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Abstract 
 
This paper provides an empirical analysis of the effects of new product versus process 
innovations on export propensity at the firm level. Product innovation is a key factor for 
successful market entry in models of creative destruction and Schumpeterian growth. Process 
innovation helps securing a firm’s market position given the characteristics of its product 
supply. Both modes of innovation are expected to raise a firm’s propensity to export. 
According to new trade theory, we conjecture that product innovation is relatively more 
important in that regard. We investigate these hypotheses in a rich survey panel data set with 
information about new innovations of either type. With a set of indicators regarding 
innovation motives and impediments and continuous variables at the firm and industry level 
at hand, we may determine the probability of launching new innovations and their impact on 
export propensity at the firm level through a double treatment approach. 
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1 Introduction

Research on the role of innovation on economic outcome has for long been
at the heart of three different fields of the profession: macro-economics, in-
ternational economics, and industrial economics. Two central assumptions
can be thought of unifying these literatures, namely that innovation is en-
dogenous at the firm-level, and it is undertaken for the sake of distinguishing
products from competitors (horizontally or qualitatively) thereby securing
a firm’s market position against its rivals. We may associate innovation of
that kind with what we will refer to as product innovation. While macro and
trade economics tend to think of firm-level productivity as being determined
by nature or even drawn from a lottery, there is a well-established literature
in industrial organization that suggests that endogenous productivity gains
are possible through process innovation.

Overall, product characteristics and high productivity are now under-
stood as the corner stones for firms to sustain competition on the domestic
but even more so on global markets. Accordingly, we hypothesize that there
is a distinct role to play for product and and process innovations. Yet, their
distinct impact on domestic and foreign market penetration is hitherto the
target of only small bodies of theoretical and empirical work. To a large
extent, product and/or process characteristics and the corresponding modes
of innovation are typically viewed to be beyond a firm’s choice. The latter
is, however, largely at odds with both economic intuition and stylized facts.

This paper aims at contributing to previous empirical work on innovation
and exports by distinguishing between the effects of product and process
innovation on firm-level export propensity, and, at the same time, by taking
full account of either kind of innovation’s endogeneity.

The remainder of the paper is organized as follows. The next section
provides an overview of earlier theoretical and empirical work on innovation
to motivate determinants of innovations and derive hypotheses about their
consequences for productivity and export propensity. Section 3 elaborates on
the empirical framework for estimating the impact of two endogenous modes
of innovation on export propensity. Section 4 summarizes the main features
of our survey data. The empirical findings are presented in Section 5, they
are discussed and their sensitivity is investigated in Section 6, and the last
section concludes with a summary of the central findings.
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2 Previous research and the contribution of

this paper

In the subsequent discussion of previous, innovation-related economic work,
it is useful to distinguish between theoretical and empirical research on the
issue.

2.1 Economic theory on innovation

There is a sizeable body of theoretical work that elaborates on the deter-
minants of innovation and their consequences for productivity and economic
growth and, to a lesser extent, for exports.

Macro-economists stress the importance of innovation in new products
as a prerequisite for economic growth. As indicated before, innovation is
endogenous itself and firms innovate more likely in large economies (where
fixed costs can be covered more easily), if the (exogenous) productivity in
research labs is high, product markets are competitive, and if consumers value
a large variety and/or a high quality of available products (see Grossman
and Helpman, 1991, chapters 3 and 4). Implicitly, most of the related studies
confine their interest to product innovation. Only recently, macro-economists
explore the potential differences between product and process innovations for
income, focusing on heterogeneous agents and technological unemployment
(Foellmi and Zweimüller, 2005). One key finding in the latter branch of
work is that process innovation may lead to technological unemployment
in the short-to-medium run which may be offset by product innovation in
the long-run. While both process and product innovation spur aggregate
income, product innovation is preferable by avoiding the adverse effects of
technological unemployment.

International economic theory spots the role of product innovation for
trade in open economy growth models (Dollar, 1986; Jensen and Thursby,
1987; Grossman and Helpman, 1989, 1990, 1991, chapters 9-11; Segerstrom,
Anant, and Dinopoulos, 1990). As in closed-economy models of endogenous
growth, market size, the productivity of research labs, consumer preferences
favoring a larger variety and/or a higher quality of products, and product
market competition are key determinants of innovation. An economy’s open-
ness to trade additionally fosters product market competition and, hence,
creates an incentive for a firm to innovate. In turn, innovation is a prereq-
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uisite for firms to gain access to foreign consumer bases via exports. The
latter establishes the hypothesis of innovation-driven exports. In recent dy-
namic models with firms that exhibit heterogeneous productivity levels and,
hence, heterogeneous marginal production costs (Jovanovich, 1982; Hopen-
hayn, 1992; Melitz, 2003; Grossman, Helpman, and Szeidl, 2006) investment
in firm-specific assets leads to a selection of firms: the least productive ones
do not participate at the market at all and the most productive ones sup-
ply consumers not only at home but also abroad (through exports), while
those with an intermediate productivity only face demand from domestic
consumers. There, investment in firm-specific assets (to be associated with
product innovation, see Spence, 1984) and a high corresponding outcome
(i.e., a high total factor productivity) are the key determinants of a firm’s
export propensity.

Research in industrial economics provided pioneering results on the role
of marginal cost-reducing innovations (i.e., expenditures for research and
development for the sake of process innovation) in international oligopoly
models more than two decades ago (Spencer and Brander, 1983). A higher
investment in such process innovations increases a firm’s domestic and foreign
output. However, this eventually leads to an excessive amount of innovations
of that kind. The equilibrium level of (process) innovation expenditures in-
creases with domestic and foreign market size, and it declines in the level
of trade costs and the degree of product market competition (i.e., the num-
ber of competitors in the market). Subsequent research established insights
in the relationship between process innovation and competitive pressure at
the local (Martin, 1993) and the global level (Baily and Gersbach, 1995).
More recently, an explicit treatment of product versus process innovations
and the role of competitive pressure has been delivered by Boone (2000). The
impact of product market competition on a firm’s product and process inno-
vations crucially depends on the firm’s efficiency relative to its competitors.
When assuming that the aggregate efficiency can be measured by the (inverse
of) average production costs, then, Boone’s (2000) analysis suggests that a
higher level of competitive pressure cannot increase product and process in-
novation at the same time. Rather, an increase in the competitive pressure
may increase the efficiency of each surviving firm but lead to the exit of less
productive ones, which is associated with a decline in product innovation.
Overall, a positive impact of competitive pressure on process innovation is a
possible, yet not a necessary outcome.
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2.2 Empirical work on the determinants and effects of

innovation

Numerous previous empirical studies point to a positive impact of innovation
on exports at the firm- or plant-level. Some of the related studies rely on
R&D expenditures as an indirect measure of innovations (Hirsch and Bijaoui,
1985; Kumar and Siddharthan, 1994; Braunerhjelm, 1996; Basile, 2001) and
a smaller number of studies employs survey data with explicit information on
the actual innovations (Wakelin, 1998; Bernard and Jensen, 1999; Roper and
Love, 2002; Cassiman and Mart́ınez-Ros, 2004; Lachenmaier and Wößmann,
2006). Overall, these studies point to a strong positive impact of innovations
on exports.1 While most of the mentioned studies were carried out in cross-
sectional data-sets, there is evidence of a positive impact of innovation on
exports (or export growth) also in panel data-sets (Hirsch and Bijaoui, 1985;
Cassiman and Mart́ınez-Ros, 2004).

Surprisingly, in as much as the aforementioned theoretical models estab-
lish an endogenous determination of innovations, and economic theory on
innovation and exports addresses their simultaneous determination (Hughes,
1998), empirical micro-econometric work on innovation-driven exports tends
to model the selection of firms into innovations as a random (or exogenous)
process. Two exceptions in the latter regard are Cassiman and Mart́ınez-
Ros (2004) and Lachenmaier and Wößmann (2006). Both studies exploit
information from panel data. Cassiman and Mart́ınez-Ros (2004) focus on
innovations as such and treat them as predetermined variables (hence, they
use once-lagged instead of contemporaneous innovations in the export re-
gressions). Lachenmaier and Wößmann (2006) apply instrumental-variable
procedures to account for the potential endogeneity of innovations. One of
their major findings is that innovations are indeed endogenous and their ex-
ogenous treatment leads to largely downward-biased estimates of the impact
of innovations on firm-level exports.

2.3 Contribution of this paper

This paper departs from the strategy adopted in previous micro-econometric
work on the innovation-driven exports hypothesis in two important ways.

1A smaller number of studies that employed the less preferable R&D expenditures as
an indirect measure of innovations lacked to find such a positive impact (see Cassiman
and Mart́ınez-Ros, 2004, for a survey).
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First, it explicitly distinguishes between product and process innovations
in the analysis and, second, it accounts for their endogeneity by allowing
for an endogenous selection of firms into product and process innovations.2

In contrast to earlier work, we use matching techniques for multiple binary
treatments – in our case, new product and/or process innovations versus no
innovations at all – to account for self-selection of firms into either type of
innovation.

3 Empirical framework

In the subsequent analysis we assume that, after controlling for a set of
observable variables, treatment participation does not depend on treatment
outcome. The latter is also referred to as the assumption of conditional
mean-independence (see Wooldridge, 2002). One strategy of exploiting this
assumption for the purpose of treatment effect identification is propensity
score matching (see Angrist, 1998; Dehejia and Wahba, 1999, 2002; Heckman,
Ichimura, and Todd, 1997, 1998; Lechner, 2001; Heckman, LaLonde, and
Smith, 1999, provide a survey).

Since our data set allows us to disentangle product innovation from pro-
cess innovation – hence, there are two treatment indicators at the firm level
–, we have to depart from the strategy typically applied in models with a
simple binary treatment variable. Obviously, the choice set from a firm’s
perspective can not be captured by a single binary indicator, but rather it
spans a 2×2 matrix of mutually exclusive innovation-related treatments. Let
us use superscripts 0, d, and c to indicate the cases of no treatment, product

2Cohen and Klepper (1996) formulate and test a model of the determinants of product
as well as process innovation in a cross-sectional data-set of 587 U.S. firms. They find
that large firms, in accordance with their model, have a greater incentive to pursue both
process and product innovations. However, these firms face a relatively larger incentive to
undertake process and more incremental innovations as compared to small ones. Mart́ınez-
Ros (2000) provides an empirical analysis of the determinants of product and process
innovations in a Spanish firm-level data-set. Neither of these studies considers the impact
of these two modes of endogenous innovations on exports. Basile (2001) looks at the
effect of product and process innovations (measured by two different R&D expenditure
modes) on exports, but he treats innovations as exogenous. The paper by Lachenmaier
and Wößmann (2006) also distinguishes between product and process innovations, but
only in one of the specifications in the sensitivity analysis. There, neither the impact of
product innovations nor that one of process innovations on exports is significantly different
from zero.
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innovation, and process innovation, respectively. Then, the four mutually
exclusive treatments are (0, 0) (the no treatment case), (d, 0) (new product
innovations only), (0, c) (new process innovations only), and (d, c) (both new
product and new process innovations).3 A matching approach with multiple
treatments has been derived by Lechner (2001).4

For convenience, let us refer to the no treatment outcome as Y (0,0) (i.e.,
the corresponding export propensity as captured by a binary firm-level ex-
port indicator). The remaining possible outcomes are Y (d,0), Y (0,c), and Y (d,c),
respectively. Let us use superscripts m and l as running indices for the four
treatments to determine three different types of treatment effects (see Lech-
ner, 2001). The expected average effect of treatment m relative to treatment
l for a firm drawn randomly from the population is defined as

γm,l = E(Y m − Y l) = E(Y m) − E(Y l). (1)

The expected average effect of treatment m relative to treatment l for a
firm randomly selected from the group of firms participating in either m or
l is defined as

αm,l = E(Y m − Y l|S = m, l) = E(Y m|S = m, l) − E(Y l|S = m, l), (2)

where S is the assignment indicator, defining whether a firm receives
treatment m or l. Finally, the expected average effect of treatment m relative
to treatment l for a unit that is randomly selected from the group of firms
participating in m only is defined as

θm,l = E(Y m − Y l|S = m) = E(Y m|S = m) − E(Y l|S = m). (3)

Note that both γm,l and αm,l are symmetric in the sense that γm,l = −γl,m

and αm,l = −αl,m, whereas θm,l is not, so that θm,l 6= −θl,m.
Estimates of the average treatment effects can be obtained as follows.

First, the response probabilities for each treatment can be estimated either by
a bivariate probability model (it is customary to use a logit or a probit model).
Denote the estimated response probabilities that are a function of the vector

3Notice that the underlying choices are unordered, here.
4See also Lee (2005) for a recent discussion of this framework.
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of observable variables x as P̂m(x) for m = (0, 0); (d, 0); (0, c); (d, c), respec-
tively. Second, estimate the expectation E(Y m|S = m) by E{E[Y m|P̂m(x)S =
m]|S 6= m} and the expectation E(Y l|S = m) by E{E[Y l|P̂ l(x), P̂m(x)S =
l]|S = m}. We apply radius matching (each treated firm is compared to all
firms within a certain radius around its propensity score), nearest-neighbor
matching (each treated firm is compared to a single control unit), and kernel
matching (each treated unit is compared to all untreated firms in a certain
area around the propensity score depending on the bandwidth of the kernel,
but inversely weighted with their difference in propensity score to the treated
unit). The average treatment effect (i.e., the outer expectation above) is es-
timated as the average of the difference in outcomes between the treated and
the control units.

We pursue two alternative estimates of the standard error of each of the
treatment effects. First, we compute analytic standard errors as in Lechner
(2001). The analytic standard errors for the three treatment effect concepts
are

V ar(θ̂m,l) =
1

Nm
V ar(Y m|S = m) +

∑

i∈l(w
m
i )2

(
∑

i∈l w
m
i )2

V ar(Y l|S = l), (4)

V ar(α̂m,l) =
∑

i∈m

[

1 + wl
i

Nm + N l

]2

V ar(Y m|S = m)

+
∑

i∈l

[

1 + wm
i

Nm + N l

]2

V ar(Y l|S = l), (5)

V ar(γ̂m,l) =
∑

i∈m

[

M
∑

j=0

wj
i

n

]2

V ar(Y m|S = m)

+
∑

i∈l

[

M
∑

j=0

wj
i

n

]2

V ar(Y l|S = l). (6)

In empirical applications, these analytical standard errors may deviate con-
siderably from their small-sample-counterparts. Therefore, we alternatively
compute sub-sampling-based standard errors following Politis, Romano, and
Wolf (1999). As shown by Abadie and Imbens (2006) these give reliable
variance estimates of treatment effects even in small samples.
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4 Data

Our data are based on the Ifo Innovation Survey that is conducted annually
by the Ifo Institute, covering more than 1,000 firms in Germany per year.
The survey asks about the structure of innovations at the firm level. In
particular, it collects information about process versus product innovation
activities and about export status. Furthermore, the survey explicitly covers
questions relating to exogenous innovation impulses and obstacles as well as
other firm-level characteristics. Beyond that, there is an industry indicator
that allows us to link industry characteristics to the micro-level data.

4.1 Dependent variables

Regarding the dependent variables, the database provides information on
whether a firm has exported and applied new product innovations or process
innovations over the last six months or not. The corresponding questions
that we rely on in our analysis can be translated as follows:

• We did not export (in year t). As our outcome variable, we construct a
dummy variable that takes a value of one if firms export and zero if they
do not.

• In the year t we have introduced (or started but not yet finished) new
product innovations. In the year t we have introduced (or started but
not yet finished) new process innovations. We use the answers to these
questions to construct two dummy variables, one that takes on a value if
new product innovations were undertaken in year t and zero else, and the
other is constructed in the same way but for process innovations.

Overall, there are 1, 537 firms and 4, 499 observations in our database.
Note that every observation covers three years of data because our outcome
is measured in t + 1, the treatment in t and pre-treatment variables in t− 1.
A cross-tabulation for export propensity and the two innovation indicators is
provided in Table 1. The entries can be summarized as follows. First, 80.00
percent of the firms in our sample conduct exports. The high fraction of
exporters is not surprising, since, by design, the survey covers mainly large
manufacturing firms. Second, 61.96 percent of the firms innovate (i.e., they
receive treatments (d, 0), (0, c), or (d, c)). Of those, 23.57 percent conduct
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Table 1: Exports and innovations: a summary

Export
Treatment 0 1 Total
(0, 0) 556 1,155 1,711

32.50 67.50 100.00

(0, c) 82 167 249
32.93 67.07 100.00

(d, 0) 105 552 657
15.98 84.02 100.00

(d, c) 157 1,725 1,882
8.34 91.66 100.00

Total 900 3,599 4,499
20.00 80.00 100.00

Source: Ifo Innovation Survey, 1994-2004.
Possible treatments are as follows: (0, 0) (the no treatment case), (d, 0) (new product
innovations only), (0, c) (new process innovations only), and (d, c) (both new product and
new process innovations).

product innovations only (d, 0), 8.93 percent conduct process innovations
only (0, c), and 67.50 percent do both (d, c).

4.2 Independent variables

Beyond the information for the dependent variables in our analysis, the sur-
vey asks about a set of incentives/impulses and obstables/impediments to
innovation. Of those, in our empirical model, only the following four imped-
iments exert a significant impact on a firm’s probability to innovate: lacking
own capital; lacking external capital; long amortization period; imperfect
opportunities to cooperate with public or academic institutions. For these
obstacles to innovation, multiple answers are possible and they are numerical:
1 (not important at all); 2 (not very important); 3 (important); 4 (extremely
important). We generate a binary variable for each impediment and classify
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3 and 4 as one and 1 and 2 as zero.
Furthermore, we include lagged logarithms of sales and employment at

the firm level as two separate regressors. In addition to these firm-level de-
terminants we use characteristics that vary across NACE 2-digit industries
published by EUROSTAT (NewCronos Database). In particular, we em-
ploy the once lagged German real value added in nominal Euros (to capture
the size of an industry), real value added per worker (to capture industry
productivity), and unit labor costs (to capture wage costs per unit of out-
put). Furthermore, we use inverse-distance weighted values of these vari-
ables for the EU14 economies (excluding Germany). There, each industry-
level explanatory variable xijt for industry i and time t is weighted across
the 14 EU member countries as of 1995 excluding Germany according to
x̃it =

∑14
j [(xijtdj/

∑

j dj] with dj denoting an economy j’s inverse distance

to Germany.5 The industry-level variables control for both a firm’s compet-
itive pressure at the domestic and the Western European foreign markets.
For instance, the inverse-distance weighted value added can be interpreted as
a measure of the foreign potential supply. The higher the latter, the stronger
we conjecture competition to be for German producers. By way of contrast,
the higher the weighted foreign wage costs are relative to foreign output, the
lower we expect the competitive pressure for German producers to be ceteris
paribus. Table 2 summarizes mean and standard deviation of all covariates.

5 Estimation results

Table 3 presents the results of a multinomial logit model (assuming a logistic
cumulative density function, respectively) determining a representative firm’s
choice of product and/or process innovation. In Table 9 in the Appendix,
we report the corresponding findings based on a bivariate probit model (as-
suming a bivariate normal cumulative density function of the latent outcome
variable).

The estimates and test statistics reported in Tables 3 and 9 suggest the
following conclusions. First, the value of the log-likelihood under the bivari-
ate probit model is −4312.14 while that one under the multinomial logit is

5The notion that trade – and, hence, foreign competition – decreases in distance (i.e.,
increases in inverse distance) is one of the most robust stylized facts in empirical research
in international economics (see Leamer and Levinsohn, 1995).
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Table 2: Descriptive statistics

mean s.d.

Firm-level variables

ln(Turnover) in t−1 10.100 1.972
ln(Turnover per worker) in t−1 5.350 1.024
Indic.: Lacking own capital .293 .455
Indic.: Lacking external capital .221 .415
Indic.: Long amortization period .331 .471
Indic.: Imperfect cooperation poss. .150 .357

Sector-level variables

for Germany

ln(Value-added) in t−1 9.608 .957
ln(Value-added per worker) in t−1 -3.156 .204
ln(Unit labor cost) in t−1 -1.439 .245

for EU14

ln(Value-added) in t−1 7.915 .812
ln(Value-added per worker) in t−1 -3.000 .299
ln(Unit labor cost) in t−1 -1.795 .232

Source: Ifo Innovation Survey, 1994-2004.

−4241.27. Davidson and MacKinnon (2004) suggest selecting among such
non-nested, non-linear probability models according to a likelihood ratio
statistic based on twice the absolute difference in the corresponding log-
likelihoods (LL): LR = 2|LLprobit −LLlogit|. This test statistic is distributed
as χ2(13). Following this device, we find that the statistic amounts to 141.71,
which is significant at the one percent level. Hence, the data are more ap-
propriately described by the multinomial logit model, which we also use in
the sequel for matching.

Furthermore, the test statistics indicate that domestic industry variables
and weighted EU14 industry variables are group-wise and jointly significant
at the one percent level in the model. Similarly, the included innovation
impediments are jointly significant.
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To check whether propensity score matching achieves better balancing of
the variables in our model, we calculate the reduction of the median absolute
standardized bias in the observables included in the selection models between
the treated firms and all control units versus the treated and the matched
control units. While there is no firm rule of thumb, the statistics literature
suggests that the remaining bias should definitely be smaller than 20 percent
(Rosenbaum and Rubin, 1985). In our case, the median bias between the
treated and the matched control units amounts to about 8 percent, which
seems reasonable. In the case of statistically significant effects, the bias re-
duction is even larger. For instance, for the effect (d, c) versus (0, 0), the
median absolute standardized bias drops from 32.70 to 3.05. Overall, match-
ing reduces the bias by about two thirds. Similarly, comparing the pseudo-R2

of the propensity score estimation before and after matching, we find a sig-
nificant drop in explanatory power. For instance, for the effect (d, c) versus
(0, 0), the pseudo-R2 before matching is 0.354, i.e., the covariates are relevant
predictors in the overall sample. However, in the matched sample of nearest
neighbors, the pseudo-R2 of the same selection regression drops to 0.037,
i.e., in the matched sample, there is no remaining systematic difference in
observables between treated and control firms. Put differently, our matching
procedure does a good job in balancing firm and sector characteristics and
allows us to match comparable firms as required.

Based on these findings, we can turn to estimating the various treatment
effects of product and process innovations on firm-level export propensity.
Here, we use a radius matching as our reference model outcome. This type
of matching requires that the matched control units exhibit a propensity
score that differs by not more than the radius from the propensity score of
the treated unit they are matched onto. Hence, in contrast to other match-
ing estimates such as k-nearest neighbor matching or kernel matching, radius
matching enforces a certain matching quality depending on the size of the
radius (see Smith and Todd, 2005, for a discussion). We choose a radius of
0.05 in our benchmark model. However, we consider alternative matching es-
timators and a smaller radius in the sensitivity analysis. The most important
findings based on the chosen procedure are summarized in Table 4.
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Table 3: Product and process innovations: multinomial logit

(0, c) (d, 0) (d, c)
(1) (2) (3)

Firm-level variables

ln(Turnover) in t−1 .334 .353 .790
(.056) (.040) (.035)

ln(Turnover per worker) in t−1 -.161 -.246 -.552
(.094) (.064) (.056)

Indic.: Lacking own capital 1.313 1.044 1.062
(.239) (.184) (.167)

Indic.: Lacking external capital -.555 .018 -.333
(.270) (.201) (.186)

Indic.: Long amortization period 1.227 1.555 1.838
(.188) (.137) (.119)

Indic.: Imperfect cooperation poss. .126 .067 .639
(.253) (.183) (.159)

Sector-level variables

for Germany

ln(Value-added) in t−1 -.417 .414 .530
(.250) (.172) (.146)

ln(Value-added per worker) in t−1 -1.905 -2.044 -1.434
(.544) (.369) (.323)

ln(Unit labor cost) in t−1 .050 2.421 2.953
(.877) (.622) (.530)

for EU14

ln(Value-added) in t−1 .626 -.448 -.504
(.345) (.225) (.193)

ln(Value-added per worker) in t−1 .549 .200 .187
(.410) (.277) (.247)

ln(Unit labor cost) in t−1 .842 -2.603 -2.921
(.757) (.539) (.461)

Constant -8.514 -11.124 -11.696
(1.985) (1.400) (1.180)

Number of observations 4499

Source: Ifo Innovation Survey, 1994-2004.
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In the table, we report estimates of all three treatment effects, θm,l, αm,l,
and γm,l for all treatment pairs m and l and their standard errors. In the
first table column, we indicate the treatment (labeled T ). For instance, (d, c)
refers to firms that got the treatment product and process innovation. The
second column identifies the treatment of the comparison group (i.e., that
for the matched control units; labeled C) in a similar way. For instance, the
first row of results in the table indicates the effect of receiving the treatment
(d, c) as compared to the control units with treatment (0, 0). The other
columns report the estimates for the various treatment effect concepts (θ̂, α̂,
γ̂), the analytical standard errors (σ̂a

θ , σ̂a
α, σ̂a

γ), and their sub-sampling-based
counterparts (σ̂s

θ, σ̂s
α, σ̂s

γ).
6 Our results indicate that the analytical standard

errors are slightly more conservative (i.e., smaller) than the bootstrapped
ones. In the subsequent discussion we will base our inference on bootstrapped
rather than analytical standard errors.

Overall, the results indicate that there is a strong, positive role to play for
product innovation for a firm’s propensity to export. For instance, firms that
conduct new product and process innovations (the treated – T in the first
table column – receive (d, c)) exhibit a significantly higher export propen-
sity than ones that neither do product nor process innovations (the matched
controls – C in the second table column – receive (0, 0)). The estimates
suggest that firms receiving the treatment (d, c) exhibit an export propen-
sity that is about 8 percentage points higher than for those receiving the
treatment (0, 0). Firms receiving the treatment (0, 0) (i.e., no innovation
at all) exhibit an export propensity that is about 13 percent lower than for
ones with treatment (d, c). These two ATTs are significantly different from
zero at conventional levels. The average treatment effect of (actually or hy-
pothetically) receiving the treatment process and product innovation (d, c),
given that a firm receives either (d, c) or (0, 0), is α̂ ≈ 0.10. Hence, product
and process innovation together enhance a firm’s export propensity by about
10 percentage points. Similar conclusions apply for the ATE: product and
process innovation together increase a firm’s propensity to export by about
γ̂ ≈ 0.11 – i.e., 11 percentage points –, irrespective of and unconditional on
which treatment it actually received.

6We rely on the result in Abadie and Imbens (2006) that sub-sampling standard errors
provide unbiased estimates of the true ones while bootstrapped standard errors do not.
Here, we rely on a 1000 draws of sub-samples of size 3350.

16



The effect of product innovation is even stronger if a firm already engages
in process innovation. This can be seen from a comparison of the point
estimates in the third and fourth rows in the table where the treated T
receive (d, c) and (0, c), respectively, and the matched control units C receive
(0, c) and (d, c), respectively. These point estimates are larger in absolute
values than those in the first and second lines, irrespective of whether θ̂,
α̂, or γ̂ are considered. Even switching from process to product innovation
entails significant positive effects on export propensity (consider the two rows
at the bottom of Table 4). While product innovations alone raise a firm’s
propensity to export significantly (see lines 7-8 in the table), their impact
is larger if process innovations were already realized. By way of contrast,
there is no significant increase in export propensity to be expected if an
already product innovating firm undertakes process innovation, in addition.
Similarly, process innovations alone exert an insignificant impact on export
propensity (see lines 9-10 in the table).

Is there any gain from matching in this data set? To shed light on this
issue, we may compare the average treatment effect under the assumption
of exogeneity of all regressors, (γ̂exog.), with its endogenous counterpart as
reported in Table 4 (γ̂). The exogenous treatment effect may be thought of
as the simple comparison of the average export propensity among the treated
and the untreated firms for each treatment. The corresponding exogenous
treatment effect estimates (i.e., the simple mean comparisons) together with
their endogenous treatment effect counterparts as of Table 4 are summarized
in Table 5. Since the average treatment effects are symmetric throughout,
we only report every second estimate as compared to Table 4.

It seems worth noting that in one of the experiments even the sign of
the exogenous treatment effect point estimate differs from the endogenous
one (namely with treatment (0, c) and controls (d, 0), i.e., T − C of (0, c) −
(d, 0)). Moreover, for five of the six parameters the (absolute) difference in
the point estimates is higher than 50 percent of the endogenous treatment
effect parameter. In many of these cases this difference is significant. Hence,
accounting for self-selection into treatment is important in this data set,
leading to significantly different average treatment effect estimates.
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Table 5: Exogenous versus endogenous multiple treatment ef-

fects

T—C γ̂exog. σ̂s
γexog.

γ̂ σ̂s
γ

(1) (2) (3) (4)

(01) (d, c) – (0, 0) .233 .018 .106 .033
(03) (d, c) – (0, c) .091 .020 .140 .065
(06) (d, c) – (d, 0) .014 .017 .031 .037
(08) (d, 0) – (0, 0) .142 .030 .076 .037
(10) (0, c) – (0, 0) -.027 .047 -.034 .066
(11) (0, c) – (d, 0) .169 .045 -.110 .069

Source: Ifo Innovation Survey, 1994-2004.
T denotes the treatment, C the control group. Possible treatments are as follows: (0, 0)
(the no treatment case), (d, 0) (new product innovations only), (0, c) (new process innova-
tions only), and (d, c) (both new product and new process innovations). The endogenous
treatment effects are repeated from Table 4.

6 Sensitivity analysis and discussion

We undertake several robustness checks to assess the sensitivity of our find-
ings. In these experiments, we only report re-sampling-based standard errors
of the endogenous treatment effect estimates for the sake of brevity. First,
we consider an alternative radius of only 0.005 instead of 0.05. Hence, we
enforce a considerably higher precision of the matching estimates there than
we did in our benchmark model in Table 4. Second, we use a nearest neigh-
bor matching estimator, where we compare each treated firm’s outcome to
a single nearest neighbor, irrespective of the difference of the best match’s
difference in propensity score to the treated unit (i.e., the difference might
be smaller or larger than than 5 or 0.05 percentage points as required with
the previous radius matching estimates). Third, we use an Epanechnikov
kernel-based matching with a bandwidth of 0.06 instead of the original ra-
dius matching. This kernel estimator is potentially more efficient than the
radius matching estimator but it gives some weight to less comparable units
than radius matching with a narrow radius does. The bandwidth determines
this trade-off between efficiency and unbiasedness. Let us refer to a control
unit’s absolute difference to a treated firm’s propensity score as ∆. Then,
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only those firms with ∆ ≤ 0.06 are given a weight of 1 − (∆/0.06)2 and
zero else. Hence, a larger bandwidth covers more observations and gives
more weight to less comparable ones. Fourth, we infer to which extent kernel
matching depends on the choice of the kernel bandwidth. For this we choose
a much narrower bandwidth of 0.02 which mimics (but is not identical to)
the choice of a smaller radius under radius matching. Fifth, we use an al-
ternative kernel, namely a Gaussian one with a bandwidth of 0.06. There,
the kernel weight is φ(∆/0.06), where φ(·) is the normal density and ∆ is
the absolute difference in propensity scores between a treated and a control
unit. Finally, we use the lagged export indicator as a determinant for inno-
vation activities at time t. For instance, the latter ensures that we estimate
the impact of innovation on export propensity from a comparison of treated
firms with untreated ones where the export status in the past was the same
between the treated and the untreated.

The results are presented in three tables. Table 6 summarizes the ATT
estimates (θ̂m,l) for all sensitivity checks, Table 7 the estimates of α̂m,l, and
Table 8 those of ATE (γ̂m,l). For convenience, the first column in each of
these tables captures the benchmark results and is repeated from Table 4.
Let us start with the ATT estimates. Across the board, neither changing the
radius nor the matching estimator (nearest neighbor or alternative kernel
matching estimators with different bandwidths instead of radius matching)
affects our conclusions from above, neither in qualitative nor in quantitative
terms.

Even considering lagged export status as a determinant of innovation
mode does not change the findings in qualitative terms. However, the pa-
rameter point estimates of the treatment effects are smaller in absolute value
(see column (7) in Table 6). There are two interpretations for the latter.
First, inference about the corresponding estimates is based on a smaller sam-
ple as before since one year is lost when using lagged exports and only those
observations can be used where the lead and lag of exports is available for
a firm. Second, in this experiment we rule out any impact of innovations
on future export propensity triggered by heterogeneous export status in the
past. Accordingly, the matched controls are different from the ones in the
original experiments.
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Table 6: Multiple treatment effects: robustness checks for θ

(1) (2) (3) (4) (5) (6) (7)

(01) (d, c) – (0, 0) .080 .077 .085 .079 .073 .075 .043
(.027) (.028) (.032) (.027) (.026) (.025) (.021)

(02) (0, 0) – (d, c) -.128 -.131 -.127 -.128 -.129 -.129 -.048
(.035) (.037) (.051) (.038) (.039) (.037) (.033)

(03) (d, c) – (0, c) .157 .178 .148 .165 .205 .185 .078
(.062) (.067) (.098) (.066) (.083) (.071) (.040)

(04) (0, c) – (d, c) -.174 -.170 -.129 -.174 -.170 -.172 -.078
(.046) (.052) (.062) (.046) (.048) (.047) (.036)

(05) (d, 0) – (d, c) -.033 -.034 -.037 -.030 -.032 -.030 -.018
(.024) (.027) (.037) (.025) (.025) (.025) (.019)

(06) (d, c) – (d, 0) .013 .015 .021 .012 .012 .012 -.005
(.017) (.020) (.024) (.017) (.018) (.017) (.011)

(07) (0, 0) – (d, 0) -.081 -.058 -.042 -.079 -.067 -.075 -.030
(.042) (.050) (.061) (.043) (.047) (.044) (.034)

(08) (d, 0) – (0, 0) .083 .075 .070 .082 .080 .081 .062
(.032) (.039) (.048) (.032) (.036) (.033) (.027)

(09) (0, 0) – (0, c) -.017 -.013 -.060 -.018 -.012 -.020 -.059
(.058) (.073) (.086) (.057) (.068) (.061) (.049)

(10) (0, c) – (0, 0) -.045 -.045 -.076 -.044 -.038 -.041 .010
(.047) (.056) (.071) (.047) (.050) (.048) (.039)

(11) (0, c) – (d, 0) -.131 -.111 -.084 -.130 -.125 -.129 -.054
(.050) (.060) (.068) (.052) (.053) (.051) (.044)

(12) (d, 0) – (0, c) .121 .152 .178 .123 .134 .125 .019
(.054) (.063) (.079) (.056) (.059) (.057) (.036)

Source: Ifo Innovation Survey, 1994-2004.
T denotes the treatment, C the control group. Possible treatments are as follows: (0, 0)
(the no treatment case), (d, 0) (new product innovations only), (0, c) (new process inno-
vations only), and (d, c) (both new product and new process innovations).
Column (1): Radius matching with r = 0.05; Column (2): Radius matching with
r = 0.005; Column (3): Nearest neighbor matching; Column (4): Kernel matching,
Epanechnikov kernel, bandwidth 0.06; Column (5): Kernel matching, Epanechnikov ker-
nel, bandwidth 0.02; Column (6): Kernel matching, Gaussian kernel; Column (7): Radius
matching, r = 0.05, with control for past export status.
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Table 7: Multiple treatment effects: robustness checks for α

(1) (2) (3) (4) (5) (6) (7)

(01) (d, c) – (0, 0) .103 .103 .105 .102 .100 .101 .046
(.025) (.026) (.032) (.026) (.026) (.025) (.021)

(02) (0, 0) – (d, c) -.103 -.103 -.105 -.102 -.100 -.101 -.046
(.025) (.026) (.032) (.026) (.026) (.025) (.021)

(03) (d, c) – (0, c) .159 .177 .145 .166 .201 .184 .078
(.057) (.062) (.089) (.061) (.076) (.065) (.037)

(04) (0, c) – (d, c) -.159 -.177 -.145 -.166 -.201 -.184 -.078
(.057) (.062) (.089) (.061) (.076) (.065) (.037)

(05) (d, 0) – (d, c) -.018 -.020 -.025 -.017 -.017 -.017 -.001
(.018) (.020) (.023) (.018) (.019) (.018) (.012)

(06) (d, c) – (d, 0) .018 .020 .025 .017 .017 .017 .001
(.018) (.020) (.023) (.018) (.019) (.018) (.012)

(07) (0, 0) – (d, 0) -.081 -.063 -.050 -.080 -.070 -.076 -.038
(.036) (.042) (.049) (.036) (.040) (.037) (.028)

(08) (d, 0) – (0, 0) .081 .063 .050 .080 .070 .076 .038
(.036) (.042) (.049) (.036) (.040) (.037) (.028)

(09) (0, 0) – (0, c) -.009 -.006 -.043 -.011 -.006 -.012 -.054
(.055) (.068) (.078) (.054) (.064) (.057) (.046)

(10) (0, c) – (0, 0) .009 .006 .043 .011 .006 .012 .054
(.055) (.068) (.078) (.054) (.064) (.057) (.046)

(11) (0, c) – (d, 0) -.124 -.141 -.152 -.125 -.131 -.126 -.028
(.050) (.058) (.066) (.051) (.053) (.051) (.035)

(12) (d, 0) – (0, c) .124 .141 .152 .125 .131 .126 .028
(.050) (.058) (.066) (.051) (.053) (.051) (.035)

Source: Ifo Innovation Survey, 1994-2004.
T denotes the treatment, C the control group. Possible treatments are as follows: (0, 0)
(the no treatment case), (d, 0) (new product innovations only), (0, c) (new process inno-
vations only), and (d, c) (both new product and new process innovations).
Column (1): Radius matching with r = 0.05; Column (2): Radius matching with
r = 0.005; Column (3): Nearest neighbor matching; Column (4): Kernel matching,
Epanechnikov kernel, bandwidth 0.06; Column (5): Kernel matching, Epanechnikov ker-
nel, bandwidth 0.02; Column (6): Kernel matching, Gaussian kernel; Column (7): Radius
matching, r = 0.05, with control for past export status.
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Table 8: Multiple treatment effects: robustness checks for γ

(1) (2) (3) (4) (5) (6) (7)

(01) (d, c) – (0, 0) .106 .105 .102 .105 .103 .104 .053
(.024) (.025) (.030) (.025) (.025) (.025) (.020)

(02) (0, 0) – (d, c) -.106 -.105 -.102 -.105 -.103 -.104 -.053
(.024) (.025) (.030) (.025) (.025) (.025) (.020)

(03) (d, c) – (0, c) .140 .156 .126 .142 .164 .151 .036
(.048) (.052) (.065) (.049) (.056) (.051) (.035)

(04) (0, c) – (d, c) -.140 -.156 -.126 -.142 -.164 -.151 -.036
(.048) (.052) (.065) (.049) (.056) (.051) (.035)

(05) (d, 0) – (d, c) -.031 -.042 -.049 -.030 -.036 -.032 -.009
(.028) (.031) (.038) (.029) (.030) (.028) (.023)

(06) (d, c) – (d, 0) .031 .042 .049 .030 .036 .032 .009
(.028) (.031) (.038) (.029) (.030) (.028) (.023)

(07) (0, 0) – (d, 0) -.076 -.063 -.054 -.075 -.067 -.072 -.044
(.028) (.032) (.035) (.028) (.030) (.028) (.021)

(08) (d, 0) – (0, 0) .076 .063 .054 .075 .067 .072 .044
(.028) (.032) (.035) (.028) (.030) (.028) (.021)

(09) (0, 0) – (0, c) .034 .051 .023 .037 .061 .047 -.016
(.049) (.053) (.065) (.049) (.056) (.052) (.033)

(10) (0, c) – (0, 0) -.034 -.051 -.023 -.037 -.061 -.047 .016
(.049) (.053) (.065) (.049) (.056) (.052) (.033)

(11) (0, c) – (d, 0) -.110 -.114 -.077 -.112 -.128 -.119 -.027
(.050) (.055) (.069) (.052) (.058) (.054) (.035)

(12) (d, 0) – (0, c) .110 .114 .077 .112 .128 .119 .027
(.050) (.055) (.069) (.052) (.058) (.054) (.035)

Source: Ifo Innovation Survey, 1994-2004.
T denotes the treatment, C the control group. Possible treatments are as follows: (0, 0)
(the no treatment case), (d, 0) (new product innovations only), (0, c) (new process inno-
vations only), and (d, c) (both new product and new process innovations).
Column (1): Radius matching with r = 0.05; Column (2): Radius matching with
r = 0.005; Column (3): Nearest neighbor matching; Column (4): Kernel matching,
Epanechnikov kernel, bandwidth 0.06; Column (5): Kernel matching, Epanechnikov ker-
nel, bandwidth 0.02; Column (6): Kernel matching, Gaussian kernel; Column (7): Radius
matching, r = 0.05, with control for past export status.
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Similar conclusions apply for the estimates in Tables 7 and 8. Overall,
neither the functional form of the multiple choice model, nor the alterna-
tive values for the radius, the type of the matching estimator (radius versus
nearest-neighbor versus kernel), nor the kernel bandwidths or the functional
forms of the kernels have a qualitative impact on the significant findings in
the original table. Again, the impact of innovations is quantitatively smaller
if we use lagged export status as a determinant of contemporaneous innova-
tion mode in the selection models. However, most of the originally significant
estimates remain significant even in this case and none of the 24 estimated
point estimate signs in column (7) of Tables 7 and 8 is different from those
in the other columns of the same tables.

In general, this paper’s analysis provides robust evidence that product
innovation is more important than process innovation for a firm’s export
propensity. However, while process innovation seems of little relevance for
export propensity, it improves a firm’s probability to export if it is accom-
panied by product innovation.

7 Conclusions

Our goal in this paper was to provide novel empirical insights in the role
of product versus process innovation on export propensity at the firm level.
Either of these modes of innovation has been hypothesized to affect firm-level
productivity in previous theoretical work. A smaller body of theoretical re-
search even pointed to the differential impact of these two types of innovation
on a firm’s export propensity. We aim at assessing the latter relationship em-
pirically. Economic theory suggests that firms do not undertake innovations
at random, neither product nor process innovations. Hence, empirical work
should pay attention to the likely self-selection of firms into innovations.
Viewing innovations as a ’treatment’, this lends support to an endogenous
treatment approach to innovations and export propensity. With two modes
of innovations – product and process innovations –, one is then faced with
an econometric framework with multiple endogenous treatments.

Adopting a so-called matching approach based on the propensity score
and using survey data of German firms available from the Ifo Institute, we
find that there is significant bias of the impact of product and process inno-
vations on export propensity when ignoring self-selection into either mode of
innovation. This bias was quite substantial in our application, having been
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particularly large for firms with only product or process innovations as com-
pared to ones that did not innovate. The largest estimated self-selection bias
in the data amounted to more than 200 percent, depending on the mode of
innovations (product and/or process innovation).

Overall, the results point to the importance of product innovation rela-
tive to process innovation. In comparison, there is no evidence that process
innovation fosters a firm’s propensity to export beyond product innovation.
This can be viewed as evidence on the importance of the extensive margin
in product space for a firm’s entry into export markets, lending support to
new trade and endogenous growth theories with their emphasis on product
innovations.
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Appendix

Table 9 summarizes the results of the bivariate probit model for the two choice
indicators, product and process innovation. In contrast to the multinomial
logit model in Table 3, it assumes a bivariate normal cumulative density
function of the latent outcome variable.
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Table 9: Product and process innovations: bivariate probit

Product innovation Process innovation
(1) (2)

Firm-level variables

ln(Turnover) in t−1 .352 .346
(.017) (.016)

ln(Turnover per worker) in t−1 -.258 -.238
(.028) (.027)

Indic.: Lacking own capital .429 .400
(.079) (.074)

Indic.: Lacking external capital -.058 -.223
(.087) (.081)

Indic.: Long amortization period .821 .628
(.057) (.052)

Indic.: Imperfect cooperation poss. .230 .306
(.073) (.067)

Sector-level variables

for Germany

ln(Value-added) in t−1 .326 .114
(.074) (.071)

ln(Value-added per worker) in t−1 -.640 -.428
(.161) (.155)

ln(Unit labor cost) in t−1 1.638 .971
(.269) (.258)

for EU14

ln(Value-added) in t−1 -.325 -.047
(.098) (.093)

ln(Value-added per worker) in t−1 -.026 .046
(.122) (.120)

ln(Unit labor cost) in t−1 -1.762 -.824
(.232) (.224)

Constant -5.810 -4.619
(.593) (.566)

at ρ .899
(.034)

Number of observations 4499

Source: Ifo Innovation Survey, 1994-2004.
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