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Establishment of production platforms through prokaryotic engineering in microbial

organisms would be one of the most efficient means for chemicals, protein, and

biofuels production. Despite the fact that CRISPR (clustered regularly interspaced

short palindromic repeats)–based technologies have readily emerged as powerful

and versatile tools for genetic manipulations, their applications are generally limited

in prokaryotes, possibly owing to the large size and severe cytotoxicity of the

heterogeneous Cas (CRISPR-associated) effector. Nevertheless, the rich natural

occurrence of CRISPR-Cas systems in many bacteria and most archaea holds great

potential for endogenous CRISPR-based prokaryotic engineering. The endogenous

CRISPR-Cas systems, with type I systems that constitute the most abundant and

diverse group, would be repurposed as genetic manipulation tools once they are

identified and characterized as functional in their native hosts. This article reviews the

major progress made in understanding the mechanisms of invading DNA immunity by

type I CRISPR-Cas and summarizes the practical applications of endogenous type I

CRISPR-based toolkits for prokaryotic engineering.

Keywords: endogenous type I CRISPR-Cas systems, mechanisms of action, DNA targeting, genome editing,

selective killing, antimicrobials, gene expression modulation

INTRODUCTION

Throughout the past billion years, bacteria and archaea have evolved a range of defense
mechanisms to defend themselves against their viral predators (Doron et al., 2018), including
restriction–modification systems, abortive infections and phage adsorption blocks, and the recently
discovered CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-
associated) systems (Jansen et al., 2002). Unique among these mechanisms, CRISPR immunity
functions by storing records of previous invasions to provide immunological memory for a rapid
and robust response upon subsequent viral infections.

CRISPR-Cas systems consist of two genetic components, the CRISPR array and cas genes
encoding Cas proteins. The CRISPR array, featuring the CRISPR-Cas systems, is composed of
conserved direct repeats, which are separated by unique sequences derived from the invasivemobile
genetic elements (termed as spacers) (Bolotin et al., 2005; Mojica et al., 2005; Pourcel et al., 2005).
Generally, the CRISPR immunity is driven by the Cas proteins in three distinct molecular stages.
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The first stage is termed spacer acquisition, in which a short
DNA stretch is captured from an invading genetic element and
incorporated into a CRISPR array as the first spacer immediately
after a leader sequence. Then, in the process of crRNA (CRISPR
RNA) biogenesis, the entire CRISPR array is transcribed into
a precursor CRISPR RNA (pre-crRNA) molecule driven by
promoter elements embedded in the leader sequence. Following
the transcription, cleavage within the repeats of the pre-crRNA
by ribonucleases gives mature crRNAs, with each carrying a
unique foreign sequence. In the final stage of target interference,
each crRNA forms a ribonucleoprotein effector complex with
Cas proteins and guides the effector machinery to the matching
region of the invader through base pairing for destruction
(Barrangou et al., 2007; Brouns et al., 2008; Marraffini and
Sontheimer, 2008; Garneau et al., 2010).

Despite the general immunity stages for all the characterized
CRISPR-Cas systems, the Cas proteins and hence the effector
complexes vary widely. According to the assortment of cas genes
and the complexity of their inference complexes, to date, six
main types, types I to VI, of CRISPR-Cas systems have been
identified and grouped into two classes, classes 1 and 2 (Makarova
et al., 2015, 2018;Table 1). Systems of class 1, including types I,
III, and IV, are defined by multi-Cas proteins, whereas those of
class 2, including types II, V, and VI, utilize a single effector Cas
protein (Figure 1A).

Because of the simplicity of class 2 systems, in which a
single Cas protein is sufficient to execute targets binding and
cleavage, their effector machineries are relatively easy to be
adopted and have been emerged as powerful tools for genome
manipulation applications in both prokaryotic and eukaryotic
cells. Type II CRISPR-Cas9, as the first identified class 2 system,
has been extensively harnessed for genome editing in a wide
range of organism, from bacteria to eukaryotic cells, in the past
few years (Jinek et al., 2012; Cong et al., 2013; Malina et al.,
2013; Jiang et al., 2014). Subsequently, type V CRISPR-Cas12
was characterized and repurposed for genome editing (Zetsche
et al., 2015, 2017; Fonfara et al., 2016). These systems have
been also engineered for applications beyond genome editing, for
example, gene expression regulation via repression or activation,
epigenome editing, in situ genomic imaging, large-scale genomic
screening, and so on (Chen et al., 2013; Cheng et al., 2013;
Perez-Pinera et al., 2013; Qi et al., 2013; Shalem et al., 2014;
Takei et al., 2017). Type VI CRISPR-Cas13 is the third type
in class 2 system, which was demonstrated and developed as a
versatile RNA manipulation tool to be used in RNA interference
(RNAi), in vivo RNA molecule visualization, and nucleic acid
detection (Cox et al., 2017; O’Connell, 2019). Recently, several
novel single-stranded DNA (ssDNA)–cleaving CRISPR-Cas14
systems belonging to class 2 were identified (Harrington et al.,
2018). It is worth to be mentioned that the targeted non-specific
ssDNA cleavage activity of Cas14 enabled the system to perform
genotyping (Harrington et al., 2018), while it has only about half
size of Cas9/Cpf1, thus representing so far the smallest effector
nuclease in a single-Cas effector system.

Undoubtedly, class 2 CRISPR-Cas systems have attracted
great attention with their fruitful achievements in genome
manipulations. However, the engineered targets exhibited an

obvious bias toward eukaryotic cells. One of the reasons could
be that, as heterologous large-sized nucleases with intrinsic
toxicity, the class 2 Cas effectors are hard to be introduced
into prokaryotes, particularly those poorly genetically accessible
prokaryotic cells. In one recent study, it failed to yield any
colony when introducing Cas9 intoCorynebacterium glutamicum
cells even without a guide RNA (gRNA), suggesting the
cytotoxicity of the Cas9 per se (Jiang et al., 2017). It was
also reported that overexpressing a catalytically dead Cas9
(dCas9) in Escherichia coli resulted in abnormal morphology
and retarded growth, indicating that the cytotoxicity of Cas9
is not solely caused by DNA cleavage but possibly transient
non-specific DNA binding across the genome (Cho et al.,
2018). Therefore, using endogenous CRISPR-Cas systems of
the host for genome engineering could be an effective way to
overcome the restriction (Hidalgo-Cantabrana et al., 2019a). In
comparison with the imported class 2 systems, all the protein
components of endogenous type I systems are present in the cells,
excluding any heterologous nuclease. They naturally produce
mature crRNA guides without any heterologous helper, which is
with particular convenience to conduct, for example, multiplexed
genome editing or simultaneous multiple-gene regulation for
metabolic pathway engineering by simply supplying an artificial
CRISPR array (Luo et al., 2015; Cheng et al., 2017).

It was reported that class 1 systems, primarily types I and
III, with only a few reports added recently of type IV (Crowley
et al., 2019; Ozcan et al., 2019; Taylor et al., 2019), are present
in more than 90% of sequenced genomes of bacteria and
archaea (Makarova et al., 2015). Class 1 endogenous systems
are much more abundant than class 2 systems (Grissa et al.,
2007) and exist not only in mesophiles but also in extreme
thermophiles. This is indicative of a great potential to harness the
class 1 endogenous systems for applications across many areas
of biology. In fact, using type III system for genome editing
has been carried out in Sulfolobus islandicus (Li et al., 2016).
Because the functions and applications of type III systems have
been recently reviewed elsewhere (Liu et al., 2018), we will
present here the major progress achieved for type I systems,
uncovering mechanisms of action of the type I CRISPR-directed
immunity, concerning crRNA processing, effector complex
assembly, PAM-directed target recognition, seed sequence–
mediated target invasion, and Cas3-executed target cleavage, and
briefly discuss their recent practical applications, for example,
genome editing, antimicrobials, and gene expression regulation,
in their prokaryotic hosts.

MECHANISMS OF INVADING DNA
DEFENSE BY TYPE I CRISPR-CAS

Type I CRISPR-Cas systems contain a Cas3 protein as the
defining feature of this type with exception for transposon-
encoded type I variants (Peters et al., 2017; Klompe et al., 2019;
Makarova et al., 2019; Strecker et al., 2019) and are divided
into six subtypes, I-A through I-G, with each harboring a
specifying Cas8 homolog (Figure 1B and Table 1; Majumdar
et al., 2015; Makarova et al., 2015, 2018; Koonin et al., 2017b).
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TABLE 1 | The six types of CRISPR-Cas systems.

Class Type Subtype Spacer acquisition crRNA biogenesis Interference crRNP Type of nucleic acid targets

1 I A-G Cas1, Cas2, Cas4 Cas6/Cas5d Cascade DNA

III A-F Cas1, Cas2 Cas6 Csm/Cmr DNA/RNA

IV A-C Unknown Csf5 Csf DNA

2 II A-C Cas1, Cas2, Cas4/Csn2, Cas9 RNase III Cas9 Cas9 DNA

V A-I, K Cas1, Cas2, Cas4 Cas12 Cas12 DNA

VI A-D Cas1, Cas2 Cas13 Cas13 RNA

FIGURE 1 | Classification and architecture of CRISPR-Cas systems and interference by type I systems. (A) CRISPR-Cas systems are greatly diverse and can be

classified into two classes, class 1 and class 2. Class 1 systems encode multisubunit effector complexes; class 2 systems encode single-subunit effectors. Genes

that may miss in certain subtypes are indicated with dashed outlines. Genes encoding the components of each interference complex are colored in orange, and

those involved in crRNA processing and new spacer acquisition are in green and blue, respectively. The effector nucleases for each subtype are shown with filled

vertical lines. CRISPR arrays are indicated, with squares and rectangles representing repeats and spacers, respectively. (B) Organization of the CRISPR-Cas loci for

the typical type I subtypes. Representative operons for each type are shown, and gene names are indicated. Gene functions are marked with colors the same as

shown in (A), except for the subtype I-E of Escherichia coli K12. CRISPR arrays are indicated, with squares and rectangles representing repeats and spacers,

respectively. (C) Schematic of DNA targeting by the representative type I-E of E. coli K12. It is composed of a crRNA bound by Cas5 and Cas6 at either end and

Cas7 subunits along the guide region, a large subunit (Cas8), and sometimes a small subunit (Cas11). Upon PAM recognition by Cas8, Cascade binding to the

target DNA leads to DNA duplex destabilization, allowing crRNA invasion to form a full R-loop. Cas3 is recruited to the R-loop and nicks the replaced strand of the

target DNA within the protospacer. (D) Schematic showing type I-E Cascade containing a crRNA (g8 crRNA) targeting a sequence on the genome of bacteriophage

M13. Sequences of PAM and protospacer are indicated with underlined green and red fonts, respectively [constructed according to Semenova et al. (2011)].
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Intensive investigations on model type I CRISPR-Cas systems
have revealed molecular mechanisms of multi-Cas CRISPR-
based antiviral defense, in respect of crRNA processing, effector
complex assembly, PAM recognition and R-loop formation, and
Cas3-executed DNA target destruction (Figures 1C,D).

crRNA Processing
Amature crRNA is an essential element for an active CRISPR-Cas
effector complex, in which it functions to guide the recognition
of the cognate targets for destruction. It has been reported
that biogenesis of mature crRNAs requires cleavage of long
CRISPR transcripts within each repeat. In type I systems, an RNA
recognition motif (RRM)–containing protein, either a Cas5d for
type I-C (Garside et al., 2012; Nam et al., 2012; Punetha et al.,
2014) or a Cas6 homolog for rest type I systems (Przybilski
et al., 2011; Sashital et al., 2011; Li et al., 2013; Sokolowski et al.,
2014; Majumdar et al., 2015; Taylor et al., 2019), recognizes and
catalyzes the crRNA maturation. It should be noted that some
type III systems also use Cas6 for crRNA processing (Hale et al.,
2009; Majumdar et al., 2015; Peng et al., 2015; Nickel et al., 2019;
Wei et al., 2019). Structural analyses of different Cas6/Cas5d-
RNA complexes revealed that many repeats formed characteristic
stable stem-loop structures. Accordingly, Cas6/Cas5d enzymes
have evolved distinct mechanisms to overcome the challenges of
binding and catalysis of various RNA molecules (Figure 2; Koo
et al., 2013; Li, 2014; Shao et al., 2016; Sefcikova et al., 2017).

Mature crRNA production has been reported for each subtype
of type I. Repeats of CRISPR arrays from type I-E of E. coli
and Thermus thermophilus and I-F of Pseudomonas aeruginosa
were reported to form stable canonical stem-loop structures
(Figures 2A–C; Haurwitz et al., 2010; Sashital et al., 2011;
Sternberg et al., 2012). Interestingly, all of the stems and
loops greatly vary in both size and sequences, which serve as
bases for specific binding of Cas6 and subsequent cleavage.
The Cas6 proteins specifically recognize and cleave the pre-
crRNAs in a single turnover fashion, forming a stable hairpin
structure in each repeat (Haurwitz et al., 2010; Sashital et al.,
2011; Sternberg et al., 2012). After cleavage, they remained
binding to the cleavage products by associating with the 3′

stem-loop structure tightly (Jore et al., 2011). This is consistent
with the finding that Cas6 protein is an integrated part of
the respective interference complexes (Brouns et al., 2008; Jore
et al., 2011; Wiedenheft et al., 2011a,b; Jackson et al., 2014;
Mulepati et al., 2014; Zhao et al., 2014). Similarly, repeats of
type I-C from Bacillus halodurans also formed stable stem-
loop structures, which, however, were produced by a unique
Cas5 variant (Garside et al., 2012; Nam et al., 2012; Koo
et al., 2013; Punetha et al., 2014) [known as Cas5d where
the affix “d” refers to “Dvulg” (Haft et al., 2005)], as a cas6
gene is missing from this system. A 3-bp stem and a tetra-
loop included in the hairpin region were illuminated to be
a minimal structural requirement for Cas5d recognition and
cleavage (Nam et al., 2012).

Differently, CRISPR repeats present in type I-A of Sulfolobus
solfataricus and type I-B of Methanococcus maripaludis usually
form mini stem-loop structures (Figures 2D,E), instead of
showing clear palindromic features (Kunin et al., 2007;

Shao et al., 2016). For instance, in type I-A system, the formed
stem-loop is composed of a 3-bp stem and a 5-nt loop, which were
specifically recognized and stabilized by SsCas6, a Cas6 homolog.
Two base pairs at the base of the stemwere essentially required for
SsCas6 binding and cleavage, as mutations disrupting the base-
pair matching resulted in cleavage inhibition (Shao and Li, 2013).
Likewise, a 3-bp stem could be potentially formed by the CRISPR
repeats from another type I-B system ofHaloferax volcanii (Maier
et al., 2013), which likely contributes to the binding specificity of
the HvCas6. Comparably, type I-G system shares the similar Cas6
homolog protein with coexisting types I-A and III-B systems in
Pyrococcus furiosus to recognize CRISPR repeats with no obvious
stem-loop structure for mature crRNA production (Figure 2F;
Carte et al., 2010; Elmore et al., 2015).

crRNA processing in a type I-D system is the least known.
Processing of CRISPR transcripts of a type I-D system in
Synechocystis species PCC 6803 involved a Cas6 protein (Cas6-1)
(Scholz et al., 2013; Jesser et al., 2019). Depletion of Cas6-1 from
the cells largely decreased the crRNA amount, while this deficient
phenotype could be restored through expression of Cas6-1 via a
plasmid (Scholz et al., 2013). Amini stem-loop was also predicted
to be formed in each repeat (Jesser et al., 2019), but whether it
serves as the binding signal for Cas6-1 remains uncertain.

Effector Machinery Assembly
Type I CRISPR-Cas systems encode multiple Cas proteins to
multi-Cas effector machineries, which is termed the CRISPR-
associated complex for antiviral defense (Cascade). Cascade was
initially used for characterizing the type I-E CRISPR-Cas effector
complex of E. coli (Brouns et al., 2008). This complex has
a molecular weight of approximately 405 kDa and comprises
proteins of Cas8e (also known as CasA or Cse1), Cas11 (also
known as CasB or Cse2), Cas7 (also known as CasC or
Cse4), Cas5 (also known as CasD), and Cas6e (also known
as CasE or Cse3), as well as an RNA component, the 61-nt
crRNA (Jore et al., 2011). These proteins shape a seahorse-
like architecture with a stoichiometry of Cas8e1-Cas112-Cas76-
Cas51-Cas6e1 (Figure 1C; Jore et al., 2011).

Two crystal structures of the type I-E Cascade bound to
a crRNA have been solved, offering molecular details in the
Cascade complex assembly (Figure 3A; Jackson et al., 2014; Zhao
et al., 2014). In E. coli, as previously mentioned, pre-crRNA is
processed by the Cas6e ribonuclease through cleavage of pre-
crRNAs within each repeat. After processing, Cas6e remains tight
binding to the 3′ repeat portion of each crRNA (Jore et al.,
2011). At the same time, six Cas7 proteins run along the guide
region (spacer) of the crRNA, forming the backbone filament,
with the upper most subunit interacting with Cas6e. These Cas7
proteins adopt a right-hand-like shape (Mulepati et al., 2014),
and the subunits are connected with one another by interaction
between the “thumb” and “fingers” domains of one subunit and
its adjacent subunits, respectively (Jackson et al., 2014). The
Cas5e protein also exhibits a right-hand-like shape but lacks the
“fingers” domain, thus allowing Cas5e to cap the Cas7 filament at
the 5′ end of the crRNA by undertaking the same interaction of
Cas7 with that between Cas7 subunits. In addition, Cas5e protein
also holds the first 6 nt of the 5′ repeat portion of the crRNA
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FIGURE 2 | Structures of Cas6 and Cas5d (left) and schematic of CRISPR repeats (right). Structural examples for Cas6 or Cas5d were presented from (A) type I-E

of Thermus thermophilus (TtCas6, PDB code 2Y8W) (Sashital et al., 2011), (B) type I-F of Pseudomonas aeruginosa (PaCas6, PDB code 2XLK) (Haurwitz et al.,

2010), (C) type I-C of Bacillus halodurans (Cas5d, PDB code 4F3M) (Nam et al., 2012), (D) type I-A of Sulfolobus solfataricus (SsCas6, PDB code 4ILL) (Shao and

Li, 2013), (E) type I-B of Methanococcus maripaludis (MmCas6, PDB code 4Z7K) (Shao et al., 2016), and (F) type I-G of Pyrococcus furiosus (PfCas6, PDB code

3PKM) (Wang et al., 2011). The structures of Cas6 are shown in complex with crRNA (red). CRISPR RNAs from type I systems form either stable canonical

stem-loop (A–C), mini-stem-loop (D,E), or non–stem-loop (F), structures. The predicted processing sites are indicated by arrows, and sequences are to be present

as the 5′ handle of a crRNA is shown in red or blue fonts.

(Jackson et al., 2014). In the seahorse-like complex, two Cas11
proteins form a dimer that does not directly interact with crRNA
but functions as a bridge to connect the head and tail of the
complex. One Cas11 subunit that is proximal to the 5′ end of
crRNA, along with Cas5e, contacts Cas8 at the bottom of the
complex, whereas the other Cas11 subunit interacts with Cas6e
on the top (Jackson et al., 2014). Cas8 and Cas11 were identified
as the largest and smallest subunits of the Cascade, respectively
(Makarova et al., 2011a).

Subsequently, several other type I systems complexes were
isolated and characterized (Lintner et al., 2011; Nam et al., 2012;
Brendel et al., 2014). Comparison of the overall architectures
of these complexes with that of the type I-E Cascade revealed
that they share striking architectural similarities and thus being
all referred as Cascade (Figure 3B; Reeks et al., 2013). These
Cascade complexes show some common features. (1) A core
complex of Cas5, Cas7, and/or Cas6 holds a crRNA, each protein
possessing at least one RRM motif. (2) Cas7 subunits form the
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FIGURE 3 | Models of type I Cascade complexes. (A) Structure of the type I-E Cascade of E. coli binding to a dsDNA target (PDB code: 5H9F, left) and a simulated

model according to the structure (right). (B) Models for other characterized Cascade complexes of type I systems, including type I-A (Lintner et al., 2011), type I-B

(Brendel et al., 2014), type I-C (Nam et al., 2012), and type I-F (Wiedenheft et al., 2011a), showing overall architectural similarities to that of the type I-E. Weakly

associated subunits are indicated with dashed outline.

backbone of the complex and are more abundantly present. (3)
The large subunit (Cas8) and/or small subunit (Cas11), if present,
less tightly associate with the core complex. Thus far, a separate
small subunit is only seen in type I-A and I-E systems, that is,
Csa5 and Cse2, respectively. This small subunit is absent from
the Cascade complexes of type I-B, I-C, and I-F, but the large
subunits of these complexes are speculated to have contained
a domain that is functionally homologous to the small subunit
(Makarova et al., 2011a). Interestingly, the determined Cascade
structure of a type I-F variant (I-Fv) lacks both the large and the
small subunits, whose functions, however, are replaced by Cas5fv
and Cas7fv, respectively (Pausch et al., 2017). The architectural

similarities suggest that these Cascade complexes may use similar
mechanisms for complex assembly and DNA interference.

PAM Recognition and R-Loop Formation
The Cascade is directed to an invading DNA molecule solely
relying on base pairing between the embedded crRNA and
protospacer. An outstanding question would be how crRNA
differentiates protospacer from the corresponding spacer that is
stored in the genomic CRISPR bank. The evolvedmechanisms for
these systems to avoid self-CRISPR targeting involve a sequence
immediately flanking the protospacer, called a protospacer
adjacent motif (PAM), which is essentially required for Cascade
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to determine bona fide DNA targets. First predicted by Mojica
et al. (2009) and experimentally demonstrated for type I-A
systems in Sulfolobus by Gudbergsdottir et al. (2011), PAM is
typically of two to five base pairs and located at the 5′ end of
protospacer on the strand matching the spacer.

Protospacer adjacent motif recognition has also been studied
in other type I systems. In type I-E system of E. coli, a
loop structure, named the L1 loop that is located within the
N-terminal domain of Cas8, directly contacts with the PAM,
mediating specific binding of Cascade to the PAM-containing
DNA target (Sashital et al., 2012). Further analyses defined that
three structural features, including a glutamine wedge, a glycine
loop, and a lysine finger, were required for PAM recognition by
Cas8 and specified the interaction of PAMs with the target strand
(Hayes et al., 2016). In type I-E Cascade ofThermobifida fusca, the
Cas8 subunit played the same roles in specifying the PAMs, while
through contacting the non-target strand (Xiao et al., 2017). In
both cases, PAM sequences were recognized by the Cas8 proteins
at the minor groove side, explaining the promiscuity of PAM
recognition in these systems. Additionally, the recognition of
PAM by Cas8 homologs was also identified in type I-B systems of
H. volcanii and Methanothermobacter thermautotrophicus (Cass
et al., 2015). Interestingly, in the reported type I-Fv system,
the Cas8 protein is missing. Instead, the existing Cas5f variant
(Cas5fv) containing an additional domain may compensate for
the roles of Cas8 (Pausch et al., 2017).

Bona fide PAM recognition and base pairing between a
crRNA and the cognate protospacer determine a target DNA.
Interestingly, in some initial work, researchers found that a few
type I CRISPR-Cas systems exhibited tolerance to mismatches
between the crRNAs and corresponding protospacers. Impacts
of mismatches at different regions of the crRNA on target DNA
interference markedly varied. In one of the studies, Wiedenheft
et al. (2011b) used isothermal titration calorimetry to investigate
DNA-binding affinity of the P. aeruginosa type I-F system. The
results indicated that an 8-nt ssDNA oligo matching the first
8-nt 5′ guide sequence of a crRNA (1–8 nt) showed a high
binding affinity of the crRNA, whereas another 8-nt ssDNA oligo
complementary to the corresponding 5 to 12 region of the crRNA
presented a 4-fold weaker binding affinity. Strikingly, all other
tested 8-nt ssDNA oligos that matched the crRNA at a region
outside the 1- to 8-nt stretch exhibited no measurable binding
affinity. These results indicated that the 1- to 8-nt sequence within
the crRNA, immediately adjacent to the PAM, played an essential
role in defining an invading DNA as an attacker. This is in
analogy to the seed sequence in small RNAs, which functions in
target recognition in the RNAi in eukaryotes (Lewis et al., 2003).

Following binding of Cascade to a DNA target upon PAM
recognition is the formation of a full R-loop, which was observed
in several type I systems. Cascade binding could destabilize
the target DNA duplex, allowing crRNA to first pair with the
protospacer within the seed region and then throughout the
whole matching sequences and thus forming a full R-loop,
where the non-target strand is bound by the Cas11 dimer
(Hochstrasser et al., 2014; Szczelkun et al., 2014). The existence
of an intermediate seed bubble immediately following the
PAM recognition but before the full R-loop formation was

recently evidenced. Xiao et al. (2017) captured a structural
snapshot of the T. fusca type I-E Cascade, showing an 11-
bp unwound sequence in the seed region. R-loop formation is
accompanied by conformational changes of the small and large
subunits that trigger recruitment of Cas3 for target degradation
(Hochstrasser et al., 2014).

DNA Target Degradation
As aforementioned, Cascade recruited Cas3 to unwind, cut, and
degrade the targets. Cas3 typically comprises an N-terminal
HD phosphohydrolase domain and a C-terminal superfamily
2 helicase domain (Makarova et al., 2006). There are also
exceptional cases in some type I systems. For example, these
two domains are encoded as individual proteins, Cas3′ (helicase)
and Cas3′′ (nuclease), respectively, in type I-A of S. islandicus
Rey15A (Figure 1B; Guo et al., 2011; Makarova et al., 2011b). It
was speculated that the HD domain carried out the divalent ion-
dependent catalytic cleavage on ssDNA and/or RNA (Han and
Krauss, 2009; Beloglazova et al., 2011; Mulepati and Bailey, 2011;
Sinkunas et al., 2011), whereas the helicase domain unwound the
DNA/DNA and/or DNA/RNA duplexes in the presence of ATP
(Howard et al., 2011; Sinkunas et al., 2011).

The mechanism of target DNA degradation by Cas3 was
revealed by structural analyses of type I-E targeting complexes,
in which the recruitment of Cas3 strictly required the formation
of a full R-loop structure. The ape Cascade and R-loop-forming
Cascade present as different conformers and Cas3 only selectively
capture the latter (Xiao et al., 2017). This conformational
difference might act as signals for triggering Cas3 recruitment
and also help the type I systems avoid cleaving partially
complementary sequences (off-targeting). Upon the formation
of Cas3-Cascade-DNA target complex (Huo et al., 2014), Cas3
nuclease nicked the non-target strand in the 7- to 11-nt region of
a protospacer (Hochstrasser et al., 2014). The non-target strand
contained a significant bulge structure in the R-loop that was
created by the Cascade complex, facilitating its handover from
Cascade to the bound Cas3 for nicking (Xiao et al., 2017).
This handover was recently confirmed to be essential for type
I-E immunity (Xiao et al., 2018). Subsequent exonucleolytic
degradation of the DNA target was observed to occur in the
direction of 3′ to 5′ with the need of ATP. Sinkunas et al. (2013)
found that Cas3 cleaved only on the displaced strand in the
R-loop in absence of ATP, but destroyed both strands when ATP
was present. This may indicate that unwinding DNA target by
the ATP-dependent Cas3 helicase domain could further provide
ssDNA substrates for the nuclease domain of Cas3, or for other
host nucleases, leading to degradation of the entire DNA target
(Brouns et al., 2008; Mulepati and Bailey, 2013).

A Deduced General Mechanism of Type I
DNA Interference
Collectively, as exemplified for the type I-E system in Figure 4A,
all known type I CRISPR-Cas systems form a Cascade machinery
to perform DNA interference in several steps, consisting of
multiple protein components complexed with a mature crRNA
molecule. A general mechanism of type I Cascade-mediated DNA
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FIGURE 4 | A deduced general mechanism of type I Cascade-mediated DNA interference. (A) Schematic showing interference pathway exemplified by the type I-E

CRISPR-Cas system of E. coli. crRNA produced and bound by Cas6e acts as a scaffold for Cascade assembly. Upon recognition of PAM (green) on the invading

DNA, Cascade bound to the target DNA, followed by R-loop formation after crRNA base pairs with the target strand DNA, triggering the recruitment of the

endonuclease Cas3. Finally, Cas3 initials degradation of the non-target strand. (B) The crRNA and type I Cas proteins form a Cascade complex. If present, an

optimal PAM in a DNA target, Cas8 interacts directly with the PAM, allowing Cascade binding. A primary base pairing between the crRNA and protospacer within the

seed (i) is followed by extended base pairing, displacing the non-target strand and forming a full R-loop (ii). Conformational changes caused by target DNA binding

trigger Cas3 helicase/nuclease to join in the complex, docking at a Cas8-provided site (iii). In the absence of ATP (-ATP), the nuclease domain cuts the displaced

strand within the protospacer (iv), leaving a ssDNA gap in the target (v). In the presence of ATP (+ATP), Cas3 helicase unwinds the dsDNA, and complete

degradation of the target DNA is mediated by either the Cascade-independent Cas3 nuclease activity or other host nucleases (vi).
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interference could be deduced as described following and shown
in Figure 4B. The interference begins with the recognition of a
suitable PAM by Cas8. Direct interaction between the L1 loop of
Cas8 and the PAM (Hochstrasser et al., 2014) locates the Cascade
to the DNA target and destabilizes the DNA duplex (Szczelkun
et al., 2014). The crRNA base pairs with the protospacer, first
within the seed region and then throughout the whole matching
sequences, to eventually displace the non-target strand, forming a
full R-loop. On the other hand, the initial dsDNA binding induces
a major conformational change to the Cascade (Wiedenheft et al.,
2011a), which may trigger the recruitment of Cas3 to the Cas8
docking site (Westra et al., 2012; Hochstrasser et al., 2014).
It was reported that once the non-target strand is displaced
by the crRNA, it is exposed and handed over to the Cas3
nuclease for nicking and successive degrading in the 3′ to 5′

direction (Sinkunas et al., 2013; Gong et al., 2014). This reaction
may generate an intermediate degradation product, as partially
ssDNA might not result in complete target DNA degradation.
In fact, complete degradation of the target DNA is probably
mediated either by the nuclease domain of Cas3 or by other
host nucleases with assistance of the ATP-dependent helicase
domain of Cas3 to unwind the DNA target (Brouns et al., 2008;
Mulepati and Bailey, 2013).

PRACTICAL APPLICATIONS OF TYPE I
CRISPR-CAS SYSTEMS

The above mechanistic dissections of type I CRISPR-Cas–based
immunity have provided solid theoretical basis for exploiting
these systems for a wide range of practical applications in
bacterial and archaeal hosts. By simply designing a plasmid-borne
artificial mini-CRISPR to express genome-targeting crRNAs, a
type I Cascade complex can be readily directed to a genome
sequence to accomplish various tasks (Figure 5A). These
applications can be briefly classified into two classes according
to the different activities of these systems. One utilizes the intact
DNA interference function of Cascade and Cas3 (Figure 5B),
for example, genome editing, natural variants selection, and
antimicrobials, and the other uses only the target surveillance
and binding ability of Cascade alone (without Cas3 nuclease)
(Figure 5C), for example, gene expression regulation.

Genome Editing
To date, genome editing predominates over other CRISPR
applications and remains the best developed, however,
overwhelmingly focusing on eukaryotes. In the eukaryotic
organisms, double-stranded DNA breaks (DSDBs) introduced
by CRISPR-Cas systems at specific locations of the genome could
be repaired through either the cellular non-homologous end
jointing (NHEJ) or the homologous recombination (HR) repair
pathways. The NHEJ repair system functions in an error-prone
manner that usually generates indels (insertions/deletions)
within the vicinity of the target site, leading to frame shifts
or gene disruption. In contrast, HR repair system normally
creates precise changes at desired positions in the genome
when providing engineered DNA templates. Dissimilarly, most

prokaryotic organisms harbor only the HR system. It has to be
pointed out that although a bacterial version of NHEJ, involving
two proteins, Ku and LigD, was reported (Weller et al., 2002),
it occurs only in a very small portion of bacteria. In general,
prokaryotes repair the CRISPR-caused DSDBs with relatively
much lower efficiencies, which is consistent with the frequently
observed CRISPR-mediated lethality when self-targeting crRNAs
of active systems were introduced into the prokaryotic cells
(Edgar and Qimron, 2010; Vercoe et al., 2013; Gomaa et al.,
2014; Peng et al., 2015). It is reasonable because the invaders
would persist to affect the host cells if the cleavage of invading
attackers, such as bacteriophages and conjugative plasmids, by
Cas nucleases is subsequently repaired. In practical applications,
this is the main obstacle that needs to be addressed in harnessing
the endogenous type I systems for genome editing.

Via coupling the DNA targeting activity of endogenous type
I CRISPR-Cas systems with the DNA-assisted HR mechanism,
various genome editing purposes can be achieved, including
gene insertion, deletion, replacement, tagging, and nucleotide
substitution, as well as multiplexed gene deletion, in their
natural hosts. Here, we take our recently published work on
type I-F CRISPR-Cas system as an example to introduce the
procedure, strategy, and principle of exploiting an endogenous
type I system for genome editing in Zymomonas mobilis (Zheng
et al., 2019). In the study, we first demonstrated the DNA
cleavage activity of the endogenous type I-F CRISPR-Cas of
Z. mobilis and determined the PAM sequences essential for
the system through a plasmid invader assay (Peng et al., 2013,
2015). This activity was then directed to genomic locations by
crRNAs produced from plasmid-borne artificial CRISPR loci to
generate DNA injuries. In addition, donor DNAs were supplied
as inserts of the same plasmids for facilitating HR, allowing
their multiplication via plasmid replication to ensure effective
concentration and stability, which has been evidenced to be
an efficient approach for enhancing the HR rate and hence
genome editing efficiency (Li et al., 2016; Renaud et al., 2016;
Cheng et al., 2017). Using this established type I-F CRISPR-Cas
platform, various genome engineering purposes were efficiently
achieved with efficiencies of up to 100%, including gene deletion,
replacement, in situ modifications, particularly large genomic
fragment deletion, and simultaneous removal of three genes
(Figure 5D). Moreover, our work demonstrated that depletion
of a DNA restriction-modification (R-M) system could also
lead to boosted genome engineering efficiency (Zheng et al.,
2019). Considering the widespread of R-M systems (Koonin
et al., 2017a) and other DNA interference systems (Doron et al.,
2018) in microorganisms, the method could be served as an
important reference for the development and deployment of
similar CRISPR-Cas toolkits in organisms with low efficiency in
the wild-type genetic background.

Endogenous type I CRISPR-based genome editing was first
reported in S. islandicus, and then other organisms. Gene
deletion and site-directed mutagenesis were completed in the
Crenarchaeota S. islandicus by constitutively expressing its
native type I-A system (Peng et al., 2013; Li et al., 2016).
After transforming a plasmid bearing both the CRISPR target
and donor DNA template into the host cells, almost all the
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FIGURE 5 | The basic working principle of type I Cascade-based technologies. (A) Strategy for native type I Cascade-based applications. A DNA stretch

immediately 5′ downstream of a PAM is selected for mini-CRISPR construction. crRNA expressed from the plasmid-borne mini-CRISPR array forms the Cascade

complex with Cas proteins expressed from the genomic cas operon. (B) Architecture of type I Cascade-mediated genome engineering. (C) Architecture of type I

Cascade-mediated gene expression modulation. The Cascade is directed to the target site in the host genome, either recruiting the Cas3 to generate a

double-stranded DNA break (DSDB) in wild-type (WT) cells (B) or binding to the target tightly without cleaving it in a cas3 knockout background (C). (D) Schematic

showing an example of genome editing by repurposing the type I-F of Zymomonas mobilis [constructed according to Zheng et al. (2019)]. (E) Schematic showing an

example of selective killing by using the type I-E of E. coli [constructed according to Gomaa et al. (2014)]. (F) Schematic showing an example of gene expression

control by the type I-E Cascade in E. coli [modified according to Rath et al. (2015)].

analyzed transformants were found to possess precise changes
including deletions and multiple point substitutions as designed
(Li et al., 2016). Likewise, the endogenous type I-B system of
the halophilic archaeon Haloarcula hispanica was also redirected
for gene deletion, insertion, point mutations introduction, and
simultaneous deletion of two genes (Cheng et al., 2017). Besides,
two other type I-B systems from the bacteria Clostridium
tyrobutyricum and Clostridium pasteurianum, respectively, have
also been used for genome editing in their native hosts, with
an editing efficiency of 100% on gene deletion/insertion (Pyne
et al., 2016; Zhang et al., 2018). Strikingly, the native type I-B
system of C. pasteurianum facilitated more efficient genome

editing of around 4-fold higher than that of the heterologously
expressed Cas9 system (Pyne et al., 2016). Very recently, the
type I-E system of Lactobacillus crispatus was also exploited
to perform in situ genomic modifications in the host cells
(Hidalgo-Cantabrana et al., 2019b).

Targeted DNA integration can also be accomplished using
crRNA-guided transposition, which was first proposed by Peters
et al. (2017). It was found that a number of CRISPR-Cas systems
are carried by transposons belonging to the Tn7 family (Peters,
2014), and they possess a notable feature of lacking a key
factor responsible for DNA targeting. Moreover, the CRISPR-Cas
systems carried by them are not capable for DNA interference.
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This proposed mechanism has been recently experimentally
confirmed in E. coli by two groups (Klompe et al., 2019; Strecker
et al., 2019). In one instance, Klompe et al. (2019) show that
a variant type I-F system from Vibrio cholerae, where the
adaptation module and Cas3 nuclease are missing, could still
form a Cascade complex and guide transposition into specific
sites 46 to 55 bp downstream of crRNA-matching sequences.
Interestingly, the transposition can be done only with the
coevolved type I-F variant, as other tested native CRISPR-Cas
systems did not work properly (Klompe et al., 2019). Moreover,
the authors also found that the Cascade could be copurified
with a TniQ protein, an element of the Tn7 system involved
in one of the characterized Tn7 transposition pathways (Peters,
2014). More interestingly, this crRNA-guided transposition could
be observed only when expressing a fusion of TniQ-Cas6, but
not TniQ-Cas8. These observations thus allowed the authors
to propose a mechanism that the CRISPR-Cas system could
cofunction with the Tn7 system (Klompe et al., 2019). Similarly,
Strecker et al. (2019) reported that the Tn7-like system could
recruit a type V-K variant from Scytonema hofmannii. This
mechanismwas later further supported by a cryo-EM structure of
TniQ-Cascade complex (Halpin-Healy et al., 2019), within which
two TniQ subunits form a dimer, with each interacting with
Cas6 and the immediately adjacent Cas7 subunit, respectively.
Finally, with either system, CRISPR-directed DNA insertion has
been attained in a programmable fashion with high frequencies.
More importantly, with no requirement for target DNA cleavage,
homologous DNA templates, endogenous DNA repair systems,
and selective pressure, this strategy is advantageous for genome
modification over many other existing tools.

Selective Killing
As aforementioned, reprogramming an active Cascade toward
the chromosome without providing a repair template would
lead to killing of most, if not all, targeted cells. Two alternative
fates might be brought to the targeted cells, including the
death of wild-type cells due to CRISPR-mediated chromosomal
degradation, or the survival if variants carry mutations in the
targeted sequences. This selective killing feature can be adopted
to exploit DNA-cleaving CRISPR-Cas systems as screening tools
to select for genetic variants from a given population or as
novel programmable antimicrobials to selectively remove certain
pathogens from a mixed population (Figure 5B).

In an early study, Edgar and Qimron (2010) demonstrated
that the native type I-E CRISPR-Cas system of E. coli could be
used to cure the cells from prophage. The induced endogenous
system could lead to killing of more than 98% of the cells
in the population when the targeting activity was directed
to an integrated lambda prophage. Interestingly, although
prophage induction was also lethal to the cells, simultaneously
inducing both of the pathways largely enhanced the survival
rate. Further analyses showed that the genome of survivors
exclusively did not harbor any prophage sequences. According
to the observations, the authors suggested that the survived
cells were possibly protected by the CRISPR system acting
on excised bacteriophages, and most cells that still harbored
prophage genes in the genome were killed by DNA targeting

(Edgar and Qimron, 2010). Later, self-targeting by a native
type I-F system was reported to result in dramatic changes
in the host’s genome (Vercoe et al., 2013). Either part of or
an entire preexisting pathogenicity island was deleted from
the chromosome when targeted by the type I-F CRISPR-Cas
system of Pectobacterium atrosepticum, a potato phytopathogen.
The chromosomal alterations allowed the genetic variants to
survive from CRISPR targeting and resulted in strains lacking
pathogenicity, which was proposed to be a strong selective
pressure for bacterial evolution (Vercoe et al., 2013).

The sequence specificity and selective killing feature
of CRISPR-mediated genome targeting have enabled its
antimicrobial utilization (Figure 5E), a concept that was put
forward by Gomaa et al. (2014). Gomaa and coworkers assessed
the genome targeting efficiency of the native type I-E CRISPR-
Cas system from E. coli through evaluating cell escape rates. It
was found that targeting single or multiple sites within coding or
non-coding region of essential or non-essential genes on either
strand of the genome gave similar outcomes of a dramatically low
cell escape rate, demonstrating that the targeting was efficient
and specific yet flexible, requiring only the target sequence
with an optimal PAM. This specificity and flexibility allowed
selective removal of individual or multiple strains, including
highly similar ones, from pure or mixed cultures by directing
the targeting activity to a unique or shared PAM-flanking
genomic sequence (Gomaa et al., 2014). The application of
type I-E CRISPR-Cas system of E. coli as antimicrobials was
echoed in another study, in which Yosef et al. (2015) engineered
a lambda prophage to deliver an active CRISPR-Cas system
along with an artificial CRISPR that expresses crRNAs targeting
antibiotic resistance genes into the E. coli host cells. After
the delivery, the lysogenized E. coli cells were immunized
against the corresponding antibiotic resistance gene-housing
genetic elements, not only clearing the preexisting resistance
determinants to sensitize the antibiotic-resistant bacteria, but
also blocking further uptake of the same resistance. Importantly,
the sensitized cells were protected by the delivered CRISPR-Cas
system against lytic bacteriophages bearing the same targeting
sequences, whereas the residual antibiotic-resistant cells would
be persistently attacked by such type of bacteriophages, thus
bringing out obvious selective benefit to the sensitized cells
over the resistant ones. In addition, two endogenous type II
CRISPR-Cas systems of Streptococcus thermophilus were also
proven to be able to selectively remove closely related organisms
by targeting unique sequences from a mixed population of
microbes (Gomaa et al., 2014). Therefore, potent selective
killing can be gained through different endogenous CRISPR-Cas
systems. In fact, if provided with an appropriate delivery vehicle,
heterologous CRISPR-Cas can be used as a programmable
antimicrobial as well. In two parallel works, a heterologous type
II CRISPR-Cas system was delivered into E. coli by anM13-based
phagemid (Citorik et al., 2014) and into Staphylococcus aureus by
a 8NM1-based phagemid (Bikard et al., 2014), respectively, to
selectively killing the pathogenic host cells.

In all above cases, both types I and II CRISPR self-
targeting could give very robust selective pressure, thus obscuring
the difference of targeting effect between these two types of
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CRISPR-Cas. As illustrated in Figure 4B, Cas3 in type I is
mainly responsible for target destruction, first nicking and
then degrading DNA via its 3′- to -5′′ exonuclease activity. In
contrast, Cas9 in type II only cuts the target DNA. It would
be interesting to evaluate whether DNA degradation contributes
to further increased potency of killing through DNA repair
prevention. Nevertheless, these CRISPR-based antimicrobials
will undoubtedly limit the increasing threat of antimicrobial
resistance microorganisms to the global public health.

Gene Expression Modulation
Type I CRISPR-Cas systems use the protein elements of Cascade
and Cas3 for DNA interference. Depletion of Cas3 from a native
type I system would still allow Cascade to tightly bind to the
target DNA but without cleaving it. Thereby, the standalone
Cascade becomes a transcriptional barrier to prevent either RNA
polymerase access or transcription elongation, thus being capable
of gene expression regulation (Figure 5C).

The capability of type I CRISPR-Cas systems in transcriptional
regulation has been demonstrated for type I-E system of E. coli
(Figure 5F) in two parallel studies, in both of which the Cas3
nuclease was eliminated (Luo et al., 2015; Rath et al., 2015). In
E. coli, expression of the Cascade operon is largely repressed
under laboratory conditions (Pul et al., 2010; Westra et al., 2010).
In order to address this issue, Luo et al. (2015) generated amutant
strain, in which the transcription of Cascade operonwasmodified
to be driven by a constitutive promoter, and Rath et al. (2015)
exogenously introduced an extra copy of Cascade operon via a
plasmid. These strains kept the ability to process the plasmid-
borne CRISPR arrays containing either a single spacer ormultiple
spacers. As expected, the produced crRNA guided the Cascade
to the target sites and exhibited strong repression effect on
expression of a genome-integrated gfp reporter gene, especially
when targeting the promoter region. Moreover, simultaneously
repressing several genes was also assayed to be effective by taking
the advantage that multiple unique mature crRNA molecules
could be produced from a single CRISPR array (Luo et al., 2015;
Rath et al., 2015).

Stachler and Marchfelder (2016) similarly, used the
endogenous type I-B CRISPR-Cas system to perform in vivo
gene down-regulation in the archaeon H. volcanii. Also, the cas3
gene was either deleted or mutated to disable its catalytic activity
to avoid genome cleavage. In addition, the crRNA-producing
Cas6 protein was further depleted from the system, such that
the genome-encoded CRISPR arrays would not be processed.
Instead, the targeting crRNAs were encoded from a plasmid
(Stachler and Marchfelder, 2016) and processed into mature
crRNAs via a Cas6-independent approach for H. volcanii
(Maier et al., 2015). This was evidenced to be significant for
the interference efficiency, suggestive of competition between
the targeting crRNA and internal crRNAs for Cascade and
pointing toward the fact that Cascade is a limiting factor of
type I silencing in this strain. Based on the strain modifications,
efficient gene repression was seen, with the greatest reducing of
transcripts by 92% when targeting the promoter region. Strand
bias was also observed that Cascade targeting to the template
strand showed much higher silencing efficiency than targeting

to the non-template strand (Stachler and Marchfelder, 2016). In
our recent work, gene expression repression by an endogenous
type I-F system was also successfully achieved for Z. mobilis
(Zheng et al., 2019).

Aside from repression of independent genes, type I CRISPR
interference was coopted for pathway engineering as well. In a
pioneering work, the endogenous type I-E system was used to
regulate catabolism of four sugars by targeting their respective
operons in E. coli. All the four targeted sugar catabolism
pathways were efficiently silenced by simply expressing a four-
spacer CRISPR array (Luo et al., 2015). Subsequently, using
the same endogenous system targeting gltA gene in E. coli also
highly repressed the citrate synthase, leading to accumulation
of acetate and thus regulation of the metabolic flux of central
metabolism (Chang et al., 2016). Recently, Tarasava et al.
(2018) applied CRISPR interference strategy to simultaneously
alter the expression levels of multiple genes associated with
3-hydroxypropionate (3-PH) production and finally achieved
nearly 2-fold increase of 3-PH yield in E. coli. In order to
controllably utilize the type I-E system for CRISPR interference,
the authors replaced the native promoter of Cascade operon
with an arabinose-inducible promoter in a cas3 deletion mutant.
Considering that the placement of spacers within the cluster
would influence the repression strength (Luo et al., 2015),
the effect of different orders of spacer combination on the
enhancement of 3-PH production was tested. On the other
hand, a combinatorial library of gRNA array targeting six
genes was built and subsequently used to screen for highest
producing variants in this work, which was estimated to contain
approximately 104 unique variants and approximately three
orders of magnitude more than that analyzed in the rational
design approaches (Lv et al., 2015; Wu et al., 2015). Importantly,
this library was proven to be diverse combinatorial as 48 out of
50 sequenced variants were found to be unique to each other.
Furthermore, the orders of spacer combination harbored by
some outstanding producing variants screened from the library
were highly consistent with the rationally engineered variants
(Tarasava et al., 2018).

All these studies have paved the way for further development
of type I CRISPR-Cas-based in vivo gene interference tools
in bacteria and archaea. Considering the broad occurrence of
diverse type I systems, it is of great interest to see whether
other subtypes are able to perform gene silencing in many other
bacteria and archaea.

CONCLUSION AND PERSPECTIVES

Based on the extensive studies on characterizing the type I
CRISPR-Cas functions, a general mechanism of type I DNA
interference can be deduced (Figure 4B). The functional
demonstrations have contributed great efforts for exploiting
the endogenous type I systems as CRISPR toolkits for genome
editing, antimicrobials, gene regulation, and so on, in bacteria
and archaea. While many successful achievements have already
proven type I CRISPR-based technologies to be powerful tools
for prokaryotic engineering, they are still in their infancy stage,
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leaving many hurdles for their deeper improvements for a wider
range of applications.

Hurdles Ahead
To truly exploit the endogenous type I CRISPR-Cas systems,
there are several critical obstacles still required to be addressed.
First, because of the host-specific property of endogenous
CRISPR-Cas systems, each of them must be thoroughly
characterized in the host cells, including determination of PAM
sequences, demonstration of Cas functions, and identification
of mature crRNAs, as well as dissection of its mode of action
during foreign DNA defense. Second, low efficiency of exogenous
DNA delivery and their low stability in host cells might
significantly hamper the repurposing of endogenous CRISPR-
Cas. Although there is no need of importing exogenous Cas
proteins, other genetic materials, for example, artificial CRISPR
arrays, and donor DNA templates during genome editing, are
still required to be introduced into the cells with relatively
high concentrations. Therefore, efficient delivery systems would
help for better performances during the applications. Separately,
prokaryotes harbor a collection of innate defense systems, such
as R-M (Roberts et al., 2015), BREX (Goldfarb et al., 2015),
and so on. Many of these systems are prevalent; for example,
approximately 95% of sequenced bacterial genomes encode at
least one R-M system (Roberts et al., 2015). Research has shown
that destroying such innate defense systems can lead to boosted
plasmid transformation rate and hence genome engineering
efficiency (Zheng et al., 2019). In addition, because most of
prokaryotes use the less efficient HR pathway for repairing the
CRISPR-generated DNA injuries, it is always good to maintain a
high concentration of introduced donor DNAs to ensure a better
performance of genome editing. To this end, several strategies
can be used, such as supplying DNA templates as inserts of
the vectors to allow their multiplication (Li et al., 2016; Cheng
et al., 2017; Zheng et al., 2019). Finally, during the CRISPR-
targeting, escape always occurs with various modes, normally
due to modifications/alterations in spacer or protospacer, or
alternatively mutations in Cas proteins. However, it would be
important but troublesome to understand the escape modes
and underlying mechanisms, which might provide possibility for
further increasing the overall efficiency of genomemanipulations.

CRISPR-dCas3 Exploitation
Current applications of type I CRISPR-Cas systems focus mainly
on genome editing and gene down-regulation. For the latter,

in most studies, the cas3 gene was deleted from the system.
Actually, a system with a catalytically inactive Cas3 (dCas3)
would have further uses. For instance, considering DSDBs are
repaired with relatively lower efficiencies in prokaryotic cells, it
would be beneficial to use a catalytically inactive Cas protein,
for example, dCas9 or dCas3, with the FokI endonuclease to
generate DSDBs in a manner that can be more easily repaired
by the endogenous pathways, hence increasing engineering
efficiency (Guilinger et al., 2014; Tsai et al., 2014). In an
even efficient manner, single DNA changes within a targeted
window can be achieved without introducing DSDBs by using
deaminase–dCas9 fusions in E. coli (Gaudelli et al., 2017;
Banno et al., 2018), where the CRISPR-dCas9 system might be
potentially replaced with an endogenous CRISPR-dCas3 system.
Additionally, dCas3, together with the Cascade, may enrich a
fusing transcription activator to a genomic region and may
thus lead to activation of targeted genes, just in parallel with
the similar applications of dCas9/dCas12 as reviewed by Yao
et al. (2018). In short, attempts of other applications through
the endogenous type I CRISPR-dCas3 systems, such as cell
imaging that has not been reported in prokaryotes, can be
achievable and will further extend the application scope of
CRISPR-based technologies.
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