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Mammalian genomes are scattered with thousands of copies of endogenous retroviruses

(ERVs), mobile genetic elements that are relics of ancient retroviral infections. After

inserting copies into the germ line of a host, most ERVs accumulate mutations that

prevent the normal assembly of infectious viral particles, becoming trapped in host

genomes and unable to leave to infect other cells. While most copies of ERVs are inactive,

some are transcribed and encode the proteins needed to generate new insertions

at novel loci. In some cases, old copies are removed via recombination and other

mechanisms. This creates a shifting landscape of ERV copies within host genomes.

New insertions can disrupt normal expression of nearby genes via directly inserting

into key regulatory elements or by containing regulatory motifs within their sequences.

Further, the transcriptional silencing of ERVs via epigenetic modification may result in

changes to the epigenetic regulation of adjacent genes. In these ways, ERVs can be

potent sources of regulatory disruption as well as genetic innovation. Here, we provide

a brief review of the association between ERVs and gene expression, especially as

observed in pre-implantation development and placentation. Moreover, we will describe

how disruption of the regulatedmechanisms of ERVsmay impact somatic tissues, mostly

in the context of human disease, including cancer, neurodegenerative disorders, and

schizophrenia. Lastly, we discuss the recent discovery that some ERVs may have been

pressed into the service of their host genomes to aid in the innate immune response to

exogenous viral infections.

Keywords: endogenous retrovirus, genome, human disease, pre-implantation embryo, stem cells, placenta, innate

immunity

BACKGROUND

A retroviral genome exists in different forms during its replication cycle. A viral particle, or virion,
protects the RNA genome of the retrovirus during escape from the host cell and infection of new
cells. A virion that enters a new host cell deploys its genomic payload, using its own reverse
transcriptase to convert the RNA viral genome into a DNA copy which is integrated into the
host genome, referred to as a provirus (Figure 1). Subsequently, a provirus can be transcribed
into RNA again, and then translated by the host’s ribosomal machinery to produce more virions.
Ancient retroviral infections have occasionally resulted in such integrations into the germline of the
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FIGURE 1 | Retroviral infection and integration into host genome. Left to right: An infecting viral particle enters the host cell after its envelope, containing Env

proteins (pink), fuses with the cell membrane. The viral capsid (hexagon), consisting largely of Gag proteins, contains the RNA form of the retroviral genome (red) as

well as a reverse transcriptase (green). The viral genome is subsequently reverse transcribed into its DNA complement (light blue) and this viral genome then enters the

nucleus with its associated integrase proteins (dark blue). A new viral integration is then inserted into the host genome, becoming a provirus. Lower right: A schematic

of a retroviral genome with components indicated as colored boxes (gag, group-specific antigen; prt, protease; pol, polymerase; env, envelope protein; rec, accessory

protein; LTR, long terminal repeat). Three splice variant transcripts are shown and their translated products given.

host, becoming endogenous retroviruses (ERVs). While some
ERVs have been shown to produce infectious particles (van
der Laan et al., 2000), most ERV copies suffer mutations
over evolutionary time that prevent the normal assembly of
viral particles, preventing horizontal transmission of infections
between individuals. However, while now trapped within the
host genome, some of these provirus copies are still transcribed
and can encode some if not all of the original viral proteins.
Therefore, ERVs are classified as a family of autonomous
retrotransposons. Further, offspring of the host can inherit
any germline ERV insertions from their parents, resulting in
a vertical transmission pattern with evolution (Figure 2). As
much as 8% of the human genome consists of ERV sequences
acquired through repeated endogenization events followed by
subsequent retrotranspositional expansion of captured viral
subfamilies.

These ancient genomic residents represent a potent source
of genomic and regulatory variability. The high degree of
homology between these ERV copies, and the presence of
the long terminal repeats (LTRs) at either end of each copy
(Figure 1), provide an opportunity for non-allelic homologous
recombination that can result in the excision of a given insertion,
leaving behind only a single LTR copy. Recombination events
between the different insertions of the same or similar ERV
subfamilies can result in deletions, duplications, and other
rearrangements of intervening genomic sequences. Additionally,
the ERV sequences themselves can contain motifs that can
disrupt or modulate nearby genes and regulatory regions.
Not surprisingly, ERVs activity is associated with a number
of human diseases and the target of epigenetic repression
by the host genome. However, the consequences are not
solely deleterious, as there is evidence that ERVs have been
co-opted into important regulatory and developmental roles
as well.

ERVS IN GERM CELLS AND
PRE-IMPLANTATION EMBRYOS

Certain stages of mammalian pre-implantation embryo and
germ cell development characterized by multiple waves of
epigenetic reprogramming pose a unique challenge for the
control of endogenous retroviral activity. During the two waves
of epigenetic reprogramming that occur in primordial germ
cells (PGCs) and fertilized oocytes, a considerable amount
of DNA demethylation occurs. Examination of global DNA
methylation at these stages have shown that levels within human
and mouse pre-implantation embryos decrease beginning at
the 1- to 2-cell stage, depending on the species, and up to
or soon after the blastocyst stage (Kobayashi et al., 2012;
Guo et al., 2014; Lee et al., 2014; Okae et al., 2014; Wang
L. et al., 2014). Since DNA methylation is largely responsible
for repression of many transposable elements, including ERVs
(Walsh et al., 1998), the activity of ERVs and the alternative
mechanisms repressing ERV activation during these periods of
global hypomethylation have been the focus of a number of
recent investigations.

Given that some ERV families have expanded substantially in
the number of genomic integrations in animals (Tristem, 2000;
Bénit et al., 2001), it has been hypothesized that widespread
reactivation of ERVs during the waves of global reprogramming
within germ cell and pre-implantation development are largely
responsible for this expansion. On the other hand, it is also
known that additional ERV repressive mechanisms must be
in place in order to maintain genomic stability throughout
epigenetic reprogramming and the highly choreographed
molecular processes required for normal germ cell development,
fertilization, and embryonic development. These ideas are not
mutually exclusive, as there is substantial evidence supporting
both reactivation (Fuchs et al., 2013; Wang J. et al., 2014; Grow
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et al., 2015) and alternative repression (Thomas and Schneider,
2011; Manghera and Douville, 2013; Leung et al., 2014; Liu
et al., 2014; Schlesinger and Goff, 2015; Wolf et al., 2015;
Thompson et al., 2016) across the vast number and variety of
ERVs within the genome during germ cell development and
embryogenesis.

Despite the existence of elaborate mechanisms that mediate
ERV inactivation within the genome, there is extensive evidence
that some ERVs are still active and play an important role during
gametogenesis and pre-implantation development. Upregulation
of ERV proviral transcription and protein expression has been
well documented in early human embryos and embryonic
stem cells (hESCs). For example, elevated expression of the
ERV-H family has been observed within both naïve-like and
primed hESC sub-populations (Wang J. et al., 2014; Theunissen
et al., 2016; Supplementary Table 1). Additional transcripts
from the ERV-K (HML-2) family are also observed at high
levels within hESCs and rapidly decrease upon differentiation
(Fuchs et al., 2013). Expression of ERV-K begins at the 8-cell
stage, concurrent with embryonic genome activation (EGA),
and continues throughout pre-implantation development into
the blastocyst stage. A majority of actively transcribed ERV-
K loci during this time are associated with LTR5HS, a
specific subclass of LTR, which is confined to human and
chimpanzee and contains an OCT4 binding motif. The LTR5HS
subclass requires both hypomethylation and OCT4 binding
for transcriptional activation, which synergistically facilitated
ERV-K expression (Grow et al., 2015; Supplementary Table 1).
Based on the elevated activity of these ERVs within hESCs and
pre-implantation embryos, as well as their known interactions
with other cellular factors during this time, it is thought that
these ERVs have been functionally incorporated into roles
important for defining and maintaining pluripotent specific
states.

The role of LTRs as regulatory regions for proviral DNA
represents an additional function that can be utilized by
or incorporated into host genomes. In particular, LTRs are
known to be co-opted as promoters or enhancer elements
of nearby genes important during embryonic development
and maintenance of pluripotency (Friedli and Trono, 2015).
Nearly, ∼33% of all transcripts in human embryonic tissues
are associated with repetitive elements, suggesting a clear
pattern of embryonic cell specificity for viral promoters (Fort
et al., 2014). Many transcripts detected in the totipotent
blastomeres of mouse 2-cell embryos are initiated from LTRs
upon EGA as well, indicating that these repeat sequences may
help drive cell-fate regulation in mammals (MacFarlan et al.,
2012). Regulatory activities of certain LTRs have also been
shown to provide important functions not only in embryonic
cells, but also within germ cells during gametogenesis. For
example, germline-specific transactivating p63 (GTAp63), a
member of the p53 family and a transcript important for
maintaining genetic fidelity in the human male germline,
is under the transcriptional control of ERV9 LTR (Ling
et al., 2002; Beyer et al., 2011; Liu and Eiden, 2011;
Supplementary Table 1). Transcriptionally active GTAp63
suppresses proliferation and induces apoptosis upon DNA
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FIGURE 2 | Retroviral infection, horizontal transmission,

endogenization, and vertical transmission. An exogenous retrovirus

infects an individual in generation 1, resulting in their accruing provirus

integrations in some somatic cells. Horizontal transmission of the virus from

the first individual to the second results in the second accruing somatic

integrations as well. However, the second individual subsequently receives

germline integrations. The descendants of the first individual do not inherit any

retroviral integrations, while any germline integrations in the second individual

are transmitted vertically to half of its descendants as endogenous retrovirus

insertions present in every cell. Only half of the descendants of this second

individual in Generation 2 inherit any given germline integration locus because

any cell receiving a new integration does so on only one copy of the affected

chromosome. This results in a heterozygous pattern of inheritance.

damage in healthy testis and is frequently lost in human
testicular cancers. Restoration of GTAp63 expression levels
in cancer cells was observed upon treatment with a histone
deacetylase (HDAC) inhibitor, indicating possible epigenetic
control of ERV9-mediated GTAp63 expression via activating
histone acetylation marks. Thus, the ability of ERV9 regulatory
regions to contribute to the maintenance of male germline
stability is yet another example of how ERVs have evolved to
serve an important function in their human hosts (Liu and Eiden,
2011).

ERVS IN THE PLACENTA

The placenta is a transient organ representing the maternal-
fetal interface during pregnancy; it is derived from the outer
trophectoderm (TE) layer of blastocysts, and plays a critical
role in the gas, nutrient, and waste exchange required for
normal embryonic growth. It is well established that both mouse
and human placentas are hypomethylated compared to other
somatic cells derived from either in vivo or in vitro sources
(Ehrlich et al., 1982; Fuke et al., 2004; Cotton et al., 2009; Popp
et al., 2010; Hon et al., 2013). As such, the DNA methylation
levels of LTRs within human placentas more closely resemble
that observed in oocytes than in somatic tissues, averaging
∼60% methylation across the genome (Schroeder et al., 2015).
Given this hypomethylation of LTRs in placentas, it is not
surprising that numerous sub-families of ERV proviruses are
expressed within human placental tissues. More specifically,
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there is evidence of proviral transcription from ERV-E (Yi and
Kim, 2007), ERV3 (ERV-R; Boyd et al., 1993; Andersson et al.,
2005), ERV-K (Kammerer et al., 2011), ERV-fb1 (Sugimoto
et al., 2013), ERV-V1/2 (Esnault et al., 2013), ERV-W (Blond
et al., 2000), and ERV-FRD (Blaise et al., 2003; Supplementary
Tables 1, 2).

The most notable ERV families producing functional proteins
during placentation are ERV-W and ERV-FRD, corresponding to
Syncytin-1 and Syncytin-2, respectively, which are critical for the
cellular fusion underlying human placental syncytia formation
and maintenance (Blond et al., 2000; Mi et al., 2000; Blaise et al.,
2003, 2005; Dunk et al., 2012; Supplementary Table 2). Cellular
fusion is a relatively unique function in normal healthy tissues,
with muscle, bone and placenta being the major exceptions. Since
regulation of this highly specified function is of much interest,
the precise mechanisms underlying the transcriptional control of
the Syncytin-1 gene have been the topic of several investigations.
Both DNA and histone H3K9 methylation have been reported
to be important for inactivating ERV-W and thus repressing
Syncytin-1 expression, resulting in pathological conditions such
as exogenous viral infections and preeclampsia when repression
does not occur (Matousková et al., 2006; Gimenez et al., 2009;
Li et al., 2014; Zhuang et al., 2014). It has been shown that
transcriptional activation of the ERV-W locus and the promotion
of cell fusion also requires the synergism of LTR promoter
hypomethylation, along with the binding of several transcription
factors such as GCM1, Sp1, and GATA family members (Yu
et al., 2002; Cheng et al., 2004; Prudhomme et al., 2004; Cheng
and Handwerger, 2005; Chang et al., 2011). Recently, another
ERV-derived protein called suppressyn has been identified to
alternatively regulate Syncytin-1, but not Syncytin-2-based cell
fusion by inhibiting its interaction with the Syncytin-1 associated
receptor, ASCT2 (Sugimoto et al., 2013; Supplementary Table 2).
Suppressyn is a truncation product of the proviral env gene
from the ERV-fb1 element and is transcribed within the placenta.
Within normal human placentas, suppressyn is co-expressed
with Syncytin-1 in the syncytiotrophoblast layer (Sugimoto et al.,
2013), further supporting that these two factors are involved
in cell-cell fusion regulation at the maternal-fetal interface in
utero.

Notably, integration of ERV-W and ERV-FRD into the
genome occurred prior to the divergence of Old World
(Catarrhini; Cáceres et al., 2006) and New World (Platyrrhini)
monkeys (Blaise et al., 2003), respectively, thus Syncytin-
1 and Syncytin-2 are only present in higher-order primate
(Haplorhini) species, although functionally similar yet distinct
ERV proviral proteins have been discovered throughout most
mammalian genomes, as reviewed in Imakawa et al. (2015).
The ERV-V env gene present within Old World monkeys has
also been implicated in trophoblast fusion activity, possibly
alleviating the lack of functional Syncytin-1 within these
species, while the ERV-V reiterations present within the human
genome are not functional in this capacity (Esnault et al.,
2013; Supplementary Table 2). Syncytin-A and Syncytin-B
appear to function like human Syncytins within the mouse
placenta and are known to have entered the murine (Muridae)
lineages approximately 20 million years ago (Dupressoir et al.,

2005). Similarly, Syncytin-Ory1 has been discovered in rabbits
and hares (Leporidae; Heidmann et al., 2009), Syncytin-Car1
within 26 different species of carnivorans (Carnivora; Cornelis
et al., 2012), Syncytin-Mar1 within the squirrel-related clade
(either Scuridae or Marmotini; Redelsperger et al., 2014),
Syncytin-Ten1 within tenrec (Tenrecidae; Cornelis et al., 2014),
Syncytin-Rum1 in ruminants (Ruminantia; Cornelis et al.,
2013), and Syncytin-Opo1 within the short-lived placenta of
opossum and kangaroo marsupials (Marsupialia; Cornelis et al.,
2015).

Several ERV captured env genes have been proposed
to have an immunosuppressive role that is important for
preventing maternal rejection of the semi-allogenic fetus during
pregnancy. In addition to fusogenic properties derived from
the env gene of ERV-FRD, Syncytin-2 contains a classical
Env retroviral immunosuppressive domain that has been
shown to have immunosuppressive activity via in vitro tumor-
rejection assay (Mangeney et al., 2007). Given observed
protein expression within cytotrophoblasts cells of the human
placenta, Syncytin-2 has been suggested to facilitate fetal
tolerance by suppressing the maternal immune system. Other
ERV-derived env proteins from ERV-V and ERV-K have
also been proposed to possess an immunosuppressive role in
controlling the maternal immune system during pregnancy.
This is based on findings that both families have one or more
proviral loci in the genome with intact env open reading
frames (ORFs) and a corresponding immunosuppressive
domain. Additionally, both ERV-V and ERV-K expression
has been observed within placental trophoblast cells at the
maternal-fetal interface, although corresponding in vitro
functional assays have not yet been completed to directly
support in vivo findings (Kammerer et al., 2011; Subramanian
et al., 2011; Supplementary Table 1). Until these studies are
undertaken, the exact function of ERV-V and ERV-K and
whether env protein expression from these ERVs induce
maternal immunosuppression within the placenta, will remain
unknown.

ERVS AND HUMAN DISEASE

Through insertional mutagenesis, recombination between
homologous copies, and the regulatory disruption that epigenetic
suppression of ERV insertions can cause to nearby gene loci,
there are many mechanisms by which these elements might
cause disease. In particular, their association with various
cancers has been well demonstrated, as reviewed in Katoh
and Kurata (2013). For instance, ERV activity has been
strongly associated with many breast cancers (Golan et al.,
2008; Wang-Johanning et al., 2008; Salmons et al., 2014).
While in melanoma tissues, ERV-K expression of both RNA
and protein has been shown (Büscher et al., 2005), and one
recent study identified 24 ERV-K (HML-2) loci transcribed
(Schmitt et al., 2013). In another study of Hodgkin’s lymphoma,
all cancer patient samples were found to have alternative
transcripts of the CSF1R, an important locus associated with
this cancer, that initiate at the LTR of an ERV located ∼6.2
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kb upstream of the normal promoter (Lamprecht et al.,
2010).

ERVs have been demonstrated to be associated with a
variety of neurologic diseases, as reviewed in Douville and
Nath (2014). One such disease is amyotrophic lateral sclerosis
(ALS). Elevated ERV-K (HML-2) activity has been observed in
the brain tissue of ALS patients (Douville et al., 2011), while
transgenic animals expressing the ERV-K env gene in cortical
and spinal neurons developed motor dysfunction, suggesting
that these elements may contribute to neurodegeneration (Li
et al., 2015). Additionally, the expression of ERV-W env and
gag has been observed in samples of muscle from ALS patients
(Oluwole et al., 2007). While the ERV-W findings may be due
to the inflammatory response (Alfahad and Nath, 2013), the
support for the involvement of ERV-K in ALS is mounting,
though causality has yet to be demonstrated. Multiple sclerosis
(MS) is another neurological disease in which ERVs have
been strongly implicated. MSRV (multiple sclerosis-associated
retrovirus), a subtype of ERV-W, as well as ERV-W1 and
W2 and ERV-H/F have all been linked to MS (reviewed in
Christensen, 2016). One study showed significantly elevated Env
antigen in serum of MS patients relative to controls, while
qPCR of ERV-W in mononuclear cells from blood (PBMC)
showed association with MS relative to controls (Perron et al.,
2012a). This same study demonstrated Env expression in eight
well-characterized MS brains that had lesions throughout the
parenchyma and in perivascular infiltrates, as well as at the rim
of chronic active lesions. ERV association with schizophrenia
and bipolar disorder has been demonstrated through the
presence of biomarkers for ERV-K and ERV-W found in
blood, cerebrospinal fluid, and the pre-frontal cortex (Karlsson
et al., 2001; Huang et al., 2006, 2011; Perron et al., 2012b).
In one study of schizophrenia, hypermethylation of a specific
ERV-W LTR insertion located in the regulatory region of the
GABBR1 gene was associated with risk of schizophrenia (Hegyi,
2013). A nearly full-length ERV-K insertion near the PRODH
gene, known to be associated with schizophrenia and other
neuropsychiatric disorders, has been shown to work in concert
with the internal PRODH CpG island to activate the gene.
It is thought that aberrant DNA methylation of this locus
may be a piece of the schizophrenia puzzle (Suntsova et al.,
2013).

ERVS MAY PLAY A ROLE IN THE INNATE
IMMUNE RESPONSE

While the majority of ERV proviruses have acquired mutations,
thereby preventing translation into protein, certain families
have been especially well preserved and contain functional
ORFs for one or more of the classical proviral genes. Within
primates, ERV-K (HML-2) represents the best-preserved and
most recently active ERV, containing a substantial number of
loci that have predicted coding potential throughout different
primate genomes. It has also been observed that ERV-K
encodes a small accessory protein, Rec, in naïve ES cells
and human blastocysts. Overexpression of Rec protein within

human pluripotent cells increases the innate antiviral response
and can inhibit exogenous viral infections, suggesting an
immunoprotective role of the ERV-K Rec protein during early
embryonic development (Grow et al., 2015; Supplementary
Table 1). An additional ERV-K proviral protein, gag, which
makes up the core of viral particles in exogenous retroviruses,
is also expressed within human blastocysts and pluripotent
cells. Immunolabeling of ERV-K gag protein followed by
confocal and transmission electron microscopy revealed ERV-
K gag protein within structures of blastocysts resembling viral-
like particle (VLPs). This suggested that some ERV proviral
sequences within the human genome still retain the ability to
code for viral proteins and form VLPs during normal human
embryogenesis. Proteins produced from ERV env genes have
also been demonstrated to function as restriction factors against
exogenous retroviral infection (Malfavon-Borja and Feschotte,
2015).

Even ERV proviruses that do not contain functional ORFs
can still harbor sequence motifs that serve to modulate
the activity of nearby genes. For instance, interferon (IFN)-
inducible enhancers have been dispersed via ERV insertions
adjacent to IFN-inducible genes independently over mammalian
evolution. This has resulted in regulatory networks of genes
able to work in concert due to the presence of these ERV
sequences. Further, CRISPR-Cas9 deletion of a MER41 insertion
upstream of AIM2 in HeLa cells disrupted the endogenous
IFNG-inducible regulation of this locus, demonstrating the
utility that host genomes can obtain over time by harnessing
ERV sequences (Chuong et al., 2016). In another example
showing the variety of mechanisms by which ERVs are
involved with innate immunity, Chiappinelli et al. (2015)
demonstrated that induction of ERV expression, and especially
bidirectional transcription of ERVs, activated a double-stranded
RNA sensing pathway that triggers a type I interferon response
and apoptosis.

CONCLUSIONS

The relationship between ERVs and the human genome is a
diverse and complicated one, resulting from millions of years of
co-evolution. ERVs are known to be involved in disease through
insertional mutagenesis, as targets of epigenetic repression, and
via recombination of sequences between the homologous copies
of these elements scattered across the genome. Throughout
mammalian evolution, the deleterious effects of ERVs have been
balanced by the benefits gained from innovative co-option of
their sequences and proteins by their host genomes. These
innovations include the intimate relationship between ERV
activity with embryonic and placental development, as well as a
number of ERV-associated regulatory networks that have become
important components of the normal function of our genome.
An innate immune response to exogenous retroviral infection is
likely only one of several ERV functional roles. Once thought to
have been quiescent, dead residents of the human genome, we are
only beginning to uncover the scope of how actively intertwined
our biology is with these long-time genomic partners.
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