type investors who are

competitive as well. Thus, the particular dealer in question can turn around and instantaneously

sell directly (or through another dealer) to H type investors at a price of DH (δ, τ), which implies

that the surplus from trade is

S (δ, τ) ≡ DH (δ, τ)−DL (δ, τ) .

The transaction price at which L types sell to the dealer, X (δ, τ), thus implements the following

splits of the surplus according to the bargaining weights,

DH (δ, τ)−X (δ, τ) = (1− β)S (δ, τ)

X (δ, τ)−DL (δ, τ) = β · S (δ, τ) , (2)
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so that

X (δ, τ) = β · S (δ, τ)︸ ︷︷ ︸
appropriated surplus

+ βDL (δ, τ)︸ ︷︷ ︸
outside option

. (3)

Relating to the micro-structure literature, in our model, the ask price at which dealers sell to

H type investors is simply their valuation DH , while the bid price at which L type investors sell

their bond holdings to dealers is X. This implies that DH − X = (1− β) (DH −DL) is also the

(dollar) bid-ask spread. Thus, H type investors are indifferent between buying and not buying the

bond, whereas L type investors strictly prefer selling the bond when they have the opportunity for

any β > 0.

The endogenous transaction cost (1− β) (DH −DL) captures the liquidity of the secondary

market for corporate bonds. Later we will calculate the percentage bid-ask spread as the dollar

spread divided by the mid point of transaction prices (bid price X and ask price DH). In a preview

of the solution, by the dynamic nature of the model, the difference at issuance for a say AAA bond,

DH − DL, will be determined by the probability that the firm defaults before the bond matures

interacted with the wedge that prevails at bankruptcy, and the probability that the bond matures

before the firm defaults interacted with the necessarily zero wedge at maturity between DH and

DL.

2.3 Primary Bond Market and Debt Rollover

As mentioned, at any time the firm replaces the maturing bonds with newly issued ones in the

so-called primary market, where the firm hires a dealer who can place the new debt to H type

investors. As dealers are competitive in the primary market, the firm receives the full bond value

of the high type DH .

As a crucial part of our feedback mechanism, the H type incorporates in his bond valuation DH

the possibility that he will be hit by a liquidity shock in the future and thus has to use the illiquid

secondary market to sell the bond. In other words, due to either fluctuating firm fundamental or

changing secondary market illiquidity, the newly issued bond price DH might be higher or lower

9



than the required principal repayments to the maturing bonds. Equity holders are the residual

claimants of any rollover gains/losses. Again, following LT96, we assume that any gain will be

immediately paid out to equity holders and any loss will be funded by issuing more equity at

the market price. Thus, over a short time interval (t, t + dt), the net cash flow to equity holders

(omitting dt) is

NCt = δt︸︷︷︸
CF

− (1− π) c︸ ︷︷ ︸
Coupon

+ 1
T

[DH (δt, T )− p]︸ ︷︷ ︸
Rollover

. (4)

The first term is the firm’s cash flow. The second term is the after-tax coupon payment to

bond investors, where π denotes the marginal tax benefit rate of debt.10 The third term captures

the firm’s rollover gains/losses by issuing new bonds to replace maturing bonds. This term can be

understood as repricing the bonds at a rate of 1
T . In this transaction, there is a 1

T dt fraction of

bonds maturing, which requires a principal payment of 1
T pdt; while the primary market value of

the newly issued bonds is 1
TDH(δt, T )dt. When the newly issued bond price DH(δt, T ) drops so

that DH (δt, T ) < p (i.e., a discount bond), equity holders have to absorb the negative cash-flow

stemming from rollover 1
T [DH(δt, T )− p]dt. Thus, the rollover frequency 1

T (or the inverse of debt

maturity) affects the extent of rollover losses/gains.

2.4 Bankruptcy

When the firm issues additional equity to fund these rollover losses, the equity issuance dilutes the

value of existing shares.11 Equity holders are willing to buy more shares and bail out the maturing

debt holders as long as the equity value is still positive (i.e. the option value of keeping the firm

alive justifies absorbing the rollover losses). When the firm defaults, its equity value drops to zero.

The default threshold δB is endogenously determined by equity holders, which is an important
10For each dollar received by bond investors, the government is subsidizing π dollars so that equity holders only

have to pay 1− π dollars. The tax advantage of debt π affects the equity holders’ endogenous default decision.
11A simple example works as follows. Suppose a firm has 1 billion shares of equity outstanding, and each share is

initially valued at $10. The firm has $10 billion of debt maturing now, but the firm’s new bonds with the same face
value can only be sold for $9 billion. To cover the shortfall, the firm needs to issue more equity. As the proceeds from
the share offering accrue to the maturing debt holders, the new shares dilute the existing shares and thus reduce the
market value of each share. If the firm only needs to roll over its debt once, then the firm needs to issue 1/9 billion
shares and each share is valued at $9. The $1 price drop reflects the rollover loss borne by each share.
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ingredient for the feedback loop between firm fundamentals and secondary market liquidity.12

When the firm declares bankruptcy, we simply assume that creditors can only recover a fraction

α of the firm’s unlevered value from liquidation.13 As usual, the bankruptcy cost is ex post borne by

debt holders but represents a deadweight loss to equity holders ex ante. Since the stated maturity

for bonds per se does not matter in bankruptcy, for simplicity we assume equal seniority of all

creditors.

Because one driving force of our model is that agents value receiving cash early, our bankruptcy

treatment has to be careful in this regard. If bankruptcy leads investors to receive the proceeds

immediately, L type investors who are trying to sell their bonds could view default as a beneficial

outcome.14 In other words, bankruptcy confers a benefit similar to maturity that may outweigh

the deadweight loss stemming from the bankruptcy cost 1 − α. This “liquidity by default” runs

counter to the fact that in practice bankruptcy leads to a much more illiquid secondary market, the

freezing of assets within the company, and a delay in the payout of any cash depending on court

proceeding.15

Motivated by these facts, we make the following assumption for defaulted bonds. Suppose that

after bankruptcy recovery is based on the unlevered firm value, δB
r−µ . To capture the uncertain

timing of the court decision, we introduce a court delay so that the payout of cash α δB
r−µ occurs at

a Poisson arrival time with intensity θ. We focus on situations where α δB
r−µ < p (which holds for all

our examples) so that the recovery rate to bond holders is below 100%. Also, the secondary market

for defaulted bonds is illiquid with contact intensity λB. Additionally, we assume that there can be

a different discount rate rB > r for liquidity shocked agents. We interpret a prohibitively high rB
12To focus on the liquidity effect originating from the debt market, we ignore any additional frictions in the equity

market such as transaction costs and asymmetric information. It is important to note that while we allow the firm
to freely issue more equity, the equity value can be severely affected by the firm’s debt rollover losses. This feedback
effect allows the model to capture difficulties faced by many firms in raising equity during a financial-market meltdown
even in the absence of any friction in the equity market.

13The bankruptcy cost is standard in the trade-off literature, and can be interpreted in different ways, such as loss
of customers or or legal fees. However, as we will introduce inefficient delay in court rulings shortly, our analysis goes
through even if there is no bankruptcy cost, i.e., α = 1.

14This would be the case for example for a CDS contract written on the firm which features immediate payouts at
the time of a bankruptcy/credit event.

15The Lehman Brothers bankruptcy in September 2008 is a good case in point. After much legal uncertainty,
payouts to the debt holders only started trickling out after about three and a half years.
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as possible regulatory or charter restrictions that amount to the agent not being allowed to hold

defaulted assets. Then, the defaulted bond values DB
H and DB

L satisfy

rDB
H = θ

(
α

δB
r − µ

−DB
H

)
+ ξ

(
DB
L −DB

H

)
,

rBD
B
L = θ

(
α

δB
r − µ

−DB
L

)
+ λB

(
XB −DB

L

)
,

where as before XB = βDB
L + (1− β)DB

H is the transaction price received by L type investors.

Plugging XB into the above equations, we can solve for DB
i = αi

δB
r−µ for i ∈ {H,L} where

αH = θα(rB+θ+λBβ+ξ)
rB(ξ+θ)+r(rB+θ+λBβ)+θ(ξ+θ+λBβ) ,

αL = θα(r+θ+λBβ+ξ)
rB(ξ+θ)+r(rB+θ+λBβ)+θ(ξ+θ+λBβ) .

(5)

Note that this establishes the boundary conditions at the bankruptcy boundary δB, Di = αi
δB
r−µ

for i ∈ {H,L}. One can easily see that αH > αL as rB > r. We denote the (bold face) vector

α ≡ [αH , αL]> as the effective bankruptcy cost factors from the perspective of different bond

holders. Clearly, the wedge αH − αL characterizes the illiquidity of the defaulted bonds when the

firm (i.e. equity holders) declares bankruptcy. Throughout the paper we focus on the situation

where the illiquidity in the default state is sufficiently high, in order to conform our model to the

regular empirical pattern that bonds closer to default are more illiquid (e.g., Edwards, Harris, and

Piwowar (2007) and Bao, Pan, and Wang (2011)).

2.5 Summary of Setup

The model setup is summarized in a schematic representation given in Figure 1, and for exposition

purposes we omit including the bankruptcy decision that are driven by the stochastic process in δ.

Primary market. Let us start with the firm. It (re)issues debt to H-types via the primary

market, who value the debt at DH , as represented via the “Reissue” arrow. After the H-types buy

the debt, there is a chance the bond matures before either a bankruptcy occurs or a liquidity shock

12



Firm

DH

Maturity

1�T

Reissue

DL

Maturity

Liq.

Shock
Ξ Dealer

Intermediation

Λ

Resale

Primary market

Secondary market

Figure 1: Schematic representation of model

hits. In this case, the bond goes back to the firm, which pays back the principal to the agent. This

event is summarized in the “Maturity” arrow. This subpart of the graph represents the LT96 model.

With liquidity shocks, an H-type transitions to an L-type with intensity ξ who values the bond at

DL, as represented by the “Liq. shock” arrow. Absent bankruptcy and retrading opportunities,

the bond matures and the L-type will be paid back the face-value of the bond, again summarized

by the “Maturity” arrow. 1/T indicates the flow of bonds that mature.

Secondary market. Once we introduce a secondary market, L-types can now sell the bond to

H-types via the help of dealers. To do so, they try to contact dealers with an intensity λ, as

indicated by the “Intermediation” arrow. They sell their bond to the dealer for X (δ, τ). The

dealer turns around and immediately (re)sells the bond to H-types, as indicated by the “Resale”

arrow, for a price DH (δ, τ). It is important that H-types are indifferent between staying out of

the market, buying bonds of maturity T at reissue via the primary market, or buying bonds of

maturities τ ∈ (0, T ) on the secondary market, as this relieves us from having to track the value

functions of agents not holding the bond.
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3 Model Solutions

3.1 Debt Valuations and Credit Spread

We first derive bond valuations by taking the firm’s default boundary δB as given. Recall that

DH(δ, τ) and DL(δ, τ) are the value of one unit of bond with time-to-maturity τ ≤ T , an annual

coupon payment of c, and a principal value of p to a type H and L investor, respectively. We have

the following system of PDEs for the values of DH and DL, where we omit the two-dimensional

argument (δ, τ) for both debt value functions:

rDH = c− ∂DH

∂τ
+ µδ · ∂DH

∂δ
+ σ2δ2

2
∂2DH

∂δ2 + ξ [DL −DH ]︸ ︷︷ ︸
Liqidity shock

,

rDL = c− ∂DL

∂τ
+ µδ · ∂DL

∂δ
+ σ2δ2

2
∂2DL

∂δ2 + λ [X −DL]︸ ︷︷ ︸
Secondarymarket

. (6)

The boundary conditions are DH = DL = p at τ = 0 because of the principal payment at maturity,

and Di = αi
δB
r−µ at δ = δB where i ∈ {H,L} as discussed in Section 2.4.16

The first equation in (6) is the type H bond valuation. The left-hand side rDH is the required

(dollar) return from holding the bond for type H investors. There are four terms on the right-hand

side, capturing expected returns from holding the bond. The first term is the coupon payment.

The next three terms capture the expected value change due to change in time-to-maturity τ (the

second term) and fluctuation in the firm’s fundamental δt (the third and fourth terms). The last

term is a loss DL−DH caused by the liquidity shock that transforms H investors into L investors,

multiplied by the intensity of the liquidity shock.

The second equation in (6), the type L bond valuation, follows a similar explanation to the one

above. The two differences are that the left hand side now has a higher required return r > r, and

there is the value impact of the secondary market reflected in the last term of the right hand side.

A type L investor meets a dealer with an intensity of λ and is then able to sell his bond (with a
16And, given any time-to-maturity τ , when δ →∞, DH and DL converge to the values of default-free bonds (but

still subject to liquidity shocks and search frictions). Their expressions are given in footnote 29.
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private value DL) at a price of X = (1− β)DL +βDH . Plugging in equation (2) into equation (6),

we have λ [X −DL] = λβ [DH −DL]. One can interpret λβ as the bargaining weighted intensity

of “transitioning” (via a sale) back from the L state to the H state.17 It is easy to show that

when λ→∞, debt values converge to the LT96 case with perfectly liquid secondary markets. The

surplus from intermediating trades vanishes because the outside option of meeting another dealer

becomes very large.

We can now define the matrix A that incorporates the discount factors and the effective tran-

sition intensities ξ and λβ of the states. Then, the following decomposition holds:

A ≡

 r + ξ −ξ

−λβ r + λβ

 = PD̂P−1.

We let D̂ ≡ Diag
[
r̂1 r̂2

]
, where r̂i = r+ξ+r+λβ±

√
[(r+ξ)−(r+λβ)]2+4ξλβ

2 satisfying r̂1 > r > r̂2 > r,

be the matrix of eigenvectors of A, and denote by P be the matrix of stacked eigenvalues. For a

given δB, we derive the closed-form solution for the bond values in the next proposition.18

Proposition 1 The debt values are given by

 DH (δ, τ)

DL (δ, τ)

 = P

 A1 +B1e
−r̂1τ [1− F (δ, τ)] + C1G1 (δ, τ)

A2 +B2e
−r̂2τ [1− F (δ, τ)] + C2G2 (δ, τ)

 . (7)

Here, by defining a ≡ µ
σ2 − 0.5, γ1 ≡ 0, γ2 ≡ −2a, ηj1,2 ≡ −a ±

√
a2 + 2

σ2 r̂j , and q (δ, χ, t) ≡

log(δB)−log(δ)−(χ+a)·σ2t

σ
√
t

, the constants in (7) are given by:

 A1

A2

 ≡ cD̂−1P−11,

 B1

B2

 ≡ pP−11− cD̂−1P−11,

 C1

C2

 ≡ δB
r−µP−1α− cD̂−1P−11 ,

17Although the debt values are functions of only the product βλ, the bid-ask spread is given by (1− β) (DH −DL),
and thus has β entering on its own independent of the product βλ. This will be important when calibrating our
model, as it allows a separation of the identification of λ and β.

18All derivations, because of the linear decomposition, would go through even if creditors would be subject to
possibly different shock states, r1, r2, ... and if the capital structure of the firm consisted of different issues of debt
differing in T or the like.
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and the functions are given by

F (δ, τ) ≡
2∑
i=1

(
δ

δB

)γi
N [q (δ, γi, τ)] , Gj (δ, τ) ≡

2∑
i=1

(
δ

δB

)ηji
N [q (δ, ηji, τ)] ,

where N (x) is the cumulative distribution function for a standard normal distribution.

A closer inspection of the solution reveals a linear combination (via the matrix P) of two sub-

solutions each closely related to the original LT96 solution: the first term Ai gives the value of a

risk-free consol bond, the term multiplied by Bi encapsulates the probability that the bond will

mature before default, and the term multiplied by Ci encapsulates the probability that the bond

will default before maturity. Relative to LT96, each of these independent sub-solutions i = {1, 2}

has a distorted discount rate r̂i > r, a distorted coupon rate ĉi ≡
(
cP−11

)
i and a distorted recovery

rate α̂i ≡
(
P−1α

)
i.

19

Credit Spreads. Recall that the bond credit spread is the spread between the corporate bond

yield and the risk-free rate r. Given a bond of value D (δ, τ), the bond yield y is defined as the

solution to the following equation:

D(δ, τ) = c

y
(1− e−yτ ) + pe−yτ , (8)

so that the right-hand side is the present value of a bond (discounted by y) with a constant coupon

payment c and a principal payment p, conditional on it being held to maturity without default or

re-trading. For the remainder of the paper, we simply use the ask price DH (δ, τ) in Proposition 1

as our bond price for the left-hand side of equation (8).

3.2 Equity Valuation

The next key step is the equity holders’ decision to default, given that they receive the net cash

flow in (4) every instant. Because equity is naturally an infinite maturity security and we are
19Given a matrix M, (M)i selects the i-th row and (M)ij selects the i-th row and j-th column.
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investigating a stationary (debt maturity structure) setting, the equity value E (δ; δB) satisfies the

following ordinary differential equation:

rE = δ − (1− π) c+ 1
T

[DH (δ, T )− p]︸ ︷︷ ︸
Rollover

+ µδE′ + σ2δ2

2 E′′, (9)

where the left hand side is the required rate of return of equity holders. On the right hand side,

the first three terms are the equity holders net cash flows, and the next two terms are capturing

the instantaneous change of the firm fundamental. As mentioned earlier, the term involving square

brackets is the cash-flow term that arises from rolling over debt (while keeping coupon, principal,

and maturity stationary), with 1
T being the rollover frequency.

It is worthwhile to point out that equity value in our model is no longer the difference between

the levered firm value and debt value adjusted for tax benefits and bankruptcy costs, a common

calculation performed in Leland-type models. This is because part of the firm value goes to the

dealers in the secondary bond market, and part vanishes because of inefficient holdings of debt

by L types. Instead, we need to solve for E (δ) directly via (9), which is non-trivial due to the

highly-nonlinear form of DH (δ, T ) given in (7). The next proposition gives the equity value.

Proposition 2 Given a default boundary δB, the equity value is given by

E (δ; δB) = K

(
δ

δB

)κ2

+ δ

r − µ
+K0 −

gF (δ)
T

2∑
j=1

P1jBje
−r̂jT + 1

T

2∑
j=1

P1jCjgGj (δ) , (10)

where Pij gives the element of P in row i and column j, κ1,2 ≡ −a ±
√
a2σ4+2σ2r

σ2 , ∆κ ≡ κ1 − κ2,
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and

K0 ≡ 1
r

{
− (1− π) c+ 1

T

[∑2
j=1 P1jAj +

∑2
j=1 P1jBje

−r̂jT − p
]}
,

K ≡ −
[
δB +K0 − 1

T gF (δB)
∑2
j=1 P1jBje

−r̂jT + 1
T

∑2
j=1 P1jCjgGj (δB)

]
,

gF (x) ≡ 1
−∆κ

2
σ2
∑2
i=1

{
xκ2

δ
γi
B

H (x, γi, κ2, T )− xκ1

δ
γi
B

H (x, γi, κ1, T )
}
,

gGj (x) ≡ 1
−∆κ

2
σ2
∑2
i=1

{
xκ2

δ
ηij
B

H (x, ηij , κ2, T )− xκ1

δ
ηij
B

H (x, ηij , κ1, T )
}
,

H (δ, χ, κ, T ) ≡ 1
κ−χ

{
δχ−κN [q (δ, χ, T )]− δχ−κB e

1
2 [(κ+a)2−(χ+a)2]σ2TN [q (δ, κ, T )]

}
,

where q (·, ·, ·) is given in Proposition 1.

3.3 Endogenous Default Boundary

So far we have taken the default boundary δB as given. We now use the standard smooth pasting

condition Eδ (δ∗B; δ∗B) = 0 to determine the optimal δ∗B chosen by equity holders in closed form.

Proposition 3 The endogenous default boundary δ∗B is given by

δ∗B (T ) = (r − µ)

κ2 − 1 + 1
T

2∑
j=1

P1jα̂jhGj

−1−κ2K0 + hF
T

2∑
j=1

P1jBje
−r̂jT + 1

T

2∑
j=1

P1jAjhGj

 ,
where α̂ ≡ P−1α, Pij gives the element of P in row i and column j, and

hF ≡ − 2
σ2
∑2
i=1

1
κ1−γi

{
N
[
− (γi + a)σ

√
T
]
− erTN

[
− (κ1 + a)σ

√
T
]}
,

hGj ≡ − 2
σ2
∑2
i=1

1
κ1−ηij

{
N
[
− (ηij + a)σ

√
T
]
− e(r−r̂j)TN

[
− (κ1 + a)σ

√
T
]}
.

Relating to existing literature, in the absence of debt rollover, secondary market frictions cannot

affect the equity holders’ default decision once debt is in place. Infinite debt maturity features no

rollover and thus no feedback between liquidity and default, and thus the model converges to the

bankruptcy boundary derived in Leland (1994).
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3.4 Firm value

Following LT96, we assume that at time 0 the firm is issuing new bonds to H type investors only

with a uniform distribution of maturities on [0, T ]. Given the results established above, the levered

initial firm value TV0 (δ0, T ; δB) is20

TV0 (δ0, T ; δB) = E (δ0; δB) + 1
T

ˆ T

0
DH (δ0, τ ; δB) dτ

= E (δ0; δB) + [1, 0] ·P


 A1

A2

+

 B1
(

1−e−r̂1T

r̂1T
− I1 (δ0, T )

)
B2
(

1−e−r̂2T

r̂2T
− I2 (δ0, T )

)
+

 C1J1 (δ0, T )

C2J2 (δ0, T )


(11)

where

Ij (δ, T ) = 1
r̂jT

[
Gj (δ, T )− e−r̂jTF (δ, T )

]
,

Jj (δ, T ) = 1
(η1j + a)σ

√
T

2∑
i=1

(−1)i
(
δ

δB

)ηij
N [q (δ, ηij , T )] q (δ, ηij , T ) .

We will use this measure in section 5.1 to study the optimal maturity structure decision by the

firm at time 0.

4 Endogenous Liquidity, Feedback Effects and Credit Spreads

We discuss the model’s implications in this section. We first explain the parameter choices in

Section 4.1. Section 4.2 analyzes the endogenous liquidity that depends on both firm fundamental

and time-to-maturity. Based on endogenous liquidity, Section 4.3 illustrates the positive feedback

effect between fundamental and liquidity for corporate bonds. Section 4.4 discusses the model’s

implications on the observed credit spreads.
20The reader should note the difference that we have one unit measure of bonds, whereas LT96 expand the measure

of bonds according to maturity. We could also define firm value as the steady state sum of the individual valuations
of equity holders and the two types of debt holders, which would result in

TVss (δ0, T ; δB) = E (δ0; δB) + 1
T

ˆ T

0
[pH (τ)DH (δ0, τ ; δB) + pL (τ)DL (δ0, τ ; δB)] dτ

where pH (τ) , pL (τ) are steady-state proportions given in the Appendix A.5.
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4.1 Parameters

We present the baseline parameters in Table 1 which are broadly consistent with those used in

the literature to calibrate standard structural credit risk models. Although a thorough calibra-

tion is beyond the scope of this paper, we choose our parameters to roughly match the empirical

characteristic of BB rated corporate bonds.

We set the risk-free rate r = 8% which is also used by Huang and Huang (2003). We use a debt

tax benefit rate π = 27%, 21 and set a debt maturity of T = 10 years for illustration. Without loss

of generality, we normalize the initial cash flow level δ0 to 1.

We set the L type discount rate r to 10%. Relative to the H type’s normal discount rate

r = 8%, the implied high-low valuation wedge for default-free bonds (and if investors are holding

them forever) is 20%. This wedge due to inefficient holding is consistent with the estimation result

in Feldhutter (2011).22 The inefficiency wedge is also reflected in the divergence of default recovery

rates αH − αL across H type and L type investors. Because the recovery rate in most structural

credit risk models (Chen, 2010; Bhamra, Kuehn, and Strebulaev, 2010) is mainly based on bond

trading prices right after default, mapping to our model it is close to but above the L type recovery

rate, which we set at αL = 55%.23 For the H type investors’ recovery rate, we set αH = 67%, which

corresponds to a high-low valuation wedge of 12%/55% ≈ 22%, a conservative implementation of

the parameters emerging from the empirical study of defaulted bonds in Altman and Eberhart

(1994).24

21While tax rate of bond income is 32%, many institutions holding corporate bonds enjoy tax exemption. Thus,
we use an effective bond income tax rate of 25%. Then, the formula given by Miller (1977) implies a debt tax benefit
of 1 − [(1− 32%) (1− 15%) / (1− 25%)] = 26.5% where 32% is the marginal rate of corporate tax and 15% is the
marginal rate of capital gain tax.

22In Feldhutter (2011), L type is assumed to carry an extra holding cost as in Duffie, Garlenau, and Pedersen
(2005), as opposed to a higher discount rate in our model. Based on the estimates of Feldhutter (2011), for a ten-year
default-free bond, the effective discount of a bond (that is held by L type investors forever) is about 17%, which is
close to our assumption.

23Chen (2010) finds that across 9 different aggregate states, bonds have default recovery rates around 60%. These
recovery rates are typically estimated from two standard sources. The first is the Moody’s recovery data which is
based on bond price around 30 days after default. The other is an NYU recovery database which is based on prices
as close as possible to default.

24Altman and Eberhart (1994) document that for senior and secured bonds that went through bankruptcy, the bid
price for the bond at default (which proxies for DL) is about 52, and the average bond emergence payoff is about 84
which is paid out about 1.92 years after default (the payoffs are weighted average of senior and secured bonds). The
data covers 1980 to 1992, with an average annual interest rate of about 9.3% (FRB release, H.15). Using this rate to
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We rely on implied bond illiquidity to determine parameters on search frictions. More specifi-

cally, we choose these parameters to match the implied bid-ask spread (evaluated at the initial cash

flow level δ0) to 100 bps, which corresponds to the transaction cost of BB rated bonds documented

in Edwards, Harris, and Piwowar (2007) and Bao, Pan, and Wang (2011). We set β = 5% (i.e.,

dealers get 95% of the trading surplus) based on the estimation result in Feldhutter (2011), and

choose the liquidity shock intensity ξ and dealer-meeting intensity λ to match both the (initial)

percentage bid-ask spread of 100 bps and the empirical holding time (turnover) of 1 year.25 This

leads us to set ξ = 1.07 and λ = 15.5. That is, investors are hit by liquidity shocks about every

11.2 months, and then it takes about three weeks for them to sell their holdings completely.

The cash flow drift µ = 2% and volatility σ = 20% are standard in the literature. For bonds

that are priced at par, we pin down the coupon c = 1.31 and the principal p = 11.67 to produce an

initial credit spread of 320 bps, which corresponds to the observed credit spread of the BB rated

corporate bonds (Huang and Huang, 2003).

Finally, for illustration we may later use LT96 and HX12 models as alternative benchmarks,

which take the same parameters as in Table 1.26 For the HX12 model, the transaction cost is as-

sumed to be constant at k (and L type investors are forced to immediately sell with this transaction

cost). We set k = 99.4bps ≈ 1% for the HX12 benchmark for fair comparison as to also have a

bid-ask spread of 100bps.27

discount the emergence payoff, we obtain the proxy for DH of 71, which implies a high-low valuation wedge around
32%.

25According to Bao, Pan, and Wang (2011), the average turnover in their sample is about 1 year. In our model, the
average time that an investor is holding the bond (including the time that the investor remains at H type and that
he is L type but searching) is 1

ξ
+ 1

λ
. Thus we require that 1

ξ
+ 1

λ
= 1. And, we require that the effective percentage

bid-ask spread (1−β)[DH (δ0,T )−DL(δ0,T )]
1
2X(δ0,T )+ 1

2DH (δ0,T ) = 100bps at δ0.
26More specifically, both models take the common discount rate r = 8% and recovery value αH = 80% as in

Table 1, along with other parameters. For HX12, we set liquidity shock intensity ξ = 1 (which is slightly lower
than ξ = 1.07 given in Table 1) so that the average holding time is kept at 1 year; this choice makes a negligible
quantitative difference.

27There is a small adjustment to k, because the proportional bid-ask spread (over the midpoint) is bidask =
k

1−k/2 .Thus, k = bidask

1+ 1
2 bidask

< bidask, i.e., k will be slightly lower than the targeted proportional bid-ask spread
bidask.
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Firm Characteristics Illiquid Secondary Market

Parameter Interpretation Value Parameter Interpretation Value

δ0 Initial cash flow level 1 r Discount rate 8%
σ Volatility 20% r Liq. shock discount rate 10%
µ Drift 2% ξ Intensity of liquidity shock 1.07
π Tax shield 27% λ Intensity to meet dealers 15.5
p Principal 10.67 β Bargaining power of investors 5%
c Coupon 1.31 αH Recovery value H type 67%
T Bond maturity 10 αL Recovery value L type 55%

Table 1: Model parameters that are calibrated to BB rated bonds.

4.2 Endogenous Liquidity

4.2.1 Endogenous bid-ask spread

As mentioned, the (dollar) bid-ask spread is simply the difference between the bid price X (δ, τ)

and the ask price DH (δ, τ):

(1− β)S (δ, τ) = DH (δ, τ)−X (δ, τ) , (12)

which is just a constant positive fraction of the surplus S. In the following proofs, for better

analytical properties we concentrate on the behavior of S.

Time-to-maturity. First, let us study the effect of time-to-maturity by fixing firm fundamental.

Formally, we have the following proposition.

Proposition 4 Under the following sufficient conditions

c− pr̂2 ≥ 0, and δB
r − µ

[αL (r̂2 − r) + αH (r − r̂2)] + p (r − r) ≥ 0,

we have Sτ (δ, τ) > 0, i.e. the bid-ask spread is larger for bonds with longer time-to-maturity.

The intuition for this result is simple. Because a shorter time-to-maturity delivers the full

principal back to L type investors sooner, this enhances L type’s outside option in the bargaining
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and reduces the rent extracted by dealers, thereby resulting in a smaller bid-ask spread. In fact,

by the boundary conditions the surplus vanishes as time-to-maturity goes towards 0, i.e.,

lim
τ→0

S (δ, τ) = 0.

If the bond is almost immediately demandable from the firm, L type investors gain little value from

trade with dealers, and as a result the bid-ask spread vanishes.28 This indicates that short-term

debt provides liquidity for bond investors, and we will discuss the role of liquidity provision in more

detail in Section 5.1.

Distance-to-default. Second, let us fix the time-to-maturity τ > 0 and investigate the bid-ask

spread by varying the distance-to-default (i.e., δ−δB). Formally, we have the following proposition.

Proposition 5 Under sufficient conditions provided in the Appendix A.4.2, we have Sδ (δ, τ) < 0,

i.e. the bid-ask spread is smaller for bonds with higher firm fundamental.

The sufficient conditions in Proposition 5 can be understood as follows. Recall that, in Section

2.4, motivated by the empirical facts, we assume that bond investors need to wait quite a long time

before they receive the cash pay-out. It is easy to show that as the firm fundamental converges

towards δB, for any bonds that still have time-to-maturity left, i.e. τ > 0, we have

lim
δ→δB

S (δ, τ) = (αH − αL) δB
r − µ

> 0, (13)

We focus on the situation where the post-default illiquidity αH − αL derived in equation (5) is

sufficiently high, especially relative to the bid-ask spread for default-free bonds.29 As a a result,
28This implies that S goes down for τ close to zero. Unfortunately, for global monotonicity established in Proposition

4, we need some extra sufficient conditions due to the complex nature of the functions involved.
29The intuition is straightforward: When δ =∞, so that bonds are risk-free, we have[

DH (∞, τ)
DL (∞, τ)

]
= A−1c + exp (−Aτ)

(
p−A−1c

)
= c

(r + ξ) (r + λβ)− ξλβ

[
r + ξ + λβ
r + ξ + λβ

]
+ exp (−Aτ)

[
p− c(r+ξ+λβ)

(r+ξ)(r+λβ)−ξλβ

p− c(r+ξ+λβ)
(r+ξ)(r+λβ)−ξλβ

]
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the endogenous illiquidity rises when the cash flow rate δ deteriorates and the firm is closer to

bankruptcy.

4.2.2 Proportional bid-ask spread and empirical implications

So far for analytical tractability we have focused on dollar bid-ask spread S (δ, τ). However, the

effective percentage bid-ask spread ∆ (δ, τ) is commonly used as an illiquidity measure, and we here

define it as the dollar bid-ask spread S (δ, τ) divided by the mid point of transaction prices (bid

price X and ask price DH):

∆ (δ, τ) = (1− β) [DH (δ, τ)−DL (δ, τ)]
1
2X (δ, τ) + 1

2DH (δ, τ)
= 2 (1− β)S (δ, τ)

(1 + β)DH (δ, τ) + (1− β)DL (δ, τ) . (14)

The percentage illiquidity ∆ (δ, τ) shares the same qualitative properties as S (δ, τ). In addition,

as the firm fundamental deteriorates the bond value decreases and thus amplifies ∆ (δ, τ), this

negative force naturally strengthens our result of increasing illiquidity for bonds closer to default.

To the extent that the percentage illiquidity is more empirically relevant, the sufficient conditions in

Proposition 5 are much stronger than necessary, and our theoretical results should be more general

than they appear.

We plot the bid-ask spread in Figure 2 as a function of both time-to-maturity (that is time

dynamics) in the left-hand panel and distance-to-default (that is state dynamics) in the right hand

panel. The highest time-to-maturity is just the maturity for newly issued bonds, which in the

figure is T = 10. The distance-to-default is captured by the difference between the current firm

fundamental δ and the endogenous bankruptcy boundary δ∗B = 0.56.

The left hand panel of Figure 2 shows that the endogenous proportional bid-ask spread is lower

for shorter time-to-maturities (recall Proposition 4), and the right hand panel of Figure 2 shows that

the bid-ask spread rises when the firm fundamental deteriorates towards the bankruptcy boundary

Together with Sτ (δ, τ) < 0, we know that S reaches a maximum when τ = T . The most important part of the proof
is that S (δB , τ) − limδ→∞ S (δ, τ) < 0. That is, a necessary condition is that the bid-ask spread of the default-free
bond is below that of the defaulted bond. Unfortunately we are unable to show the sufficiency of this condition
due to the complex nature of the functions involved, and in the proof of Proposition 5 we impose stronger sufficient
conditions.
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Figure 2: Left panel: Proportional bid-ask spread ∆ w.r.t. τ , i.e. DH −X, for δ = 1 (dashed) and
δ = .57 (solid). Note that δB = .56. Right panel: Proportional bid-ask spread ∆ w.r.t. δ, i.e. DH −X,
for τ = 10 (dashed) and τ = 1 (solid).

δB (recall Proposition 5). Both of them are consistent with the empirical regularity in Edwards,

Harris, and Piwowar (2007) and Bao, Pan, and Wang (2011).

Interaction between time-to-maturity and distance-to-default. We now investigate the

impact of the interaction between time-to-maturity and distance-to-default on the endogenous bid-

ask spread. As our goal is to provide some novel empirical predictions, in this subsection we focus

on the percentage bid-ask spread ∆ (δ, τ) in (14) which is commonly used in the empirical literature.

Similar to S (δ, τ), under our parametrization we find that ∆ (δ, τ) is increasing with τ for

δ > δB as shorter maturity provides better liquidity. However, we also know from (13) that, as we

approach the bankruptcy boundary δB, ∆ (δ, τ) becomes independent of τ > 0, i.e., we have the

same liquidity across all maturities. Thus, when the firm edges closer and closer to default, the

slope of ∆ (δ, τ) with respect to time-to-maturity τ becomes flatter and flatter. In other words,

for financially healthy firms, the difference between the bid-ask spreads of long-term bond and

short-term bond is greater than that of firms in imminent danger of bankruptcy. Formally, we have

the following proposition.

Proposition 6 Given any time-to-maturity τ > 0, when the firm gets close to default, we have

limδ→δB
∂∆(δ,τ)
∂τ = 0, i.e., the bond illiquidity is independent of time-to-maturity of the bond.
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Proof. When δ → δB while τ > 0, the boundary condition is limδ→δB ∆ (δ, τ) = 2(1−β)(αH−αL)
(1+β)αH−(1−β)αL

which is independent of τ .

This property is intuitive. Default, by forcing firms to enter lengthy bankruptcy proceeding that

puts all debt holders of equal seniority on equal footing, eliminates difference due to maturities.

For financially healthy firms, default is remote, and therefore the time-to-maturity has a positive

and significant impact on the bid-ask spread. However, when default is imminent, although the

bid-ask spreads for both long-term and short-term bonds soar, their difference diminishes as it is

more likely that the stated time-to-maturity eventually becomes irrelevant. This intuition is quite

general, as it only relies on the fact that maturity plays no role in bankruptcy.

The above discussion suggest the following regression specification:

∆i,t = b0 + bMaturity
(+)

·Maturityi,t + bCDS
(+)
· CDSi,t + bMaturity∗CDS

(−)
·Maturityi,t × CDSi,t. (15)

As shown, our model predicts a positive bMaturity, i.e., bonds with longer time-to-maturity should

have a higher bid-ask spread. Further, the model predicts a positive bCDS , i.e., the bond that

is closer to default should have a higher bid-ask spread as well. These two predictions conform

with the empirical findings in Edwards, Harris, and Piwowar (2007), and Bao, Pan, and Wang

(2011). Finally, Proposition 6 implies that bMaturity∗CDS < 0, i.e., the difference between the bid-

ask spreads of long-term and short-term bonds in financially healthy firms is greater than that of

financially distressed firms. As just explained, this new testable prediction is intuitive and awaiting

future empirical research.

4.3 Feedback Loop between Fundamental and Liquidity

By linking the secondary market liquidity endogenously to firm fundamental, we now demonstrate

the positive default-liquidity spiral in which the deterioration of firm fundamental, via worsening

liquidity of the secondary bond market, edges the firm even closer to default, which in turn leads

to further deterioration in secondary market liquidity.
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In this section we aim to provide a full account of the positive feedback mechanism between

fundamental and liquidity. Although we will benchmark our results to that of LT96 and HX12

for illustrative purposes, our contribution is well beyond just endogenizing liquidity in credit risk

models. Besides being theoretically challenging, characterizing the full inter-dependence between

liquidity and default represents an economically significant leap toward understanding the role of

liquidity in determining credit spreads for corporate bonds. More broadly, it established an the

endogenous link between liquidity risk and solvency risk in financial markets.

4.3.1 Rollover losses, endogenous liquidity, and endogenous default

The endogenous pro-cyclical secondary market liquidity and the endogenous default decision taken

by equity holders are the two building blocks for the positive feedback loop between fundamental

and liquidity. To understand the mechanism, consider the rollover losses borne by equity holders

as a function of the firm cash flow rate δ. The dashed line in the left panel of Figure 3 graphs

the benchmark rollover losses implied by the LT96 model where the secondary bond market is

perfectly liquidity. There, the (absolute value) of rollover losses 1
T [D (δ, T )− p] rises when the firm

fundamental δ deteriorates, simply because forward looking bond investors adjust the market price

of newly issued bonds downward when the firm is closer to default. As shown in the dashed line,

the similar pattern holds for the HX12 model with the constant (proportional) transaction cost

k ≈ 1%. Because of higher refinancing costs for liquidity compensation, compared to the LT96

model equity holders in HX12 suffer greater rollover losses.

The new force in our model is that the endogenous secondary market liquidity further amplifies

the rollover losses. The right panel of Figure 3 graphs the percentage bid-ask spread ∆ (δ, T = 10)

defined in (14). Recall that our calibration requires ∆ (δ0 = 1, T = 10) = 1% for better comparison

to HX12, and the bond illiquidity remains constant in HX12 (k ≈ 1%) or LT96 (k = 0). The

countercyclical pattern of bid-ask spread ∆ (δ, T = 10), i.e., more severe illiquidity for lower δ’s,

implies the same countercyclical pattern of the implied endogenous transaction cost k (δ) in (??).

This suggests a worsening secondary market liquidity for firms with lower fundamentals in our
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Figure 3: Left panel: Rollover loss 1
T [DH (δ, T )− p] as a function of fundamental value δ of our model

(solid line), the LT96 model (dash-dotted line) with perfectly liquidity bond market, and the HX12 model
(dashed line) with exogenous transaction cost k ≈ 1%. The rollover losses in our model are zero at issuance
(i.e., when δ = 1) because we assume that bonds are issued at par. Right panel: Proportional bid-ask
spread ∆ (δ, τ) defined in (14) for our model (solid line), relative to constant proportional bid-ask spread of
100bps in HX12 (dashed line) and no bid-ask spread in LT96.

model.

Relative to models with constant secondary market liquidity, the endogenous search market

depresses the bond market price DH (δ, T ) further for low fundamental states as the implied trans-

action costs rise. This explains the left panel in Figure 3 where rollover losses in our model (the

solid line) are more sensitive to the firm cash flow state δ relative to the HX12 model (the dashed

line). This pro-cyclical secondary market liquidity is empirically relevant, because it significantly

reduces the equity holders’ option value of servicing the debt especially in bad times, and hence

the firm defaults earlier.

4.3.2 Positive feedback between fundamental and liquidity

The above discussion implies an important positive feedback loop between firm fundamental and

secondary market liquidity for corporate bonds, which is illustrated in Figure 4. For the purpose of

illustration, the following discussion takes place in the counterfactual world of constant transaction

costs (say HX12 with positive constant k > 0 or LT96 with k = 0) to explain how the fixed

endogenous default threshold δ∗B arises.

For investors of corporate bonds, the bond fundamental can be measured as the firm’s distance
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Figure 4: Feedback loop between secondary market liquidity and equity holders’ default decision.

to default, i.e., δ− δB. Imagine a negative shock to firm cash flow rate δ. Since this negative shock

brings the firm closer to default, this constitutes a pure-fundamental driven negative shock to bond

investors and lowers the holding values of DH and DL. This force is present in LT96 and HX12.

The novelty of our model is that, a negative δ shock not only lowers debt values, but also

worsens the secondary market liquidity. The lower distance to default worsens the L types’ outside

option when bargaining with a dealer, as default leads to protracted bankruptcy court decisions.

Consequently, bonds in the secondary market becomes more illiquid, as indicated by the left large

arrow with “declining liquidity” in Figure 4. This is the pro-cyclicality of liquidity we already

discussed above.

Rational H type bond investors will thus value bonds less, i.e., a lower DH , because they

expect to face a less liquid secondary market once hit by liquidity shocks. As shown in Figure 4,

the worsening liquidity in the secondary market gives rise to a lower primary market bond issuing

price DH relative to an environment with constant market liquidity.

The lower bond prices now feed back to the equity holders’ default decision via the rollover

channel, indicated by the arrow on the right of Figure 4. This is because equity holders are

absorbing heavier rollover losses (i.e. net cash flow NCt in (4) goes down), as suggested by the

left panel of Figure 3. Equity holders hence default earlier at a higher threshold δB, relative to an

environment with a constant market liquidity.

The higher default threshold now translates into a shorter distance to default δ − δB. But just
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as discussed before, the search-based secondary market kicks in again: as shown on the left-hand

side in Figure 4, the shorter distance to default further worsens market liquidity via the declining

outside option of the L type investors. The loop repeats as the lower liquidity now again lowers

effective bond prices, and finally stops at the fixed point δB given in Proposition 3.

4.4 Credit spreads

The positive liquidity-default spiral illustrated in the previous subsection can have significant quan-

titative effect on observed corporate bond spreads, or equivalently primary market and secondary

market ask prices DH (δ, τ).

Recall the definition of the bond yield y in (8); since our focus is the credit spread of newly

issued bonds, we study the H type debt value DH (the ask price) with τ = T . In Figure 5 we plot

the credit spread y − r as a function of δ. As the first benchmark, the dash-dotted line plots the

credit spread in the LT96 model with a perfectly liquid secondary corporate bond market. The

more stringent benchmark is the credit spread implied by the HX12 model (the dashed line), which

takes into account the fact that the higher financing cost due to bond illiquidity pushes equity to

default earlier than in LT96. The solid line in Figure 5 gives the credit spread under our model,

which incorporates the full liquidity-default spiral discussed in Section 4.3.2.

Because both our model and HX12 account for the illiquidity of corporate bonds, their implied

credit spreads are higher than the LT96 benchmark without the liquidity factor. The difference in

illiquidity between our model (solid line) and HX12 (dashed line), which surges especially when the

firm is not doing well as shown in Figure 5, is due to the positive liquidity-default spiral effect.

Because in our model the bond becomes more illiquid once the firm edges closer to default (and

thereby receiving a much lower credit rating, say C), while HX12 assume a constant illiquidity

throughout the entire bond life, it is not surprising to observe a significant divergence in implied

credit spreads across two models in these bad states. To isolate this issue, we compare the credit

spreads implied by different models conditional on the initial cash flow δ0 = 1 (thus conditional

on the BB rating), at which we have controlled for the bond liquidity (bid-ask spread) of 100 bps.
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Figure 5: Credit spread y − r of bonds at issuance (i.e., T = 10) as a function of fundamental cash-flow
δ for our model (solid line), the LT96 model (dash-dotted line), and the HX12 model with k = 1% (dashed
line)

Recall that we have calibrated our model for BB rated bonds to generate an initial credit spread

of 320 bps; this is about twice of that implied by the LT96 model (about 181 bps at δ0 = 1 in the

dash-dotted line). For HX12 without endogenous pro-cyclical liquidity, the implied initial credit

spread at δ0 = 1 is only about 288 bps. Since we have controlled for bond liquidity given the

bond’s initial rating, the difference of 320− 288 = 32 bps (or 10% of the credit spreads of BB rated

bonds) comes entirely from our novel positive spiral between liquidity and default. Intuitively,

equity holders default earlier in our model with pro-cyclical endogenous secondary market liquidity

(δ∗B = 0.56), compared to the HX12 model with exogenous constant liquidity (δ∗B,HX12 = 0.55).

4.5 Liquidity Premium and Default Premium

It has been widely recognized that the credit spread of corporate bonds not only reflects a default

premium determined by the firm’s credit risk, but also a liquidity premium due to the illiquidity

of the secondary debt market, e.g., Longstaff, Mithal, and Neis (2005), and Chen, Lesmond, and

Wei (2007). However, both academics and policy makers tend to treat the default premium and

liquidity premium as independent, and thus ignore interactions between them. For instance, it

is common practice to decompose firms’ credit spreads into independent liquidity-premium and
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default-premium components and then assessing their quantitative contributions, e.g., Longstaff,

Mithal, and Neis (2005), Beber, Brandt, and Kavajecz (2009), and Schwarz (2010).

This treatment of independence between liquidity and default is contrary to the data, which

suggests that these components exhibit strong positive correlation. We have seen in Edwards,

Harris, and Piwowar (2007) and Bao, Pan, and Wang (2011) that liquidity deteriorates for bonds

that are issued by firms with high CDS spreads. In an report issued by Barclay Capital, Dastidar

and Phelps (2009) study the quote-based bond liquidity measure directly, and document the same

robust empirical regularity in not only cross-section (investment grade vs. speculative grate) but

also time-series (2005-06 before crisis vs 2008-09 during crisis).

In our model, the endogenous inter-dependence between the liquidity and default premia for

corporate bonds captures this important empirical regularity. By endogenizing the secondary mar-

ket liquidity, our model points out that the origin of shock to liquidity premia can be traced back

to the deterioration of firm fundamental itself. Thus, both default premium and liquidity premium

are inter-dependent, and the positive feedback loop further amplifies and reinforces both premia in

a nontrivial way. More importantly, this positive spiral effect may be quantitatively significant in

explaining the observed credit spreads (about 32/320 = 10%), as illustrated in Section 4.4.

Another important implication of our model is related to the “credit spread puzzle” in the struc-

tural credit risk literature. Structural credit models have difficulty in producing the quantitatively

significant AAA credit spread observed in the data, once calibrated to historic default probabili-

ties and asset prices (e.g., Huang and Huang (2003)). In our model, in Figure 5 there remains a

non-negligible credit spread even for large δ (hence default-free bonds, see footnote 29 for expres-

sions). This is because in our setting the liquidity risk is uninsurable on the agent level and thus

does not affect the translation of the physical probabilities to the risk-neutral probabilities, which

is consistent with the idea that the AAA spread can be explained by liquidity reasons. Perhaps

more interestingly, the positive liquidity-default spiral emphasized in this paper has the potential

to amplify the relatively small liquidity shocks to quantitatively significant liquidity and default

premia. We are performing a thorough calibration exercise on this topic in an ongoing project.
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5 Extensions and Discussions

5.1 Optimal Debt Maturity

Beyond the feedback loop between fundamental and liquidity, the debt maturity features a natural

trade-off between liquidity provision and earlier inefficient default. This natural trade-off allows us

to derive the optimal debt maturity (given the stationary maturity structure). Segura and Suarez

(2011) present a related trade-off in a banking model without secondary markets but with periodic

disruptions of the primary market for debt funding. Although the probability of these disruptions is

exogenous, the severity of the disruptions is determined by how short the bank’s maturity structure

is. This is traded off against short-term debt being cheaper outside crisis states. In contrast, our

model features an endogenous probability of default that is driven by the maturity structure and

we also trade this off against cheaper short-term debt away from the bankruptcy boundary.

5.1.1 Liquidity provision: the bright side of short maturity

Section 4.2 has shown that bonds with shorter maturity have a more liquid secondary market,

suggesting the role of liquidity provision for short-term debt. The efficiency gain due to short-term

maturity arises from two channels.

First, debt holders hit by liquidity shocks become inefficient holders of bonds, and due to trading

frictions the inefficient holding lasts for a while. As detailed in Appendix A.5, the steady-state

proportion of L types as the firm is able to issue to only H types is

µL (T ) = ξ

λ+ ξ
−
ξ
[
1− e−T (λ+ξ)

]
T (λ+ ξ)2︸ ︷︷ ︸

Allocative efficiency

, (16)

with µ′L (T ) > 0, limT→∞ µL (T ) = ξ
λ+ξ and limT→0 µL (T ) = 0. Hence, the second term in (16) is

the allocative efficiency gain of shortening the bond maturity T . Intuitively, shortening maturity

alleviates this inefficiency because of the firm’s superior primary market liquidity: whenever debt

matures, the firm moves debt from inefficient L investors to efficient H investors via new bond
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issuance.30

Second, a shorter maturity reduces the rent extracted by dealers in the secondary market, thus

leading to a bargaining efficiency gain. Intuitively, a shorter maturity, by allowing L investors

to receive principal payment earlier, raises their outside option of waiting and in turn lowers the

dealer’s rent.

5.1.2 Earlier default: the dark side of short maturity

On the other hand, as first shown in LT96 (and formally proven in HX12 and Diamond and He,

201231), shorter debt maturity in an LT96 style model leads to earlier default and thus greater

dead-weight bankruptcy cost. In other words, the optimal maturity in LT96 and HX12 is T ∗ =∞,

so that debt should always take the form of an infinitely lived consol bond. As discussed, the equity

holders’ rollover losses are 1
T [DH (δ, T )− P ]. In bad times (low fundamental δ), notwithstanding

the fact that short-term debt has a greater market price DH (δ, T ), the effect of a higher rollover

frequency 1
T dominates, leading to heavier rollover losses. As a result, equity holders default earlier

if the firm is using shorter maturity debt.

5.1.3 Optimal Interior Debt Maturity

Relative to LT96 model where the debt maturity affects the equity holders’ default decision, in our

model the firm—being short of intermediating the market for its debt itself—uses the inefficient tool

of the maturity structure to provide liquidity services to bondholders. This extra force naturally

leads to an endogenous optimal maturity structure. In Figure 6 we plot in the left panel the ex

ante levered firm value TV (δ0) given in equation (11) for our model (solid line) and the LT96
30The firm could, instead of providing liquidity via maturity, allow bondholders with liquidity shocks to put back

their bonds at the face value p. There are two important drawbacks. First, if the firm cannot distinguish who was hit
by a liquidity shock, whenever DH < p everyone will put back their debt at the same time. In fact, the put provision
is akin to making bonds demand deposits and we are at traditional models of bank runs. Second, even if the liquidity
shock is observable, there will be an additional flow term ξ [DH − p] dt as L investors are putting back their bonds to
the firm every instant. This additional refinancing losses may influence the bankruptcy boundary in an adverse way
and destroy the liquidity thus provided. The full implications of expanded bond contract terms (beyond the choice
of initial maturity T covered in this paper) is left for future work.

31HX12 prove this claim for given (c, p) in the LT96 framework, while Diamond and He, 2012 prove this claim
controlling for leverage (adjusting (c, p) to maintain the same debt value as shifts in the bankruptcy boundary caused
by maturity shorterning move the value of debt) in the random maturity framework of Leland (1998).
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Figure 6: Left panel: Total firm value in the main model (solid line) and without frictions in the LT 96
model (dashed line). Right panel: Optimal maturity T ∗ in the main model as a function of initial book
leverage for different levels of search frictions, λ = 15.5 (solid line) and λ = 31 (dashed line). Both lines at
some point jump to T ∗ =∞ for high enough finite leverage.

benchmark model (dashed line) as a function of the debt maturity T and initial book leverage

(r − µ) p/δ0 = 1/3.32 The hump shape of firm value suggests the existence of an interior solution

for the optimal maturity structure in our model. In contrast, without the benefit of liquidity

provision, the total firm value in the LT96 model (dashed line) is monotonically increasing in debt

maturity T .

In the right panel of Figure 6 we draw the optimal maturity T ∗ as a function of initial leverage.

The solid line depicts the optimal maturity for a secondary market with baseline intermediation,

i.e., λ = 15.5, whereas the dashed line depicts the optimal maturity for a secondary market with

high (thus more efficient) intermediation, i.e., λ = 31. For low (high) initial leverage, bankruptcy

becomes more (less) remote, and the effect of liquidity provision (bankruptcy cost) dominates, re-

sulting in a shorter (longer) optimal debt maturity. Additionally, for our baseline intermediated

markets with λ = 15.5, the firm provides liquidity to its debt holders through shorter maturity.

In contrast, for a better intermediated market with λ = 31, the optimal maturity shifts out uni-

formly, and jumps to infinity for firms with relatively low initial leverage. In other words, a better

functioning secondary market reduces the need to provide liquidity via shorter maturity and thus

alleviates the bankruptcy pressure generated by the short debt structure.
32That is, the ratio of the aggregate face value p over the unlevered firm value δ0

r−µ .
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5.2 Discussion of Asymmetric Information

In our model, the important driving force behind the spiking illiquidity near default is that there is

a significant valuation wedge between H and L type investors for defaulted bonds, as summarized

by the individual recovery values αH and αL. In the literature as well as in practice, an equally

compelling explanation for the deteriorating liquidity of corporate bonds near default is a possibly

worsening adverse selection problem due to information asymmetry. More specifically, one can

imagine that some bond investors have private information regarding the bond’s recovery value

in default. As the firm edges closer to default, the informed agent’s information becomes more

valuable and he is more likely to attempt to sell his bonds. Thus, to guard against such adversely

selected investors, a market maker in the Glosten and Milgrom (1985) tradition would raise the

bid-ask spread.

Modeling such persistent adverse selection with long-lived bond investors, however, requires a lot

more technical apparatus and thus awaits future research. To the extent that an adverse-selection-

based model could conceivably lead to a similar qualitative result if asymmetric information is

concentrated in the bond’s recovery value,33 then on the quantitative front our model has the

advantage of incorporating standard structural bond valuation models in a simpler setting but still

delivering the first-order empirical patterns.

6 Conclusion

We investigate the liquidity-fundamental spiral in the corporate bond market, by studying the

endogenous liquidity of defaultable bonds in a search-based OTC markets together with the en-

dogenous default decision by equity holders from the firm side.

By solving a system of PDEs, we derive the endogenous secondary market liquidity jointly

with the debt valuations, equity valuations, and endogenous default policy, in closed-form. The
33If, instead, the adverse selection might not necessarily worsen when the firm goes closer to the default boundary,

we would not expect, absent the bargaining frictions presented in this article, a monotonically increasing pattern of
illiquidity towards default.
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fundamentals of corporate bonds, which is mainly driven by the firm’s distance-to-default, affects

the endogenous liquidity of corporate bonds. And, through the rollover channel in which equity

holders are absorbing refinancing losses in bad times, worsening liquidity of corporate bonds at

the same time significantly hurts the equity holders’ option value of keeping the firm alive. As a

result, illiquidity of secondary corporate bond market feeds back to the fundamental of corporate

bonds by edging the firm closer to bankruptcy. We hope our fully solved structural model can pave

the way of bringing more structural approach in the empirical study of the impact of liquidity on

corporate bonds.

In earlier versions of working papers, we further incorporate endogenous firm investment and

show that this mechanism, i.e., a feedback loop between the firm fundamental and the firm’s (debt)

financing liquidity, should encompass a broader set of firm level decisions beyond default.
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A Appendix
A.1 Notation
First, let us call rH ≡ r, rL ≡ r, ξH ≡ ξ and ξL ≡ λβ, and µ̃ = µ− σ2

2 . Second, define the log-transform δ̃ = log (δ) so
that dδ̃ = µ̃dt+ σdZ. Third, for brevity we use the notation D′ ≡ ∂D

∂δ
and Ḋ ≡ ∂D

∂τ
. We will, with abuse of notation,

write q
(
δ̃, ...

)
to mean δ̃B−δ̃+...

...
. Let N (x) be the cumulative normal function.

A.2 2x2 matrix formulas
As the 2x2 specification is frequently used in the text, we present the results here in compact form. Suppose

A =
[
a b
c d

]
,

then A = PD̂P−1 where

A−1 = 1
ad− bc

[
d −b
−c a

]
P =

[
1 b

r̂2−a
c

r̂1−d
1

]
D̂ =

[
r̂1 0
0 r̂2

]
,

where of course alternative versions of P can be chosen. However, to show convergence to frictionless markets we
chose this form of P as it allows convergence to an upper triangular form. The roots

r̂1/2 =
a+ d±

√
(a+ d)2 − 4 (ad− bc)

2

=
a+ d±

√
(a− d)2 + 4bc
2

solve det [A− ρI] = 0, i.e. r̂1/2 are the roots of the characteristic polynomial

g (r̂) = (a− r̂) (d− r̂)− bc = r̂2 − (a+ d) r̂ + (ad− bc) .

If a > 0 and d > 0 and b < 0 and c < 0 as well as (ad− bc) > 0, then both roots r̂1/2 > 0.
Identifying a = rH + ξH , b = −ξH , c = −ξL, d = rL + ξL, we have

r̂i =
rH + rL + ξH + ξL − (−1)i

√
[(rH + ξH)− (rL + ξL)]2 + 4ξHξL

2 .

We can also derive bounds on r̂i by noting the following results:

g (rH) = ξH (rL − rH) > 0
g (rL) = −ξL (rL − rH) < 0

g (rH + ξH) = −ξHξL < 0
g (rL + ξL) = −ξHξL < 0

g (rH + ξH + ξL) = −ξL (rL − rH) < 0
g (rL + ξH + ξL) = ξH (rL − rH) > 0

so that we know that

rH < r̂1 < min {r + ξH , rL}
max {rH + ξH + ξL, rL + ξL} < r̂2 < rL + ξH + ξL.

It is easy to show that as ξH → 0, r̂1 = rL + ξL and r̂2 = rH , and limb→0 P =
[

0 1
· ·

]
, so that DH converges

towards the LT96 solution.
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Next, consider λ → ∞ such that ξL → ∞, that is, what happens when the market becomes very liquid. Note
that we can rewrite the characteristic polynomial as

g (r̂) = ξL

[
(rH + ξH − r̂)

(
rL
ξL

+ 1− r̂

ξL

)
− ξH

]
Suppose now that r̂ is finite. Then we know that the square bracket, as ξL →∞, becomes

(rH + ξH − r̂)− ξH = 0

so that r̂2 = rH > 0. Thus, as both roots are positive, we must have that the second root r̂1 → ∞. The diagonal

decomposition becomes unstable, in that limλ→∞P =
[

0 0
1 1

]
.

Finally, for r = rH = rL we can show that P−11 =
[

1
0

]
so that ĉ =

[
c
0

]
, and for α = αH = αL we have

α̂ =
[
α
0

]
.

A.3 Proofs of Section 3
A.3.1 Debt
Proof of Proposition 1.

Applying the log transform δ̃ = log (δ) to the system of PDEs we are left with a linear system of PDEs:[
rH + ξH −ξH
−ξL rL + ξL

][
dH
dL

]
=

[
c
ρc

]
+ µ̃

[
dH
dL

]′
+ σ2

2

[
dH
dL

]′′
−

˙[
dH
dL

]
⇐⇒ A× d = c + µ̃d′ + σ2

2 d′′ − ḋ

Here we allow for general changes to the coupon payment c by premultiplying by a parameter ρ ≤ 1 to acknowledge
that there might be linear holding costs above and beyond the higher discount rate. In the paper, we have ρ = 1.
Let us decompose A = PD̂P−1 where D̂ is a diagonal matrix with its diagonal elements the eigenvalues of A and P
is a matrix of the respective stacked eigenvectors. The resulting eigenvalues are defined

g (r̂) = (rH + ξH − r̂) (rL + ξL − r̂)− ξLξH = 0

and g (rH) = ξH (rL − rH) > 0 and g (rL) = −ξL (rL − rH) < 0. We thus have r̂i = r+ξ+r+λβ±
√

[(r+ξ)−(r+λβ)]2+4ξλβ
2 .

Premultiplying the system by P−1 and noting that P−1A = D̂P−1 we have a delinked system PDEs with a
common bankruptcy boundary δ̃B ≡ log (δB) and payout boundary t = 0

D̂P−1d = P−1c + µ̃P−1d′ + σ2

2 P−1d′′ −P−1ḋ

⇐⇒ D̂y = ĉ + µ̃y′ + σ2

2 y′′ − ẏ

where y = P−1d and ĉ = P−1c. The rows of the system are now delinked, and we are left with two PDEs of the
form

r̂iyi = ĉi + µ̃y′i + σ2

2 y′′i − ẏi

with given boundary conditions at t = 0 and δ̃ = δ̃B , whose solutions are known from LT96. The decomposition
works because the boundaries are the same across rows. The solution takes the form

yi = Ai +Bie
−r̂it (1− Fi) + CiGi

Fj
(
δ̃, t
)

=
2∑
i=1

e(δ̃−δ̃B)γijN
[
q
(
δ̃, γij , t

)]
Gj
(
δ̃, t
)

=
2∑
i=1

e(δ̃−δ̃B)ηijN
[
q
(
δ̃, ηij , t

)]
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where
q
(
δ̃, χ, t

)
= δ̃B − δ̃ − (χ+ a) · σ2t

σ
√
t

and constants

Ai = ĉi
r̂i

Bi =
(
p̂i −

ĉi
r̂i

)
Ci =

(
α̂i

eδ̃B

r − µ −
ĉi
r̂i

)
and some yet to be determined parameters γij , ηij . Note that limt→0 q

(
δ̃, χ, t

)
= limt→0

δ̃B−δ̃
σ
√
t

= −∞ as δ̃B < δ̃, so
N
[
q
(
δ̃, χ, 0

)]
= 0 for all i and δ̃ > δ̃B . Further note that limδ̃→∞ q

(
δ̃, χ, t

)
= −∞, so limδ̃→∞N

[
q
(
δ̃, χ, t

)]
= 0.

Substituting the candidate solution yi into the PDE with Ai = ĉi
r̂i
, Bi = p̂i − ĉi

r̂i
, Ci = α̂i

exp(δ̃B)
r−µ − ĉi

r̂i
, we see that

bie
−r̂it

[
r̂i (1− Fi) + µ̃F ′i + σ2

2 F ′′ −
[
r̂i (1− Fi) + Ḟi

]]
+ci

[
r̂iGi − µ̃G′i −

σ2

2 G′′i + Ġi

]
= 0

⇐⇒ bie
−r̂it

[
µ̃F ′ + σ2

2 F ′′ − Ḟ
]

+ci
[
r̂iGi − µ̃G′i −

σ2

2 G′′i + Ġi

]
= 0

We see that both Ḟi and Ġi have no term N (·). As q is linear in δ̃, we have q′′ = 0 (where q′ = qδ̃ and q̇ = qt). We
thus have, for F ,

N
[
q
(
δ̃, γ, t

)] [
µ̃γ + σ2

2 γ2
]

+φ [q (v, γ, t)]
[
µ̃q′ + σ2

2

[
2γq′ − q

(
q′
)2
]
− q̇
]

= 0

So the roots for Fi are γ1 = 0 = −a+ a and γ2 = − 2µ̃
σ2 = −a− a where a ≡ µ̃

σ2 . We see that this is independent of i,
that is, it is independent of what row of y we picked, as r̂i is cancelled out. Further, for G, we have

N [q (v, η, t)]
[
µ̃η + σ2

2 η2 − r̂i
]

+φ [q (v, η, t)]
[
µ̃q′ + σ2

2

[
2ηq′ − q

(
q′
)2
]
− q̇
]

= 0

so the roots for Gi are ηi1 = −µ̃+
√
µ̃2+2σ2r̂i
σ2 = −a +

√
µ̃2+2σ2r̂i
σ2 and ηi2 = −a −

√
µ̃2+2σ2r̂i
σ2 . Simply plugging in the

functional form of q results in the term in square brackets in the second row to vanish.
For the boundary condition, we have

y
(
δ̃, 0
)

= P−11 · p = p̂

y
(
δ̃B , t

)
= P−1α

exp
(
δ̃B
)

r − µ = α̂
exp
(
δ̃B
)

r − µ

which defines the remaining parameters of the solution.
As a last step, we retranslate the system back into the original debt functions by premultiplying by P and noting

that F (v, t) = Fi (v, t) = F−i (v, t) by the symmetry of the γ’s, and by rewriting it in terms of δ = exp
(
δ̃
)
.
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A.3.2 Equity
Proof of Proposition 2.

Equity has the following ODE where for notational ease we define m = 1
T

rE = exp
(
δ̃
)
− (1− π) c+ µ̃E′ + σ2

2 E′′ +m
[
DH

(
δ̃, T
)
− p
]

The term in square brackets is the cash-flow term that arises out of rollover of debt (while keeping coupon, principal
and maturity stationary), a term first pointed out by LT96. We will establish the (closed-form) solution in several
steps.

First, the homogenous solutions to the ODE are M
(
δ̃
)

= eκ1δ̃ and U
(
δ̃
)

= eκ2δ̃ where

σ2

2 κ2 + µ̃κ− r = 0

so that

κ1/2 =
−µ̃±

√
µ̃2 + 2σ2r

σ2 = −a±
√
µ̃2 + 2σ2r

σ2

and κ1 > 1 > 0 > κ2.
Next, let us establish the Wronskian

Wr (s) = M (s)U ′ (s)−M ′ (s)U (s)
= − (κ1 − κ2) exp {(κ1 + κ2) s}
= −∆κ ·M (s)U (s)

Then, by the variation of coefficient solutions to linear ODEs, a technique described in most textbooks on differential
equations, we have for an ODE

rg = µ̃g′ + σ2

2 g′′ + part (s)

the following particular solution gp

gp (x|l) = 2
σ2

ˆ l

x

part (s) M (s)U (x)−M (x)U (s)
Wr (s) ds

= 2
σ2

ˆ l

x

part (s) e
−κ2seκ2x − eκ1xe−κ1s

−∆κ ds

g′p (x|l) = 2
σ2

ˆ l

x

part (s) M (s)U ′ (x)−M ′ (x)U (s)
Wr (s) ds

= 2
σ2

ˆ l

x

part (s) κ2M (s)U (x)− κ1M (x)U (s)
Wr (s) ds

g′′p (x|l) = 2
σ2

ˆ l

x

part (s) κ
2
2M (s)U (x)− κ2

1M (x)U (s)
Wr (s) ds− 2

σ2 part (x)

for an arbitrary limit l ∈ (vB ,∞).
Second, as the debt term DH is bounded, to impose the condition that equity does not grow orders of magnitude

faster than the unlevered value of the firm V
(
δ̃
)

= eδ̃

r−µ we need limδ̃→∞

∣∣∣E(δ̃)
V (δ̃)

∣∣∣ <∞. Let us write the solution as

E
(
δ̃
)

= KUU
(
δ̃
)

+KMM
(
δ̃
)

+ V
(
δ̃
)

+K0 +
ˆ l

δ̃

2
σ2 part (s)

M (s)U
(
δ̃
)
−M

(
δ̃
)
U (s)

Wr (s) ds

where we incorporated all constant terms of the ODE into the definition of K0 and part (s) is thus just composed of
cumulative normal functions of the form N

[
−aa · δ̃ + bb

]
where aa > 0. Let us gather terms of U

(
δ̃
)
and M

(
δ̃
)
to

get

E
(
δ̃
)

= U
(
δ̃
) [
KU +

ˆ l

δ̃

2
σ2 part (s) M (s)

Wr (s)ds
]

+M
(
δ̃
) [
KM −

ˆ l

δ̃

2
σ2 part (s) U (s)

Wr (s)ds
]

+ eδ̃

r − µ̃ +K0

First, let us note that the integrals all converge, as N
[
−aa · δ̃ + bb

]
converges faster than any function ecst·δ̃ for any
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constant cst. Second, to impose the boundary condition of limδ̃→∞

∣∣∣E(δ̃)
V (δ̃)

∣∣∣ < ∞, we note that limδ̃→∞ U
(
δ̃
)

= 0 so

the first term in the above equation converges for any choice of KU . However, the second term contains M
(
δ̃
)
which

explodes to infinity faster than eδ̃ as κ1 > 1. We thus need to pick

KM (l) = −
ˆ ∞
l

2
σ2 part (s) U (s)

Wr (s)ds

as a necessary condition to have the term stay bounded. Next, plugging it in, we see that the term in question
becomes

M
(
δ̃
) [
KM (l)−

ˆ l

δ̃

2
σ2 part (s) U (s)

Wr (s)ds
]

= −M
(
δ̃
) ˆ ∞

δ̃

2
σ2 part (s) U (s)

Wr (s)ds

and we now show that this term converges to 0 as δ̃ →∞. Let us rewrite to get

lim
δ̃→∞

−M
(
δ̃
) ˆ ∞

δ̃

2
σ2 part (s) U (s)

Wr (s)ds = lim
δ̃→∞

−
´∞
δ̃

2
σ2 part (s) U(s)

Wr(s)ds
1

M(δ̃)
= ”0”

”0”

{L′Hopital}
= lim

δ̃→∞

2
σ2 part

(
δ̃
) U(δ̃)
Wr(δ̃)

M′(δ̃)
[M(δ̃)]2

= 0

and again, we see that since U
(
δ̃
)
,Wr

(
δ̃
)
,M
(
δ̃
)
,M ′

(
δ̃
)
are all of exponential form and part

(
δ̃
)
is of cumulative

normal form this term converges to zero rapidly, and the solution to E
(
δ̃
)
is verified. Let us take the arbitrary limit

l → ∞ and define gp (x) ≡ gp (x|∞). We note that the complement of the integrals (i.e.
´∞
l
·ds) vanishes, so that

liml→∞KM (l) = 0. We see that gp (x) and g′p (x) (and so forth) consists of a finite sum of integrals of the form´∞
x
ecst·sN [q (s, χ, T )] ds where cst is a constant.
Third, let us briefly establish two auxiliary results. First, let us note that for aa > 0 we have

aa

ˆ ∞
x

φ (−aa · s+ bb) ds =
ˆ −aa·x+bb

−∞
φ (y) dy = N [−aa · x+ bb]

by simple change of variables. Second, note that

ecst·xφ (−aa · x+ bb) = 1√
2π

exp
{
−1

2
[
(−aa · x+ bb)2 − 2cst · x

]}
= 1√

2π
exp
{
−1

2

[(
−aa · x+ bb+ cst

aa

)2
+ bb2 −

(
bb+ cst

aa

)2
]}

= φ
(
−aa · x+ bb+ cst

aa

)
e
cst
aa (bb+ 1

2
cst
aa )

by a simple completion of the square. Now, we can solve the integral in question via integration by parts:
ˆ ∞
x

ecst·sN [−aa · s+ bb] ds

= ecst·s

cst
N [−aa · s+ bb]

∣∣∣∣∞
s=x

+ 1
cst

[
aa ·
ˆ ∞
x

ecst·sφ (−aa · s+ bb) ds
]

= −e
cst·x

cst
N [−aa · x+ bb] + 1

cst

[
a

ˆ ∞
x

φ
(
−aa · s+ bb+ cst

aa

)
ds

]
e
cst
aa (bb+ 1

2
cst
aa )

= −e
cst·x

cst
N [−aa · x+ bb] + 1

cst
N
[
−aa · x+ bb+ cst

aa

]
e
cst
aa (bb+ 1

2
cst
aa )

where we again used the fact that the cumulative normal vanishes faster than any exponential function explodes.
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Next, note that Di
(
δ̃, t
)

= ...+ ...e(δ̃−δ̃B)χN
[
q
(
δ̃, χ, t

)]
+ ... for some χ, so that we are essentially facing integrals

2
σ

ˆ ∞
x

e(s−δ̃B)χN [q (s, χ, t)] M (s)U (x)
Wr (s) ds

= 2
σ

1
−∆κe

κ2xe−δ̃Bχ
ˆ ∞
x

e(χ−κ2)sN [q (s, χ, t)] ds

= 2
σ

1
−∆κe

κ2xe−δ̃Bχ
1

χ− κ2

×
[
−e(χ−κ2)N [q (x, χ, t)] +N [q (x, κ2, t)] e(χ−κ2){δ̃B− 1

2 [(κ+a)2−(χ+a)2]σ2T}
]

Here, we used cst = (χ− κ2), aa = 1
σ
√
T
, b = δ̃B−(χ+a)σ2T

σ
√
T

, q (x, χ, t) + (χ− κ)σ
√
t = q (x, κ, t) and the fact that

(χ− κ) (−)
[
χ+ a− 1

2 (χ− κ)
]

= (χ− κ) (−)
[1

2χ+ 1
2a+ 1

2κ+ 1
2a
]

= 1
2
[
(κ+ a)2 − (χ+ a)2]

where we note that the last term is independent of if we pick the larger or smaller root, as both κ and all possible χ
are centered around −a. Lastly, we note that 2

σ

´∞
x
e(s−δ̃B)χN [q (s, χ, t)] M(x)U(s)

Wr(s) ds has the same form of solution
only with κ1 replacing κ2. Define

H (x, χ, κ, T ) ≡
ˆ ∞
x

e(χ−κ)·sN [q (s, χ, T )] ds

= − 1
cst

{
ecst·xN [q (x, χ, T )]− ecst·δ̃B exp

{
−cst

(
χ+ a− 1

2cst
)
σ2T

}
N
[
q (x, χ, T ) + cst · σ

√
T
]}

= 1
κ− χ

{
e(χ−κ)xN [q (x, χ, T )]− e(χ−κ)δ̃Be

1
2 [(κ+a)2−(χ+a)2]σ2TN [q (x, κ, T )]

}
The solution to the particular part for F then is

gF (x) ≡ 2
σ2

ˆ ∞
x

F (s) M (s)U (x)−M (x)U (s)
Wr (s) ds

= 1
−∆κ

2
σ2

2∑
i=1

{
eκ2xe−γiδ̃BH (x, γi, κ2, T )− eκ1xe−γiδ̃BH (x, γi, κ1, T )

}
g′F (x) ≡ 2

σ2

ˆ ∞
x

F (s) κ2M (s)U (x)− κ1M (x)U (s)
Wr (s) ds

= 1
−∆κ

2
σ2

2∑
i=1

{
κ2e

κ2xe−γiδ̃BH (x, γi, κ2, T )− κ1e
κ1xe−γiδ̃BH (x, γi, κ1, T )

}
and the solution to the particular part for Gj is

gGj (x) ≡ 2
σ2

ˆ ∞
x

Gj (s) M (s)U (x)−M (x)U (s)
Wr (s) ds

= 1
−∆κ

2
σ2

2∑
i=1

{
eκ2xe−ηjiδ̃BH (x, ηji, κ2, T )− eκ1xe−ηjiδ̃BH (x, ηji, κ1, T )

}
g′Gj (x) ≡ 2

σ2

ˆ ∞
x

Gj (s) κ2M (s)U (x)− κ1M (x)U (s)
Wr (s) ds

= 1
−∆κ

2
σ2

2∑
i=1

{
κ2e

κ2xe−ηjiδ̃BH (x, ηji, κ2, T )− κ1e
κ1xe−ηjiδ̃BH (x, ηji, κ1, T )

}
Plugging in x = δ̃B , and noting that q

(
δ̃B , χ, t

)
= − (χ+ a)σ

√
t, we make the important observation that

eκδ̃Be−χδ̃BH
(
δ̃B , χ, κ, T

)
= 1
κ− χ

{
N
[
− (χ+ a)σ

√
T
]
− e

1
2 [(κ+a)2−(χ+a)2]σ2TN

[
− (κ+ a)σ

√
T
]}

is independent of δ̃B . We thus conclude that for any particular part gp
(
δ̃B
)
, of the form given above, and its derivative
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g′p
(
δ̃B
)
are independent of δ̃B besides C

(
δ̃B
)
containing eδ̃B . Also note that for χ = {γ1, γ2} we have

e
1
2 [(κ+a)2−(γ+a)2]σ2T = erT

and for χ = {ηi1, ηi2} we have

e
1
2

[
(κ+a)2−(ηij+a)2

]
σ2T = e(r−r̂i)T

Total equity is now easily written out to be

E
(
δ̃
)

= Keκ2(δ̃−δ̃B) + eδ̃

r − µ +K0 + gp
(
δ̃
)

= Keκ2(δ̃−δ̃B) + eδ̃

r − µ +K0 −m
(
P11B1e

−r̂1T + P12B2e
−r̂2T

)
gF
(
δ̃
)

+ P11mC1
(
δ̃B
)
gG1

(
δ̃
)

+ P12mC2
(
δ̃B
)
gG2

(
δ̃
)

where we scaled K by e−κ2δ̃B . The constant term K0 is

K0 = 1
r

{
− (1− π) c+m

[
A1 +A2 +

∑
j

P1jBie
−r̂jT − p

]}
The constant K is derived by setting

0 = E
(
δ̃B
)

= K + eδ̃B

r − µ +K0 −m

(∑
j

P1jBie
−r̂jT

)
gF
(
δ̃B
)

+m
2∑
j=1

Cj
(
δ̃B
)
gGj

(
δ̃B
)

⇐⇒ K
(
δ̃B
)

= −

[
eδ̃B

r − µ +K0 −m

(∑
j

P1jBie
−r̂jT

)
gF
(
δ̃B
)

+m

2∑
j=1

Cj
(
δ̃B
)
gGj

(
δ̃B
)]

The term in brackets only features linear combinations of constants independent of δ̃B .
Proof of Proposition 3.

The optimal δB = eδ̃B is now easily derived. Plugging in K
(
δ̃B
)
into the smooth pasting condition E′

(
δ̃B
)

= 0,
we can derive δB = eδ̃B in closed form:

0 = E′
(
δ̃B
)

= K
(
δ̃B
)
κ2 + eδ̃B

r − µ −m
(
B1e

−r̂1T + P12B2e
−r̂2T

)
g′F
(
δ̃B
)

+m

2∑
j=1

P1jCj
(
δ̃B
)
g′Gj

(
δ̃B
)

= κ2

[
− eδ̃B

r − µ −K0 +m
(
B1e

−r̂1T + P12B2e
−r̂2T

)
gF
(
δ̃B
)
−m

2∑
j=1

P1j

(
α̂j

eδ̃B

r − µ −Aj
)
gGj

(
δ̃B
)]

+ eδ̃B

r − µ −m
(
B1e

−r̂1T + P12B2e
−r̂2T

)
g′F
(
δ̃B
)

+m

2∑
j=1

P1j

(
α̂j

eδ̃B

r − µ −Aj
)
g′Gj

(
δ̃B
)

= − eδ̃B

r − µ

[
κ2 − 1 +m

2∑
j=1

P1jα̂j
{
κ2gGj

(
δ̃B
)
− g′Gj

(
δ̃B
)}]

−κ2K0 +m
(
B1e

−r̂1T + P12B2e
−r̂2T

){
κ2gF

(
δ̃B
)
− g′F

(
δ̃B
)}

+m

2∑
j=1

P1jAj
{
κ2gGj

(
δ̃B
)
− g′G1

(
δ̃B
)}
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which yields

δB = eδ̃B = (r − µ)×

[
κ2 − 1 +m

2∑
j=1

P1jα̂j
{
κ2gGj

(
δ̃B
)
− g′Gj

(
δ̃B
)}]−1

×
[
−κ2K0 +m

(
B1e

−r̂1T + P12B2e
−r̂2T

){
κ2gF

(
δ̃B
)
− g′F

(
δ̃B
)}

+m
∑2

j=1 P1jAj
{
κ2gGj

(
δ̃B
)
− g′Gj

(
δ̃B
)} ]

where we note that the right hand side is independent of δ̃B by previous results. We can simplify further by noting
that each of the terms in curly brackets can be written as

κ2gF
(
δ̃B
)
− g′F

(
δ̃B
)

= κ2
2
σ2

ˆ ∞
δ̃B

F (s)
M (s)U

(
δ̃B
)
−M

(
δ̃B
)
U (s)

Wr
(
δ̃B
) ds− 2

σ2

ˆ ∞
δ̃B

F (s)
κ2M (s)U

(
δ̃B
)
− κ1M

(
δ̃B
)
U (s)

Wr
(
δ̃B
) ds

= 2
σ2

ˆ ∞
δ̃B

F (s)
(κ1 − κ2)M

(
δ̃B
)
U (s)

Wr
(
δ̃B
) ds

= − 2
σ2

2∑
i=1

e(κ1−γi)δ̃BH
(
δ̃B , γi, κ1, T

)
= − 2

σ2

2∑
i=1

1
κ1 − γi

{
N
[
− (γi + a)σ

√
T
]
− e

1
2 [(κ1+a)2−(γi+a)2]σ2TN

[
− (κ1 + a)σ

√
T
]}

We thus established a closed form, albeit quite complex, for the optimal δ̃B .
The limit limT→∞ δB can be easily derived by noting that the normal distributions either converge to 0 or 1, so

the only difficulty remaining is the term e
1
2 [(κ1+a)2−(γi+a)2]σ2T . Let us establish a series of results:

First, we note that in addition to e
1
2 [(κ1+a)2−(γi+a)2]σ2T = erHT , we have

e
1
2

[
(κ1+a)2−(ηji+a)2

]
σ2T = e(rH−r̂j)T

and since we established that r̂j > rH we note that this term is converging to zero.
Second, we note that

lim
T→∞

N
[
− (κ1 + a)σ

√
T
]

e−rHT
= ”0”

”0” = lim
T→∞

(
N
[
− (κ1 + a)σ

√
T
])′

(e−rHT )′

= lim
T→∞

(κ1 + a)σ
2rH
√
T

exp
{
−1

2 (κ1 + a)2 σ2T + rHT
}

= lim
T→∞

(κ1 + a)σ
2rH
√
T

exp
{
−T
[
µ̃2

2σ2 + rH − rH
]}

= lim
T→∞

(κ1 + a)σ
2rH
√
T

exp
{
− µ̃2

2σ2 T

}
= 0

where we used the fact that (κ1 + a)2 = µ̃2+2σ2rH
σ4 . Thus, all terms involving functions g vanish and no complication

arises from premultiplying by m = 1
T
, and we are left with

lim
T→∞

δB
r − µ = lim

T→∞
VB = lim

T→∞

−κ2K0 (T )
κ2 − 1 = κ2 (1− π) c

κ2 − 1

where VB = δB
r−µ which is the same result as in Leland (1994) once we identify (in Leland’s notation) x = −κ2, so

that limT→∞ VB = (1−π) c
r
x

x+1 . In the infinite maturity limit, the equity holders care about the illiquidity they impose
on bondholders via the valuation spread between H and L only at the beginning when issuing bonds, but since there
is no rollover their default decision is not affected by bond market illiquidity for a given level of aggregate face value
and coupon.

Next, let us investigate T → 0, which essentially renders the secondary bond market completely liquid. But of
course there is a large effect of T → 0 on the bankruptcy decision of the equity holders. Using L’Hopital’s rule, we
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need to investigate
lim
T→0

1
T

[
κ2gF (vB)− g′F (vB)

]
We see that two terms that exactly give κi − χ explode at the rate 1√

T
, so that in the limit we have

lim
T→∞

δ∗B (T )
r − µ =

∑2
j=1 P1j (Bj +Aj)∑2

j=1 P1jα̂j
=
p
[
P11 P12

]
P−11[

P11 P12
]

P−1α

If α = αH = αL, we are back to the L96 solution of VB = p
α
.

A.4 Proofs of Section 4
Recall that debt values are given by[
DH (δ, τ)
DL (δ, τ)

]
= P

[
A1 +B1e

−r̂1τ [1− F (δ, τ)] + C1G1 (δ, τ)
A2 +B2e

−r̂2τ [1− F (δ, τ)] + C2G2 (δ, τ)

]
= P

[
A1
A2

]
+ [1− F (δ, τ)] P exp

(
−D̂τ

)
P−1P

[
B1
B2

]
+ P

[
G1 (δ, τ) 0

0 G2 (δ, τ)

]
P−1P

[
C1
C2

]
= P

[
A1
A2

]
+ [1− F (δ, τ)] exp (−Aτ) P

[
B1
B2

]
+ P

[
G1 (δ, τ) 0

0 G2 (δ, τ)

]
P−1P

[
C1
C2

]
Here, by defining a ≡ µ−σ

2
2

σ2 , γ1 ≡ 0, γ2 ≡ −2a, ηi1,2 ≡ −a ±
√
a2σ4+2σ2r̂i

σ2 , and q (δ, χ, t) ≡ log(δB)−log(δ)−(χ+a)·σ2t
σ
√
t

,
the constants in (7) are given by:[

A1
A2

]
≡ cD̂−1P−11,

[
B1
B2

]
≡ pP−11− cD̂−1P−11,

[
C1
C2

]
≡ δB
r − µP−1α− cD̂−1P−11

P
[
A1
A2

]
≡ cA−11, P

[
B1
B2

]
≡ p1− cA−11, P

[
C1
C2

]
≡ δB
r − µα− cA

−11

and the functions F and G are given by

F (δ, τ) ≡
2∑
i=1

(
δ

δB

)γi
N [q (δ, γi, τ)] , Gj (δ, τ) ≡

2∑
i=1

(
δ

δB

)ηij
N [q (δ, ηij , τ)] ,

where N (x) is the cumulative distribution function for a standard normal distribution.

Define ω ≡ [1,−1] A =
[

(rH + ξH + ξL)
− (rL + ξH + ξL)

]>
and S ≡ DH − DL = [1,−1]

[
DH
DL

]
. We will also write the

shorthand
√
· for

√
[(r + ξ)− (r + λβ)]2 + 4ξλβ and note that r̂1 −

√
· = r̂2 > 0.

A.4.1 Time-to-maturity τ derivative
Proof of Proposition 4.

First, we know that at τ = 0, the derivative with respect to τ is

Ṡ (δ, 0) = [1− F (δ, 0)] p (rL − rH) + lim
τ→0

Ḟ (δ, 0) δB
r − µ (αH − αL) = p (rL − rH) > 0

and hence our result always holds in the vicinity of τ = 0.
Now we prove the general results under sufficient conditions listed in Proposition 4. First, we note that

qτ (δ, χ, τ) = log(δ)−log(δB)−(χ+a)σ2τ
σ
√
τ

1
2τ , so δ and δB have reversed signs. Then, we have

˙[
DH (δ, τ)
DL (δ, τ)

]
= P

[
−r̂1B1e

−r̂1τ [1− F (δ, τ)]−B1e
−r̂1τ Ḟ (δ, τ) + C1Ġ1 (δ, τ)

−r̂2B2e
−r̂2τ [1− F (δ, τ)]−B2e

−r̂2τ Ḟ (δ, τ) + C2Ġ2 (δ, τ)

]
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and the derivatives of the auxiliary functions are

Ḟ (δ, τ) =
2∑
i=1

(
δ

δB

)γi
φ [q (δ, γi, τ)] qτ (δ, γi, τ)

= φ [q (δ, 0, τ)]
2∑
i=1

qτ (δ, γi, τ)

= φ [q (δ, 0, τ)]
log
(
δ
δB

)
στ3/2 > 0

Ġj (δ, τ) =
2∑
i=1

(
δ

δB

)ηij
φ [q (δ, ηij , τ)] qτ (δ, ηij , τ)

= φ [q (δ, 0, τ)] e−r̂jτ
2∑
i=1

qτ (δ, ηij , τ)

= φ [q (δ, 0, τ)] e−r̂jτ
log
(
δ
δB

)
στ3/2

= e−r̂jτ Ḟ (δ, τ) > 0

where we used (
δ

δB

)γi
φ [q (δ, γi, τ)] = φ [q (δ, 0, τ)](

δ

δB

)ηij
φ [q (δ, ηij , τ)] = φ [q (δ, 0, τ)] e−r̂jτ

This is easily derived:

(
δ

δB

)γi
φ [q (δ, γi, τ)] = e−γi(δ̃B−δ̃) 1√

2π
e
− 1

2

[
δ̃B−δ̃−(γi+a)σ2t

σ
√
t

]2

= exp
{
−γi

(
δ̃B − δ̃

)} 1√
2π

exp

{
−

[(
δ̃B − δ̃

)2

2σ2t
− 2

(γi + a)σ2t
(
δ̃B − δ̃

)
2σ2t

+
[
(γi + a)σ2t

]2

2σ2t

]}

= 1√
2π

exp

{
−

[(
δ̃B − δ̃

)2

2σ2t
− 2

a
(
δ̃B − δ̃

)
σ2t

2σ2t
+

(γi + a)2 (σ2t
)2

2σ2t

]}

= 1√
2π

exp

{
−

[(
δ̃B − δ̃

)2

2σ2t
− 2

a
(
δ̃B − δ̃

)
σ2t

2σ2t
+
a2 (σ2t

)2

2σ2t
+
(
2γia+ γ2

i

) (
σ2t
)2

2σ2t

]}

= φ [q (δ, 0, τ)] exp

{
−
(
2γia+ γ2

i

)
σ2t

2

}

and we finally note that µ̃γ + σ2

2 γ
2 = 0 ⇐⇒ 2µ̃

σ2 γ + γ2 = 0 ⇐⇒ 2γa+ γ2 = 0 which gives the result in conjunction
with the fact that (γi + a) + (γ−i + a) = 0 as they are complementary roots centered around −a. Plugging in, we
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have
˙[

DH (δ, τ)
DL (δ, τ)

]
= P

[
−r̂1B1e

−r̂1τ [1− F (δ, τ)] + (C1 −B1) e−r̂1τ Ḟ (δ, τ)
−r̂2B2e

−r̂2τ [1− F (δ, τ)] + (C2 −B2) e−r̂2τ Ḟ (δ, τ)

]
= P

[
e−r̂1τ 0

0 e−r̂2τ

][
−r̂1B1 [1− F (δ, τ)] + (C1 −B1) Ḟ (δ, τ)
−r̂2B2 [1− F (δ, τ)] + (C2 −B2) Ḟ (δ, τ)

]
= P exp

(
−D̂τ

) [ −r̂1B1 [1− F (δ, τ)] + (C1 −B1) Ḟ (δ, τ)
−r̂2B2 [1− F (δ, τ)] + (C2 −B2) Ḟ (δ, τ)

]
= P exp

(
−D̂τ

)(
− [1− F (δ, τ)] D̂

[
B1
B2

]
+ Ḟ (δ, τ)

[
C1 −B1
C2 −B2

])
= exp (−Aτ)

(
− [1− F (δ, τ)] AP

[
B1
B2

]
+ Ḟ (δ, τ) P

[
C1 −B1
C2 −B2

])
where we used the fact that P exp

(
−D̂τ

)
= exp (−Aτ) P and PD̂ = AP. Premultiplying by the difference vector

[1,−1] and plugging in the definitions of A, Bi, Ci, we have

Ṡ (δ, τ) = [1,−1]
˙[

DH (δ, τ)
DL (δ, τ)

]
= [1,−1] exp (−Aτ)

{
[1− F (δ, τ)]

[
c− prH
c− prL

]
+ Ḟ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

]}

Let us derive a formula for a general vector
[
x
y

]
:

[1,−1] exp (−Aτ)
[
x
y

]
= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)
[x (rL − rH − ξH − ξL)− y (rH − rL − ξL − ξH)] +

√
·
(

1 + eτ
√
·
)

[x− y]
}

= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)(
[rL,−rH ]

[
x
y

]
− ω

[
x
y

])
+
√
·
(

1 + eτ
√
·
)

[1,−1]
[
x
y

]}
= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)(
[rL,−rH ]− ω +

√
· [1,−1]

) [ x
y

]
+ 2
√
· [1,−1]

[
x
y

]}

When x > y, it is clear that for τ = 0, we have [1,−1] exp (−A · 0)
[
x
y

]
= (x− y) > 0. Further, if it is to hold for

any τ , we need (
eτ
√
· − 1

)(
[rL,−rH ]

[
x
y

]
− ω

[
x
y

]
+
√
· [1,−1]

[
x
y

])
≥ 0

Our derivation of Ṡ has two terms of this form, multiplied by [1− F ] > 0 and Ḟ > 0. To ensure positivity, this

implies conditions on p, c, rH , rL, αH , αL, δB once we identify
[
x
y

]
=
[
c− prH
c− prL

]
and

[
x
y

]
=
[

δB
r−µαH − p
δB
r−µαL − p

]
.

DefineVB ≡ δB
r−µ ; thus, we have the following two conditions for these two cases, i.e., for

[
c− prH
c− prL

]
,

− (rL − rH)
[
p
(
rH + rL + ξH + ξL −

√
·
)
− 2c

]
> ⇐⇒ w1 ≡ c− pr̂2 > 0 ⇐⇒ (rL − rH) 2 [c− pr̂2] > 0

and for
[
VBαH − p
VBαL − p

]
,

VB
[
αL
(
rL − rH + ξH + ξL −

√
·
)
− αH

(
rH − rL + ξH + ξL −

√
·
)]

+ 2p (rH − rL) > 0
⇐⇒ VB [αL (−2rH + 2r̂2)− αH (−2rL + 2r̂2)] + 2p (rH − rL) > 0
⇐⇒ w2 ≡ VB [αL (r̂2 − rH) + αH (rL − r̂2)]− p (rL − rH) > 0

Note that rH < r̂2 < rL. So we need sufficiently high c > pr̂2 and also sufficiently high αL, αH in the face of a large
discount differential rL − rH . We thus have proved the following proposition. Thus, under the sufficient conditions
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listed in Proposition 4, we have

w1 ≡ c− pr̂2 ≥ 0
w2 ≡ VB [αL (r̂2 − rH) + αH (rL − r̂2)]− p (rL − rH) ≥ 0,

which implies that Sτ (δ, τ) > 0, i.e. the bid-ask spread (1− β)S (δ, τ) is larger for bonds with longer time-to-maturity.

A.4.2 Proof of S′ < 0 via the system of PDEs and LHS
Proof of Proposition 5.

We aim to prove S′ < 0 under the following sufficient conditions:

δB

r − µ
(αH − αL)− p (rL − rH) > 0 (A.1)

−αL (rL − rH) + (αH − αL)
rH + ξH + ξL

2
> 0 (A.2)

δB

r − µ

(
α (rL − rH) r̂1 + (αH − αL)

[(rH + ξH) (rL − rH − ξH)− ξL (rL + ξL + 2ξH)]
2
√
·

)
− c

(rL − rH)
√
·

> 0 (A.3)

(αH − αL)
δB

r − µ
− (rL − rH)

c

[(rH + ξH) (rL + ξL)− ξHξL]
> 0 (A.4)

First, note that when we subtract the second line from the first line of the differential equation we have

[1,−1]
[
rH + ξH −ξH
−ξL rL + ξL

][
DH
DL

]
= [1,−1]

([
c
c

]
+ µ̃δ

[
DH
DL

]′
+ σ2

2 δ2
[
DH
DL

]′′
−

˙[
DH
DL

])

⇐⇒ ω

[
DH
DL

]
+ Ṡ = µ̃S′ + σ2

2 S′′

⇐⇒ LHS = µ̃S′ + σ2

2 S′′

where
ω ≡ [rH + ξH + ξL,− (rL + ξL + ξH)] .

Let us first establish a limit of LHS (δ, τ):

lim
τ→0

LHS (δ, τ) = ω

[
DH (δ, 0)
DL (δ, 0)

]
+ lim
τ→0

Ṡ (δ, τ) = −p (rL − rH) + p (rL − rH) = 0.

Outline of the proof:
1. Show that ˙LHS as a function of τ only changes sign once.
2. Show, when τ is small, that LHS increases, that is

˙LHS (δ, τ) > 0.

3. Show that LHS (δ,∞) ≥ 0.
4. Show that

S (δB , τ)− lim
δ→∞

S (δ, τ) > 0

Then we are done: (1.) implies that the can at most be one local extrema. By (2.), we know that there is a local
maximum in LHS in terms of τ , i.e., LHS has to go up and then down again to approach from above the value in (3.),
which is zero or something positive. Finally, (4.) gives us a contradiction if ever S′ > 0. First, by continuity of the
expectation, we have that S′ < 0 for some part of the state space (δB ,∞), as otherwise the surplus couldn’t be less at
∞ than at 0. Suppose now that there is an interval on which S′ < 0. This means that there exist a local maximum
with S′ = 0 > S′′. But this would imply LHS = µ̃S′ + σ2

2 S
′′ < 0, a contradiction. Thus, S′ > 0 everywhere.

53



Step 1: Recall that

˙[
DH (δ, τ)
DL (δ, τ)

]
= exp (−Aτ) P

[
−r̂1B1 [1− F (δ, τ)] + (C1 −B1) Ḟ (δ, τ)
−r̂2B2 [1− F (δ, τ)] + (C2 −B2) Ḟ (δ, τ)

]
= exp (−Aτ) P

(
− [1− F (δ, τ)] D̂

[
B1
B2

]
+ Ḟ (δ, τ)

[
C1 −B1
C2 −B2

])
Thus, we have

¨[
DH (δ, τ)
DL (δ, τ)

]
= exp (−Aτ) (−A) P

(
− [1− F (δ, τ)] D̂

[
B1
B2

]
+ Ḟ (δ, τ)

[
C1 −B1
C2 −B2

])
+ exp (−Aτ) P

(
Ḟ (δ, τ) D̂

[
B1
B2

]
+ F̈ (δ, τ)

[
C1 −B1
C2 −B2

])
= exp (−Aτ)

(
[1− F (δ, τ)] A2P

[
B1
B2

]
− Ḟ (δ, τ) AP

[
C1 −B1
C2 −B2

])
+ exp (−Aτ)

(
Ḟ (δ, τ) AP

[
B1
B2

]
+ Ḟ (δ, τ) (...) P

[
C1 −B1
C2 −B2

])
= exp (−Aτ)

(
[1− F (δ, τ)] A2P

[
B1
B2

])
+ exp (−Aτ) Ḟ (δ, τ)

(
AP

[
2B1 − C1
2B2 − C2

]
+ (...) IP

[
C1 −B1
C2 −B2

])
where we used the fact that AP = PD̂ and A exp (−Aτ) = PD̂P−1P exp

(
−D̂τ

)
P−1 = PD̂ exp

(
−D̂τ

)
P−1 =

P exp
(
−D̂τ

)
D̂P−1 = exp (−Aτ) A as diagonal matrices of the same order commute.

Thus, if we can show that ˙LHS > 0 for any δ > δB we are done. Note that ∂2S(δ,τ)
∂τ2 = S̈ equals to

S̈ = [1,−1] (−A)
˙[

DH (δ, τ)
DL (δ, τ)

]
+ [1,−1] exp (−Aτ)

{
−Ḟ (δ, τ)

[
c− prH
c− prL

]
+ F̈ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

]}
= [1,−1] exp (−Aτ)

{
−A

(
[1− F (δ, τ)]

[
c− prH
c− prL

]
+ Ḟ (δ, τ)

[
δBαH
r−µ − p
δBαL
r−µ − p

])
− Ḟ (δ, τ)

[
c− prH
c− prL

]
+ F̈ (δ, τ)

[
δBαH
r−µ − p
δBαL
r−µ − p

]}
= −ω

˙[
DH (δ, τ)
DL (δ, τ)

]
+ [1,−1] exp (−Aτ)

{
−Ḟ (δ, τ)

[
c− prH
c− prL

]
+ F̈ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

]}
where we used the fat that
A exp (−Aτ) = PD̂P−1P exp

(
−D̂τ

)
P−1 = PD̂ exp

(
−D̂τ

)
P−1 = P exp

(
−D̂τ

)
D̂P−1 = exp (−Aτ) A as

diagonal matrices of the same order commute.

We realize that the ω
˙[

DH (δ, τ)
DL (δ, τ)

]
parts cancel out in ˙LHS, and we are left with

˙LHS (δ, τ) = [1,−1] exp (−Aτ)
{
−Ḟ (δ, τ)

[
c− prH
c− prL

]
+ F̈ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

]}
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Further note that with Ḟ (δ, τ) = φ [q (δ, 0, τ)]
log
(
δ
δB

)
στ3/2 , qτ (δ, 0, τ) =

log
(
δ
δB

)
−aσ2τ

2στ3/2 , and φ′ (x) = −xφ (x), we have

F̈ (δ, τ) = φ′ [q (δ, 0, τ)] qτ (δ, 0, τ)
log
(
δ
δB

)
στ3/2 + φ [q (δ, 0, τ)]

log
(
δ
δB

)
στ3/2

(
− 3

2τ

)
= Ḟ (δ, τ)

[
−q (δ, 0, τ) qτ (δ, 0, τ)− 3

2τ

]
= Ḟ (δ, τ)

[
−
− log

(
δ
δB

)
− aσ2τ

σ
√
τ

·
log
(
δ
δB

)
− aσ2τ

2στ3/2 − 3
2τ

]

= Ḟ (δ, τ)

[
log
(
δ
δB

)2 − a2 (σ2)2
τ2

2σ2τ2 − 3
2τ

]

= Ḟ (δ, τ)

[
log
(
δ
δB

)2

σ2τ2 − a2σ2

2 − 3
2τ

]
so that

˙LHS (δ, τ) = Ḟ (δ, τ) [1,−1] exp (−Aτ)

{(
log
(
δ
δB

)2

σ2τ2 − a2σ2

2 − 3
2τ

)[
δB
r−µαH − p
δB
r−µαL − p

]
−
[
c− prH
c− prL

]}
Let us now write out this term in more detail. First, note that

[1,−1] exp (−Aτ)
[
VBαH − p
VBαL − p

]
= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)
w2 + 2

√
·VB (αH − αL)

}
[1,−1] exp (−Aτ)

[
c− prH
c− prL

]
= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)
w1 + 2

√
·p (rL − rH)

}
Then, let x ≡ log

(
δ
δB

)2 ∈ (0,∞), to simplify to

˙LHS = Ḟ×e
−r̂1τ

2
√
·

[(
x

σ2τ2 −
a2σ2

2 − 3
2τ

){(
eτ
√
· − 1

)
w2 + 2

√
·VB (αH − αL)

}
−
{(

eτ
√
· − 1

)
w1 + 2

√
·p (rL − rH)

}]
As Ḟ × e−r̂1τ

2
√
· > 0, we know that the term [·] determines the sign of ˙LHS. Writing it out, we have[(

x

σ2τ2 −
a2σ2

2 − 3
2τ

){(
eτ
√
· − 1

)
w2 + 2

√
·VB (αH − αL)

}
−
{(

eτ
√
· − 1

)
w1 + 2

√
·p (rL − rH)

}]
=

(
eτ
√
· − 1

)[(
x

σ2τ2 −
a2σ2

2 − 3
2τ

)
w2 − w1

]
+ 2
√
· [VB (αH − αL)− p (rL − rH)]

We note that limτ→0
eτ
√
·−1
τ

= ”0”
”0” =

√
· > 0, so that limτ→∞

eτ
√
·−1
τ2 = ∞. Thus, at τ in the vicinity of 0, the sign

of the term is determined by w2. Next, when τ →∞, we have the sign being determined by −a
2σ2

2 w2 − w1 < 0.
Multiplying out w2

(
eτ
√
· − 1

)
> 0, and defining Q1 (x, τ) =

(
x

σ2τ2 − a2σ2

2 − 3
2τ

)
, we have

Q (x, τ) = Q1 (x, τ)− w1

w2
+ 2
√
· [VB (αH − αL)− p (rL − rH)](

eτ
√
· − 1

)
w2

= Q1 (x, τ)−

(
eτ
√
· − 1

)
w1 − 2

√
· [VB (αH − αL)− p (rL − rH)](
eτ
√
· − 1

)
w2

= Q1 (x, τ)−

(
eτ
√
· − 1

)
w1 − w3(

eτ
√
· − 1

)
w2

= Q2 (x, τ)−Q2 (τ)
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where from (A.1) we know that

w3 ≡ 2
√
· [VB (αH − αL)− p (rL − rH)] > 0.

Note that Q1 (x, τ) changes sign only once. Then, we know that

Q̇2 (τ) =

√
·eτ
√
·w1

(
eτ
√
· − 1

)
w2 −

[(
eτ
√
· − 1

)
w1 − w3

]√
·eτ
√
·w2

(·)2 = w2w3
√
·eτ
√
·

(·)2

Thus, if w2w3 > 0, then Q̇2 (τ) > 0 and we know that Q (x, τ) is composed of a part that crosses from positive to
negative as τ increase (Q1 (x, τ)) and of a part that is monotonically decreasing as τ increases (−Q2 (τ)).

Step 2: From the derivation above, we know that for τ in the vicinity of 0, the sign of the ˙LHS is determined by
w2. Next, when τ →∞, we have the sign being determined by −a

2σ2

2 w2 − w1 < 0.

Step 3: Note that

LHS (δ,∞) = ωP
[ (

δ
δB

)η12 0
0

(
δ
δB

)η22

]
P−1P

[
C1
C2

]
with η12 < η22 < 0, so that 0 < X1 =

(
δ
δB

)η12
<
(
δ
δB

)η22 = X2. Note that for δ → δB , the LHS is positive under
(A.2)

lim
δ→δB

LHS (δ,∞) = −αL (rL − rH) + (αH − αL) rH + ξH + ξL
2 > 0.

First, let us note the following results:

P
[
C1
C2

]
= δB

r − µα− cA
−11

ωP
[
X1 0
0 X2

]
P−1α = ωP

[
X1 0
0 X2

]
P−1

[
αH
αL

]
=

αL (rL − rH)
[
r̂1 (X2 −X1)−X2

√
·
]

√
·

+ (αH − αL) (X2 −X1) [(rH + ξH) (rL − rH − ξH)− ξL (rL + ξL + 2ξH)]
2
√
·

+ (αH − αL) (X1 +X2) rH + ξH + ξL
2

ωP
[
X1 0
0 X2

]
P−1A−11 = (rL − rH) (X2 −X1)√

·
> 0

Combining these results, we have that

LHS (δ,∞)

= δB
r − µ ×

{
αL (rL − rH)

[
r̂1 (X2 −X1)−X2

√
·
]

√
·

+ (αH − αL) (X2 −X1) [(rH + ξH) (rL − rH − ξH)− ξL (rL + ξL + 2ξH)]
2
√
·

}
+ δB
r − µ ×

{
(αH − αL) (X1 +X2) rH + ξH + ξL

2

}
− c (rL − rH) (X2 −X1)√

·

= (X2 −X1)
[
δB
r − µ

(
α (rL − rH) r̂1 + (αH − αL) [(rH + ξH) (rL − rH − ξH)− ξL (rL + ξL + 2ξH)]

2
√
·

)
− c (rL − rH)√

·

]
+X2

δB
r − µ

(
rH + ξH + ξL

2 (αH − αL)− αL (rL − rH)
)

+X1
δB
r − µ

rH + ξH + ξL
2 (αH − αL)

Because 0 < X1 < X2, the sufficient conditions for LHS (δ,∞) > 0 are

δB
r − µ

(
α (rL − rH) r̂1 + (αH − αL) [(rH + ξH) (rL − rH − ξH)− ξL (rL + ξL + 2ξH)]

2
√
·

)
− c (rL − rH)√

·
> 0,

rH + ξH + ξL
2 (αH − αL)− αL (rL − rH) > 0.
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Here, the first condition is from (A.3) and the second is from (A.2).

Step 4: We have

S (δB , τ) = δB
r − µ (αH − αL)

lim
δ→∞

S (δ, τ) = [1,−1]
[
cA−11 + exp (−Aτ)

(
p1− cA−11

)]
Under our assumption that Sτ (δ, τ) > 0, we know that the highest S (δ, τ) is at τ =∞. Noting

[1,−1] A−11 = rL − rH
(rH + ξH) (rL + ξL)− ξHξL

[1,−1] exp (−Aτ) 1 =
(rL − rH) e−r̂1τ

(
e
√
·τ − 1

)
√
·

[1,−1] exp (−Aτ) A−11 = −
(rL − rH) e−r̂1τ

[
r̂1

(
e
√
·τ − 1

)
+
√
·
]

√
· [(rH + ξH) (rL + ξL)− ξHξL]

we have from (A.4)

S (δB , τ)− lim
δ→∞

S (δ, τ) > lim
τ→∞

{
S (δB , τ)− lim

δ→∞
S (δ, τ)

}
= (αH − αL) δB

r − µ − (rL − rH) c

[(rH + ξH) (rL + ξL)− ξHξL] > 0.

Taken together, we established parameter restrictions that result in Sδ (δ, τ) < 0.
Looser sufficiency conditions can be established for Sδ (δ, τ) in the vicinity of τ = 0 or δ = δB . We omit these

proofs for brevity.

A.5 The steady-state distribution of types, trading volume
We now derive the cross-sectional (w.r.t. τ) steady-state distribution of L types. Let pH (t, τ) be the proportion at
time t of H types of maturity τ . Then we have

∂pH (t, τ)
∂t

− ∂pH (t, τ)
∂τ

= λpL (t, τ)− ξpH (t, τ)

as when time advances, maturity shrinks. To impose a steady-state, we note that ∂pH (t,τ)
∂t

= 0 and that pH (t, T ) = 1,
i.e., at any time t, due to the firm being able to issue to only H types, the proportion of H types with the longest
maturity T is always 1. Further note that pH + pL = 1, ∀τ , so that in the end we have

−∂pH (τ)
∂τ

= λpL (t, τ)− ξpH (t, τ)

pH (τ) = λ+ ξe(τ−T )(λ+ξ)

λ+ ξ

pL (τ) = ξ

λ+ ξ

[
1− e(τ−T )(λ+ξ)]

We of course have to adjust by the density of bonds 1
T

when looking at the steady state mass of H and L types, µH
and µL. We solve to get

µH (T ) = 1
T

ˆ T

0
pH (τ) dτ

= λ

λ+ ξ
+
ξ
(
1− e−T (λ+ξ))
T (λ+ ξ)2

µL (T ) = ξ

λ+ ξ
−
ξ
(
1− e−T (λ+ξ))
T (λ+ ξ)2
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and we note that µ′L (T ) > 0 > µ′H (T ) (note that ∂pi(τ)
∂T

6= 0), limT→0 µH (T ) = 1 and limT→0 µL (T ) = 0, as well as
limT→∞ µH (T ) = λ

λ+ξ and limT→∞ µL (T ) = ξ
λ+ξ .

Trade volume is now easily derived. It is simply the mass of agents that are in state (L, τ) times the intensity
with which they meet a market maker and execute trades, λ. Thus, trade volume (scaled by total bonds outstanding)
for maturity τ will be

V olume (τ) = λ

T
pL (τ) = 1

T

λξ

λ+ ξ

[
1− e(τ−T )(λ+ξ)]

A.6 Steady state in the search market
So far, we have assumed that the intermediation intensity λ is exogenously determined by the dealers. This assumption
hinges on the fact that we assume an infinite mass of H type buyers waiting on the sideline who do not hold the
asset, but in order to buy have to go through a dealer. We can relax these assumptions in several ways without
substantially changing the model.

However, the two assumptions we will not relax are that (i) orders are ’batched’ in the sense that there is no
difference in intermediation intensities between different maturities τ ∈ [0, T ], and (ii) that dealers extract all the
surplus when bargaining with H type buyers. Relaxing (i) would destroy our closed form solution without providing
much more insight.

The problem with relaxing (ii) is more subtle: by removing dealers and allowing direct negotiation between H
and L types we essentially (except in extreme circumstances) leave some surplus beyond their own valuation to the
H type buyers. If we assume that we have an infinite mass of H type buyers on the sideline, this would not change
their behavior as every single one of the buyers expects never to have the opportunity to be able to buy and make a
surplus. However, if there is only a finite mass of H type buyers waiting on the sideline (as we will allow later on),
then (a) the firm’s pricing at issuance will be affected as it will have to entice H type buyers to participate instead
of waiting and buying for a discount in the secondary market, (b) we now have to track the value function of the
H and L types who do not hold the asset, and (c) the expected surplus for an H type not holding the asset is an
integral over all possible maturities he might encounter. This sufficiently complicates the equations to render them
not solvable by the methods we employed in this paper, while not adding more insights. In a follow up project, we
can easily incorporate a dealer-less market by giving up the deterministic maturity dimension.

First, we can easily relax the model to allow for random transitioning back from the L to the H state for
bondholders, say with intensity ζ. Then we can simply use our current valuation formulas, but with λβ + ζ taking
the place of λβ. Also, the impact on trade-volume can be easily handled but for brevity is not shown here.

Second, with this switching back intensity, we can also close the model to have 4 different finite population
measures — H types with and without the bond, and L types with and without the bond under the assumption
that a dealer will only intermediate a trade once he found a buying party (H type) and leave no surplus to the H
type buyer. This then allows us, in the tradition of most search models, to define the meeting intensity λ as some
function of the steady-state masses of these populations, especially of the mass H types without the bond trying to
buy and the mass of L types with the bond trying to sell. This would, in steady-state, result in a meeting intensity
λ (T ) that is a function of the maturity structure, which however for a given T would be constant. The valuation
equations would simply include λ (T ) as a constant and thus would not change. The only thing that would change
is the optimal maturity calculations we analyzed in Section 5.1 — here, the firm will take into account the impact of
its maturity choice T on the liquidity of the secondary market, and thus indirectly on the valuation of its bonds.
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