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Endometriosis is a known estrogen-dependent inflammatory disease affecting

reproductive-aged women. Common symptoms include pelvic pain, dysmenorrhea,

dyspareunia, heavymenstrual bleeding, and infertility. The exact etiology of endometriosis

is largely unknown, and, thus, the diagnosis and treatment of endometriosis are

challenging. A complex interplay of many molecular mechanisms is thought to aid in the

progression of endometriosis, most notably angiogenesis. This mini-review examines our

current knowledge of the molecular etiology of endometriosis-associated angiogenesis

and discusses anti-angiogenic therapy, in the blockade of endometriosis-associated

angiogenesis, as potential non-hormonal therapy for the treatment of endometriosis.
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INTRODUCTION

Endometriosis is an estrogen-dependent inflammatory disease (1), defined as the presence of
endometrial glands and stroma outside the uterine cavity. Endometriosis affects up to 5–10%
of reproductive-aged women (2, 3) and has a higher prevalence in infertile women (4). The
prevalence, however, may be underestimated because of diagnostic difficulty (3) and variation in
clinical presentation. Early age at menarche, short menstrual cycle length, lean body size, and
decreased parity are characteristically associated with a greater risk of endometriosis (3). Common
symptoms that are predictive of the diagnosis of endometriosis include abdominopelvic pain, severe
dysmenorrhea, dyspareunia, heavy menstrual bleeding, infertility, and a prior diagnosis of irritable
bowel syndrome or pelvic inflammatory disease (5, 6). Clinicians should also suspect endometriosis
in women of reproductive age with cyclical dyschezia, dysuria, or hematuria (6).

Diagnosis and treatment of endometriosis are challenging, given the large knowledge gap in
specific cellular andmolecular pathways. Surgical visualization and sampling with histologic review
are necessary to confirm the diagnosis of endometriosis, which makes diagnosis more difficult. In
addition, clinical presentation, treatment response, or prognosis do not frequently correlate with
classification and staging (7, 8).

The exact etiology of endometriosis is largely unknown, but a few theories have been proposed
and include retrograde menstruation, coelomic metaplasia, and lymphatic and vascular metastasis
(9). Retrograde menstruation is a widely accepted proposed mechanism that refers to the overflow
of menstrual debris, containing endometrial tissue, through the fallopian tubes and into the
pelvic peritoneal cavity (10). Additional factors are necessary to explain retrograde menstruation
however, since retrograde menstruation occurs in most reproductive-aged women, but only 10%
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of reproductive-aged women have a diagnosis of endometriosis.
It is suggested that endometrial stromal cells provide adhesive
ability through integrin and localized inflammatory responses
compared to normal endometrial stromal cells (9).

Current medical treatment focuses on hormonal
manipulation to induce a hypoestrogenic state in women.
Common medications include combined oral contraceptive
pills, progestins, and gonadotropin-releasing hormone (GnRH)
agonists and antagonists (11, 12). However, their ineffectiveness,
side effects, and recurrence after discontinuation often limit these
options. In addition, adverse side effects, including hot flashes,
memory loss, and insomnia are often associated with GnRH
agonists (13). Surgical management for excision of endometriosis
is an option for patients who desire relief of symptoms,
but recurrence is commonly encountered postoperatively.
Overall, safe, effective, non-hormonal targeted therapies are
limited/inadequate for patients with endometriosis. This article
aims to review our current knowledge of endometriosis-
associated angiogenesis and discuss anti-angiogenic treatment as
non-hormonal therapy for the treatment of endometriosis (14).

ANGIOGENESIS AND ENDOMETRIOSIS

The precise pathways in the pathogenesis of endometriosis
are complex and largely unknown. Various theories have been
proposed as potential sources of endometriotic lesions (9), but
the maintenance and progression of endometriosis entail a
complex interplay of many molecular mechanisms. Immune
dysregulation with localized inflammation, hyperproliferation,
anti-apoptosis, and enhanced angiogenesis have a critical role in
the progression of this disease. For instance, in endometriotic
endometrial cells, TNFα-induced apoptosis signaling is
effectively suppressed by steroid receptor coactivator-1 (SRC-1)
isoform/ERβ axis (15–17). ERβ also causes inflammasome-
mediated hyperproliferation of endometriotic lesions for the
progression of endometriosis (16).

Angiogenesis is a physiologic process that provides
fundamental vasculature for the overall growth and repair
of organisms’ systemic and local tissue needs. Highly regulated
angiogenesis is essential for normal reproduction and plays
a crucial role in follicular maturation, development of a
functional corpus luteum, and endometrial growth (18).
Angiogenic dysregulation, or the excessive growth of new blood
vessels, can contribute to the establishment and progression
of many diseases. In this frame of reference, angiogenesis
has a critical role in the pathogenesis of endometriosis,
because the growth of new blood vessels from pre-existing
vessels is necessary for the survival and progression of ectopic
endometrial implants. Limited information describing the
precise mechanism of endometriosis-associated angiogenesis
is available, however. Neovascularization from a complex
system of cytokines, growth factors, steroids, and eucasanoids
in the peritoneal environment, is thought to aid in recruiting
new capillaries for the progression of ectopic lesions (18).
Furthermore, mobilization and recruitment of bone marrow-
derived endothelial progenitor cells (EPCs) to areas of hypoxic

tissue, or “vasculogenesis,” also provides de novo formation of
microvessels in endometriosis (19, 20). Vascular endothelial
growth factor (VEGF) and fibroblast growth factor-2 were found
to stimulate the mobilization of EPCs from bone marrow (19).
Moreover, the dynamics of hypoxia with endothelial injury,
inflammation, and ERα expression aid in the employment of
EPCs for the growth of endometriotic implants (21, 22).

FACTORS FOR
ENDOMETRIOSIS-ASSOCIATED
ANGIOGENESIS

The distinct interplay between cytokines, growth factors,
and angiogenic factors aid in establishing and progressing
endometriotic implants.

Cytokine
The immune system, particularly Interleukin (IL)-1β, the
dominant interleukin-1 secreted by activated peritoneal
macrophages, stimulates stromal cells to produce angiogenic
molecules (14). Interleukin (IL)-6, produced by endometriotic
stromal cells in the presence of (IL)-1β, also increases angiogenic
factors in neutrophils to stimulate endometriosis-associated
angiogenesis (17, 23). IL-8, a pro-angiogenic factor, may
potentiate neovascularization of ectopic implants, as elevation of
IL-8 is observed in endometriosis patients (24, 25). IL-17A, in
human endometriotic lesions, significantly increases angiogenic
(VEGF, IL-8, IL-6, and IL-1β) and chemotactic cytokines (G-CSF,
CXCL12, CXCL1, and CX3CL1) in endometrial cells (26).
VEGF is a very potent and highly responsive angiogenic factor.
Numerous factors aid in VEGF modulation, including Activin
A (27) and IL-1β (14). VEGF protein expression is present
in normal endometrial stromal cells, with levels increasing in
response to estrogen and progesterone (17, 28). Cyclic VEGF
expression is observed throughout the menstrual cycle and
has the most significant expression during the secretory phase
(28). Compared to women without endometriosis, increased
VEGF levels are found in both peritoneal fluid of women with
endometriosis and ectopic endometriotic tissue and contribute
to the angiogenic microenvironment in endometriosis (29–31).
In addition to endometriotic lesions, the VEGFR1/VEGF
signaling in macrophages and fibroblasts enhance the growth of
endometriotic lesions by activating lymphangiogenesis (32).

Transcription Factors
Hypoxia-inducible factor enhances expression of pro-angiogenic
factors, such as VEGF, in vascular endothelial cells to enhance
hypoxia-induced angiogenesis (33, 34). Ovarian endometriomas
have a higher level of HIF-1α compared to normal endometrium
(35). In the presence of HIF-1α, VEGF mRNA expression
levels increase in response to hypoxia; moreover, HIF-1α is
required for oxygen-regulated transcriptional activation of genes
encoding VEGF to enhance hypoxia-induced angiogenesis (36,
37). Thus, the HIF-1α/VEGF axis is critical in endometriosis-
associated angiogenesis. In addition to angiogenesis, HIF-1α also
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promotes endometriotic stroma cell migration and invasion by
up-regulating autophagy in endometriosis (38).

Since endometriosis is an estrogen-dependent disease,
estrogen and estrogen receptors (ERs) are critical for the
progression of endometriosis (39). Additionally, endometriotic
tissue has higher local estradiol concentrations than
normal endometrium by increasing steroidogenic factor
I (SF-I) and aromatase (2, 10). In a preclinical model of
endometriosis, targeting ERs, chloroindazole (CLI) for ERα

and oxabicycloheptene sulfonate (OBHS) for ERβ, effectively
suppresses endometriosis progression by inhibiting ER-
dependent inflammatory activity (40). Additionally, PHTPP, a
selective ERβ antagonist, effectively suppresses endometriosis
progression in mice with endometriosis (16).

Estrogen is a pro-angiogenic hormone, widely known for its
effects of neovascularization and angiogenesis in the uterus and
endometrium through proliferation and migration of endothelial
cells and formation of new matrices around vessels. Estrogen-
mediated angiogenesis, however, is also necessary in non-
reproductive tissue for wound healing, reestablishment of blood
supply to ischemic tissue, tumor growth, and repair of damaged
organs (41–43). Furthermore, endothelial progenitor cells,
which play an important role in angiogenesis, are hormonally
regulated (44).

What is the correlation between estrogen and angiogenesis for
endometriosis progression? The 17β-Estradiol (E2) up-regulates
VEGF expression in human primary endometrial stromal cells
by activating the Wnt/β-catenin axis through ERs and thus
enhances their ability to establish a new blood supply to the
human exfoliated endometrium (Figure 1) (45, 49). Estrogen
and selective agonist for each subtype of ER, such as ERα agonist,
4,4′,4′′-(4-propyl-(1H)-pyrazole-1,3,5-tryl) triphenol and
ERβ agonist 2,3-bis(4-hydroxy-phenyl)-propionitrile [DPN])
regulates the axonal guidance molecules of the SLIT/ROBO
signaling that have a critical role in neuroangiogenesis occurring
in endometriosis lesions found on the peritoneal wall (50).
Furthermore, ERβ directly regulates the expression of genes
involved in hypoxia-induced angiogenesis, such as HIF1α,
VEGF, and Angiotensin (Ang)1 in ectopic lesions of mice
with endometriosis to stimulate endometriosis progression
(51). Therefore, E2/ERs axis has a critical role in regulating
genes involved in endometriosis-associated angiogenesis in
endometriotic lesions to promote endometriosis progression.
In addition to E2, exposure of bisphenol A elevates ERβ in
mouse endometrium, promoting endometriosis progression
by activating ERβ-regulated endometriosis cellular pathways
involving angiogenesis (52). Besides ERs, G Protein-Coupled
Estrogen Receptor (GPER) levels are significantly elevated
in endometriotic lesions and endometriosis-associated
macrophages by stress-related hormones and inflammation
(53, 54). Therefore, rapid estrogen effects mediated by GPER also
have a critical role in the hormonal regulation of endometriosis.

Peptide hormones regulate angiogenesis by stimulation or
inhibition to promote or prevent the growth of target tissue.
Proteolysis converts the original hormone to either pro-
or anti-angiogenic peptides. For example, growth hormone,
prolactin, and placental lactogen family are structurally and

functionally related, all released from the anterior pituitary.
These hormones are pro-angiogenic when released, but upon
proteolysis, they display angiogenic inhibitory properties.
Endothelin, gonadotropins, insulin-like growth factor I (IGF-I),
parathyroid hormone, and thyroid-stimulating hormone exhibit
pro-angiogenic properties, whereas angiotensin, somatostatin,
and natriuretic peptides demonstrate angiogenic inhibitory
properties (55). Endothelin and IGF-1 may also play a role
in endometriosis-associated angiogenesis as their levels were
found to be significantly higher in women with endometriosis
compared to controls (56, 57).

Although the exact molecular etiology of thyroid hormone
and pro-angiogenesis has yet to be discovered, thyroid hormone
has been implicated in both physiologic and pathologic
angiogenesis in experimental models. Thyroid hormone-induced
cardiac hypertrophy and ischemia models have demonstrated
sustained angiogenesis and coronary blood flow. The hormone
may also induce the expression of transcription factors that
play a role in coronary artery collateralization in hypoxia (58).
Furthermore, larger endometriotic implants were found with
increased thyroid hormone levels, and increased chronic pelvic
pain and disease score were noted in endometriotic patients with
thyroid disorder (59). Given these findings, thyroid hormone
may contribute to endometriosis-associated angiogenesis.

ANGIOGENESIS IN TUMOR
PROGRESSION

Tumor angiogenesis differs significantly from physiologic
angiogenesis. However, distinctions between angiogenesis in
tumors vs. endometriosis are mainly unknown. Therefore,
understanding tumor angiogenesis is essential for developing and
advancing anti-angiogenic therapy, which has been employed as
a potential treatment option for endometriosis.

Angiogenesis is constitutively activated during tumor
progression to promote cancer cell progression by activating
neovascularization (60). Physiologic angiogenesis is more
tightly regulated and stabilizes once new vessels are formed.
However, angiogenic tumor vessels are dilated and tortuous,
and vascular density and blood vessel diameter are not uniform
(61). Moreover, the tumor microenvironment favors hypoxic
conditions. Therefore, the cancer-associated hypoxic conditions
up-regulate Hypoxia-Inducible Factor (HIF)-1α transcription
factor to increase its target genes, which include vascular
endothelial growth factor (VEGF), platelet-derived growth
factor (PDGF), placental growth factor (PlGF), and hepatocyte
growth factor (HFG) in tumors to generate angiogenic tumor
vessels (62–65).

The hypoxia /HIF1-α axis is required for normal endometrial
repair during menstruation (66). In addition to normal
endometrial function, endometriosis is associated with local
angiogenic and hypoxic mechanisms, similar to cancer
angiogenesis. For example, ovarian endometriomas express
high levels of HIF-1/2α, and VEGF-A expression compared
to endometrium of women without endometriosis (35). HIF-
1α levels are elevated in ectopic endometrial lesions, and
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FIGURE 1 | Schematic diagram of VEGF expression by Estradiol (E2) and Estrogen Receptors (ERs) through the Wnt/β-catenin signaling pathway. E2 promotes the

direct binding of ERα to the Estrogen Response Element (ERE) site of the β-catenin promotor, enhancing its expression (45). E2 also activates the Phosphoinositide

3-kinases (PI3Ks)/AKT serine-threonine protein kinase (AKT) axis, which inactivates Glycogen synthase kinase (GSK) 3β through phosphorylation. The inhibited

β-catenin destruction complex, which consists of APC regulator of WNT signaling pathways (APC) and Axis Inhibition Protein (AXIN), decreases β-catenin

degradation. Accumulated β-Catenin enters the nucleus to bind to transcription factor 3/lymphoid enhancing binding factor 1 (TCF3/LEF1), enhancing VEGF

expression (45). ERα and ERβ also directly bind to the VEGF promoter region and increase VEGF expression upon E2 activation (46–48).

hypoxia plays a critical role in the survival of retrograde
reflux of endometrial fragments during angiogenesis in early
implanted ectopic endometrial lesions (67). Therefore, HIF1-α-
mediated angiogenesis has a critical role in endometriosis-like
cancer progression.

NON-ANGIOGENIC PATHWAYS IN TUMOR
PROGRESSION

Anti-angiogenesis therapy has demonstrated onlymodest success
in cancer patients, and, thus, further efforts have been geared
toward examining non-angiogenic modalities for tumor growth.
Formation of blood vessels in cancer cells through non-
angiogenic modalities that rely on alternative vascularization
methods include Vascular mimicry, Vascular co-option of vessels,
and Intussusceptive microvascular growth, or IMG (68).

Vasculogenic mimicry creates microvascular channels in
tumor cells without the presence of endometrial cells, providing
a network of fluid-conducting channels (69).

Vascular co-option of vessels is a non-angiogenic means for
cancer cells to obtain a blood supply by hijacking pre-existing

blood vessels in the surrounding tissue to support tumor growth
and metastasis (70).

Vessel intussusception, or intussusceptive microvascular
growth (IMG), generates new vascular structures by extending
the capillary wall into the lumen of pre-existing vessels.
Compared to angiogenesis, IMG is typically rapid as it doesn’t
rely on the proliferation of endothelial cells but rather on the
remodeling of existing vascular structures (71). However, it has
not been reported whether non-angiogenic pathways are also
involved in endometriosis-associated angiogenesis.

ANTI-ANGIOGENIC THERAPY FOR
ENDOMETRIOSIS TREATMENT

Angiogenesis has a critical role in endometriosis progression.
Therefore, various angiogenic blockers have been employed as
non-hormonal therapy for endometriosis (Table 1). For example,
VEGF blockers and inhibitors have demonstrated promising
results in mice, decreasing the number of endometriotic
implants, reducing vascular density, increasing apoptosis, and
reducing VEGF levels in peritoneal fluid (81, 121, 122). Similar
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TABLE 1 | Anti-angiogenic therapy and their mechanisms of action.

Class of drugs Name of drug Anti-angiogenic effects on endometriosis Mechanism of action

Endogenous

angiogenesis inhibitors

Angiostatin Inhibits the number of endometriosis lesions (72) Binding to ATP synthase, angiomotin, integrin,

annexin II, angiostatin binding sequence

protein, c-met and NG2 proteoglycan on the

cell surface

Binding to tissue plasminogen activator

Inhibition of endothelial cell proliferation

Induction of endothelial cell apoptosis

Inhibition of VEGF and bFGF signaling (73, 74)

Endostatin Reduction of microvessel density

Disruption of immature microvessels

Inhibits the number of endometriosis lesions (75, 76)

Binding to Integrin and E-selectin

Inhibition of endothelial cell proliferation and

migraine

Induction of endothelial cell apoptosis

Blockade of VEGF signaling

Pleiotropic action on many genetic pathways

regulating angiogenesis (77–79)

Growth factor inhibitors Anti-VEGF antibody Reduction of microvessel density

Disruption of immature microvessels (75, 76)

Neutralization of active VEGF and inhibits its

activity (80)

Bevacizumab Reduction of VEGF levels in peritoneal fluid (81) Recombinant humanized monoclonal antibody

that inhibits VEGF (82)

VEGF-targeted gene

therapy

Induction of apoptotic cell death (83)

Soluble truncated VEGF

receptors (Flt-1)

Disruption of immature microvessels

Inhibits the growth of human endometrium in mice (84)

Neutralization of active VEGF and inhibits its

activity (84)

2-Methoxyestradiol VEGF inhibitor

Suppression of HIF-1α and VEGF expression (85)

Inhibition of the expression and transcriptional

activity of HIF-Iα

Induction of apoptosis and tubulin

polymerization

Induction of endothelial nitric oxide synthase

(86)

SU5416, SU6668 Reduction of microvessels

Inhibition of vessel maturity in endometriotic lesions (22)

Selective inhibition of tyrosine kinase activity

(87, 88)

Statins Simvastatin Reduction of microvessel density

Suppression of MCP-I expression (89, 90)

Blockade of HMG-CoA reductase

Inhibition of endothelial cell proliferation

Induction of apoptosis

Downregulation of VEGF synthesis

Suppression of MMP secretion (91)

Atorvastatin Reduction of VEGF levels in peritoneal fluids

Reduction of VEGF, RAGE, EN-RAGE and COX-2 expression

Inhibition of VEGF in endometriotic stromal cells (92, 93)

Lovastatin Inhibition of vascular sprouting

Inhibition of VEGF in endometriotic stromal cells (94)

PPAR agonists Fenofibrate Reduction of VEGF levels in peritoneal fluid (95) Binding to PPAR-γ

Energy homeostasis, metabolism,

inflammation, and angiogenesis (96)

Rosiglitazone Suppression of VEGF expression (97)

Pioglitazone Reduction of microvessel density (98)

Immunomodulators Lipoxin A4 Reduced activity of MMP-9

Decreased mRNA levels of VEGF

Reduces size of endometriosis lesions

Downregulates inflammation-associated proteins (IL-6, VEGF,

matrix metalloproteinase 9) (99)

Anti-inflammatory effects

Inhibition of VEGF-stimulated angiogenesis

(100, 101)

Pentoxifylline Decreased expression of VEGF-C and Flk-I (101) Pleiotropic action on the production of

inflammatory mediators and the

responsiveness of immunocompetent cells to

inflamatory stimuli

Suppression of VEGF signaling (100, 101)

(Continued)
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TABLE 1 | Continued

Class of drugs Name of drug Anti-angiogenic effects on endometriosis Mechanism of action

Rapamycin Reduction of microvessel density, VEGF expression, and

endothelial cell proliferation (22)

Inhibition of mTOR

Inhibition of VEGF signaling (102)

Progestins, Danazol

and GnRH agonists

Leuprolide acetate Reduction of macrophage infiltration and microvessel density

Increase in apoptotic cell death (103)

Binding to the GnRH receptor (104)

Progesterone Reduced proliferation of endometrial stromal cells

Suppression of bFGF, VEGF-A, Cyr-61, and MMP

expression (105)

Binding to steroid hormone receptors

(105, 106)

Danazole Reduction of VEGF serum levels (107) Induction of anovulation

Increasing free testosterone (108)

Dopamine agonists Cabergoline Reduction of microvessel density and angiogenic gene

expression

Inhibition of VEGF and VEGFR-2 expression

Suppression of VEGF and Notch-4

Up-regulation of Ang-I and Wnt (109–111)

Binding to dopamine D2 receptor

Inhibition of VEGFR-2 phosphorylation

Up-regulation of Ang-I and Wnt (109, 112)

Quinagolide Reduction of microvessel density and angiogenic gene

expression

Downregulation of VEGF/VEGFR2, CCL2, RUNXI, AGGFI,

and PAI-I (110, 113)

Binding to dopamine D2 receptor

Downregulation of VEGF/VEGFR-2,

pro-angiogenic cytokines and PAI-I (113)

COX-2 inhibitors Celecoxib Reduction of vascularized lesion area (114) Inhibition of COX-2, carbonic anhydrase, PDK I

Induction of apoptosis (115)

Rofecoxib Reduction of VEGF levels in peritoneal fluid (116)

Parecoxib Reduction of lesion size, microvessel density, number of

macrophages

Decreased expression of VEGF and Flk-I (117)

Other Macrophage migration

inhibitory factor (MIF)

antagonist

Reduces the expression of VEGF, cell adhesions receptors,

MMP-2, MMP-9, IL-8, COX2 (118)

Inhibits cell adhesions, tissue remodeling,

angiogenesis, and inflammation (118)

Retinoic acid Decreases the volume of endometriotic implants (119, 120) Direct downregulation of VEGF production

(120)

results were achieved in a rat model without compromising
ovarian reserve (120). Furthermore, in a human clinical trial, a
patient was treated for severe endometriosis with Bevacizumab
(Avastin, a monoclonal antibody directed against VEGF) and
reported complete disappearance of her therapy-refractory
dysmenorrhea. Diffuse fibrosis of her endometriosis lesions was
also observed at second-look laparoscopy (123).

Other assuring anti-angiogenic therapies have been
investigated. For example, macrophage migration inhibitory
factor (MIF) demonstrates the development of endometriosis
in vivo and demonstrated pro-apoptosis activity (118, 121).
Retinoic acid has known anti-angiogenic characteristics,
suppressing the growth of endometriotic lesions and inhibiting
peritoneal cytokine secretion in an immunocompetent mouse
model (119, 121). Statins inhibit inflammation and angiogenic
genes, cyclooxygenase-2 and VEGF, in endometriotic stromal
cells (92, 121). Cabergoline, a dopamine agonist, inhibits the
development of endometriosis by inhibiting VEGF and VEGFR-
2 (109, 121) and may prove an effective therapy for women with
chronic pain due to endometriosis (124).

Furthermore, women with endometriosis display significantly
elevated levels of ERβ in ovarian endometrioma when compared
to normal endometrium (125). ERβ overexpression could
potentiate infertility in women with endometriosis because ERβ

overexpression impairs decidualization in the stroma of their

endometrium in mice (16). ERβ also has a critical role in
the progression of endometriotic lesions, including angiogenesis
(51). Therefore, targeting ERβ could benefit both regression of
ectopic implants by inhibiting proliferation and angiogenesis
of endometriotic lesions and optimizing endometrial receptivity
in patients with endometriosis. The 2-methoxyestradiol is a
natural metabolite of estradiol and binds to GPER, but not
ERs (126). The 2-methoxyestradiol suppresses the growth
of ectopic lesions in mice model of endometriosis (85) by
inhibiting angiogenesis of endometriosis progression because 2-
methoxyestradiol downregulates angiotensin AT1 receptor (127).
Also, 2-methoxyestradiol suppressed HIF-1α expression in vivo,
results in a decreased expression of HIF-1α target genes, such as
VEGF, phosphoglycerate kinase, and glucose transporter-1 (85).
Therefore, targeting GPER can be employed as anti-angiogenic
therapy for endometriosis treatment.

MODES OF RESISTANCE TO
ANTI-ANGIOGENIC THERAPIES

Although angiogenesis is a critical regulator in the progression of
malignant tumors, individuals may respond differently to anti-
angiogenic therapy. These anti-angiogenic agents are not equally
active across all tumor types. Few clinical studies support the
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theory that anti-angiogenic treatments can prevent activation
of the angiogenic switch in the progression and metastasis of
tumors (128). Furthermore, anti-angiogenic biomarkers do not
adequately represent a specific response to these therapeutic
agents (129).

Anti-angiogenic therapy has resulted in transient
improvements in cancer treatment with tumor stability or
shrinkage and increased survival. Over time, however, the
tumor re-establishes its growth and progression, challenging
the notion that angiogenesis is necessary for the advancement
of tumors. Adaptive, or evasive, resistance and intrinsic,
or pre-existing, non-responsiveness have been suggested as
distinct pathways in evading anti-angiogenic therapy. Adaptive
resistance theorizes that angiogenic tumors can adapt to the
presence of an anti-angiogenic agent and obtain mechanisms
to escape the inhibition of angiogenesis. Comparably, intrinsic
resistance likely encompasses a similar mechanism, but the
tumor may have underlying characteristics (type of tumor,
stage of progression, treatment history, individual genotype)
that place an individual at greater risk. In addition, those
with pre-existing non-responsiveness typically see no clinical
benefit with angiogenesis inhibitors, whereas those with evasive
non-responsiveness demonstrate transient benefit (130).

Although resistance to anti-angiogenic therapy has also been
noted, interestingly, in some cases, acquired resistance may be a
transient occurrence. Sequential therapy with a similar, but not
identical, anti-angiogenic drug is a strategy to delay the onset of
acquired resistance or treat cancers that have progressed through
anti-angiogenic therapy (131).

DISCUSSION

Non-hormonal targeted therapy for endometriosis is critical
for caring for women with endometriosis to circumvent the
adverse effects of current hormonal treatment. Our present
knowledge of endometriosis-associated angiogenesis suggests

that anti-angiogenesis therapy can aid in targeted treatment for
these patients. The proposed pathogenic pathways discussed in
this article may assist in developing targeted therapies through
adequately powered studies and a multidisciplinary approach.

Anti-angiogenic therapy may adversely impact normal
physiologic angiogenesis, such as ovulation and wound healing
(132), leading to adverse effects on reproductive function
and teratogenicity during the treatment of endometriosis in
reproductive-aged women. Thus, it is crucial to define the distinct
angiogenic pathways specific for endometriosis to mitigate these
potential side effects. ERβ and GPER are highly elevated in
endometriotic tissue, compared to normal tissue, and could serve
as new molecular therapeutic targets to suppress endometriosis-
specific angiogenesis.

Smaller anti-angiogenic molecules, derived from natural
products, have significant advantages over synthetic inhibitors.
For instance, polyphenols, polysaccharides, alkaloids, terpenoids,
and saponins containing natural products target tumor
angiogenesis (133). Furthermore, smaller anti-angiogenic
natural products can be more easily manufactured, confer lower
cost, provide higher efficacy, and have little to no known toxicity
(134). Ultimately, it is imperative to conduct further studies to
explore natural angiogenesis inhibitors and evaluate its anti-
angiogenic efficacy as a non-hormonal therapy for endometriosis
treatment in the future.
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