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Abstract. Let R be a ring, E = E(RR) its injective envelope, S = End(ER)
and J the Jacobson radical of S. It is shown that if every finitely generated sub-
module of E embeds in a finitely presented module of projective dimension≤ 1,
then every finitley generated right S/J-module X is canonically isomorphic to

HomR(E,X ⊗S E). This fact, together with a well-known theorem of Osof-
sky, allows us to prove that if, moreover, E/JE is completely pure-injective (a
property that holds, for example, when the right pure global dimension of R
is ≤ 1 and hence when R is a countable ring), then S is semiperfect and RR
is finite-dimensional. We obtain several applications and a characterization of
right hereditary right noetherian rings.

Introduction

Let R be a ring, MR a right R-module, and S = End(MR). Then there exists
an adjoint pair:

HomR(M, –) : Mod -R�Mod -S : –⊗S M
which induces a functorial morphism α : 1Mod -S → HomR(M,− ⊗S M). If X
is a right S-module such that αX is an isomorphism, we will say that XS is M -
invariant. It is well known that when every right S-module X is M -invariant, useful
information can be passed from MR to S. This is what happens, for example, when
MR is a finitely generated projective module, which makes it possible to characterize
properties of the endomorphism ring S in terms of MR. This property also holds
when MR is finitely presented and S is a (von Neumann) regular ring and this,
coupled with Osofsky’s theorem [8, 9] that asserts that a ring whose cyclic right
modules are all injective is semisimple, has been exploited in [3] to obtain an easy
proof of the result of Damiano that shows that a right PCI ring (i.e., a ring with
each proper cyclic right module injective) is right noetherian.

This technique was also (implicitly) applied in [1] to a right hereditary ring R
whose injective envelope E(RR) is projective, showing that R is, in this case, a
(two-sided) hereditary artinian QF-3 ring. An extension in [3, Corollary 6] shows
that if E(RR) is just finitely presented (instead of projective), then R is a right
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artinian ring with Morita duality. The key point of this proof is to show that R
is right finite-dimensional. But, as the endomorphism ring S of E = E(RR) is
regular, all the cyclic right S-modules are E-invariant. This makes it possible to
transfer the injectivity property and then to use Osofsky’s theorem to show that S
is semisimple.

In this paper we consider the rather more general situation that arises when the
injective envelope ER = E(RR) of a ring R has the property that every finitely gen-
erated submodule embeds in a finitely presented module whose projective dimension
is ≤ 1 (this includes the right hereditary rings with finitely presented injective en-
velope, but also the rings R such that every finitely generated submodule of ER
embeds in a free module). If S = End(ER) and J is the radical of S, we prove in
Theorem 1.6 that each finitely generated right S/J-module is E-invariant—a result
that will be our main tool in the rest of the paper. This allows us to apply the
transfer techniques sketched above to the ring S/J and hence substantially broaden
the scope of these methods. In this setting, we usually cannot expect that the en-
domorphism ring S is semisimple. In general, it is not even regular. However, we
show that when certain quotients of ER are pure-injective, then S is semiperfect
and hence RR is finite-dimensional. More specifically, we assume that E/JE is a
completely pure-injective R-module, i.e., a module such that each pure quotient of
itself is pure-injective. We give several applications and we extend [3, Corollary 6]
by proving that if R is right hereditary and every finitely generated submodule of
ER is finitely presented, then R is right noetherian.

In the last part of the paper we consider rings R whose right pure global dimen-
sion (cf. [6, 7]) is ≤ 1. This includes all countable rings. If every finitely generated
submodule of ER embeds in a finitely presented module of projective dimension
≤ 1, then we show that E/JE is pure-injective (Theorem 2.1), so that E/JE is
completely pure-injective in this case and hence R is, again, finite-dimensional. As
an application we show that, for these rings, the property that R is right nonsingu-
lar and every finitely generated right R-module embeds in a free module is right-left
symmetric.

We refer to [5] and [11] for all undefined notions used in the text.

1. M-invariant modules

Let SMR be a bimodule. We have a pair or adjoint functors HomR(M,−) :
Mod -R�Mod -S : −⊗SM and the corresponding adjunction morphisms αX , for
every X ∈ Mod -S. The right S-modules X such that αX is an isomorphism will,
again, be called M -invariant . The following result is well known (cf. [12], [11]).

Proposition 1.1. Let SMR be a bimodule. Then the following assertions hold:

(i) If LR is pure-injective, then HomR(M,L) is a pure-injective right S-module.
(ii) If SM is flat and LR is M -injective, then HomR(M,L) is injective.

Our interest in M -invariant modules is motivated by the fact that certain injec-
tivity properties are easily transferred to these modules. From Proposition 1.1 we
have:

Proposition 1.2. Let SMR be a bimodule and X an M -invariant right S-module.
Then the following assertions hold:

(i) If X ⊗S M is pure-injective, then X is pure-injective.
(ii) If SM is flat and X ⊗S M is M -injective, then X is injective.
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In order to exploit Proposition 1.2 we need to have M -invariant S-modules.
Recall that if ER is (quasi-)injective (or pure-injective), then S/J (where S =
End(ER) and J = J(S)) is a regular ring and idempotents lift modulo J . We want
to apply Osofsky’s theorem to S/J and for this we need to prove that the cyclic
right S/J-modules are E-invariant. We start by giving a useful sufficient condition
for αX to be a monomorphism.

Proposition 1.3. Let PR be a finitely generated projective module, E = E(PR)
and S = End(ER). Then αX is a monomorphism for each finitely generated right
S/J-module X.

Proof. Since X is an S/J-module and XJ = 0, we have a free presentation of X in

Mod-S, say S(I) h−→ Sn
p−→ X → 0, where Jn = J(Sn) ⊆ Ker p = Imh. Applying

−⊗S E we obtain an exact sequence in Mod-R

E(I) h∗−→ En
p∗−→ X ⊗S E → 0.

Let Z := Imh∗ = Ker p∗, with canonical projection v : E(I) → Z and canonical
injection u : Z → En. Then each f ∈ HomR(E,En) such that p∗ ◦ f = 0 factors
in the form f = u ◦ f ′, where f ′ ∈ HomR(E,Z). Since P is projective, we obtain a
morphism g : P → E(I) that makes the diagram

P
j−−−−→ Eyg yf ′

E(I) v−−−−→ Z

commute, where j is the canonical inclusion. Since P is finitely generated, g(P ) ⊆
E(F ) for some finite subset F of I. As E is injective, there exists a homomorphism
t : E → E(I) such that t ◦ j = g. Hence h∗ ◦ t ◦ j = h∗ ◦ g = f ◦ j, so that
(h∗◦t−f)◦j = 0. Since j is an essential monomorphism by hypothesis, Ker(h∗◦t−f)
is essential in E. Consider the following commutative diagram of right S-modules:

S(I) h−−−−→ Sn
p−−−−→ X −−−−→ 0yαS(I)

yαSn yαX
HomR(E,E(I))

h∗∗−−−−→ HomR(E,En)
p∗∗−−−−→ HomR(E,X ⊗S E)

Then f ∈ HomR(E,En) and f ∈ Ker p∗∗, so there exists t ∈ HomR(E,E(I)) such
that h∗∗(t)−f has essential kernel and, hence, belongs to J(S)n. Thus h∗∗(t)−f ∈
αSn(Ker p). On the other hand, since Im t ⊆ E(F ) for F finite, there exists q ∈ S(I)

such that t = αS(I)(q) and so h∗∗(t) = (αSn ◦ h)(q) ∈ αSn(Ker p). Thus we have
that f ∈ αSn(Ker p) and this implies that αX is a monomorphism.

Recall that R is called a right Kasch ring whenever E(RR) is a cogenerator of
Mod-R. From the preceding result we immediately obtain:

Corollary 1.4. Let R be a right Kasch ring. Then End(E(RR)) is also a right
Kasch ring.

Proof. Let E = E(RR), S = End(ER) and J = J(S). If C is a simple right S-
module, then CJ = 0 and so C is an S/J-module. Thus αC is a monomorphism by
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Proposition 1.3 and, as C ⊗S E is cogenerated by E, we obtain a monomorphism

C
αC−−→ HomR(E,C ⊗S E)→ HomR(E,EI) ∼= SI , for some set I. Hence C embeds

in SS .

Now, in order to obtain E-invariant modules from Proposition 1.3, we need to
give conditions for αX to be an epimorphism. The following lemma will be crucial
for this purpose.

Lemma 1.5. Let PR be a finitely generated projective right R-module, E = E(PR)
its injective hull, and S = End(ER). Assume that each finitely generated submodule
of E embeds in a finitely presented module of projective dimension ≤ 1. Then, for
each finitely generated right S/J-module X, HomR(E/P,X ⊗S E) = 0.

Proof. Let f ∈ HomR(E/P,X ⊗S E) and π : E → E/P the canonical projection.
We want to prove that g = f ◦ π = 0. Since P is finitely generated, E is the
direct limit of all its finitely generated submodules that contain P . Thus it will be
enough to show that if P ⊆ Z ⊆ E and Z is finitely generated, then g(Z) = 0. By
hypothesis, there exists a finitely presented right R-module F such that pd(F ) ≤ 1,
and a monomorphism ϕ : Z → F . Then, regarding P as a submodule of F , we get
the following commutative diagram:

u

v

ππ′

β
δ

ϕ
γ

F/P

E/P

E

F

Z

Z/P

where β is the monomorphism induced by ϕ, γ is obtained by the injectivity of E,
and δ is induced by γ. We have that F/P is a finitely presented module. Consider
the functorial exact sequence

0 = Ext1
R(P,−)→ Ext2

R(F/P,−)→ Ext2
R(F,−) = 0.

Since pd(F ) ≤ 1, the last term is zero, and so pd(F/P ) ≤ 1. Next let S(I) →
Sn

p−→ X → 0 be a free presentation of X in Mod-S and consider the induced exact

sequence in Mod-R, E(I) → En
p⊗E−−−→ X ⊗S E → 0. Set Y = Ker(p ⊗S E). From

the short exact sequence 0 → K → E(I) → Y → 0 we obtain the natural exact
sequence

Ext1
R(F/P,E(I))→ Ext1

R(F/P, Y )→ Ext2
R(F/P,K).

Since pd(F/P ) ≤ 1, we have that Ext2
R(F/P,K) = 0 and, as F/P is finitely

presented and E is injective, Ext1
R(F/P,E(I)) ∼= Ext1

R(F/P,E)(I) = 0. Thus
Ext1

R(F/P, Y ) = 0 and so we have an exact sequence

HomR(F/P,En)
(p⊗E)∗−−−−−→ HomR(F/P,X ⊗E)→ Ext1

R(F/P, Y ) = 0

which shows that (p⊗E)∗ = HomR(F/P, p⊗E) is an epimorphism. Hence, there
exists a morphism ε : F/P → En such that f ◦ δ = (p ⊗ E) ◦ ε. But, as En is
injective and v is a monomorphism, ε◦β : Z/P → En can be extended to a map µ :
E/P → En such that µ◦v = ε◦β. This gives (p⊗E)◦µ◦v = (p⊗E)◦ε◦β = f◦δ◦β =
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f ◦ v. Thus we have that g|Z = g ◦ u = f ◦ π ◦ u = f ◦ v ◦ π′ = (p⊗E) ◦ µ ◦ v ◦ π′ =
(p⊗E) ◦ µ ◦ π ◦ u, so that it remains to prove that (p⊗E) ◦ µ ◦ π ◦ u = 0.

If pi : En → E are the canonical projections for i = 1, . . . , n, then each pi ◦µ ◦ π
is an element of S whose kernel contains P . Therefore pi ◦µ ◦π ∈ J(S). Now, let x
be an element of E and set ei = (δij)j=1,...,n ∈ S. Since XJ = 0 and pi ◦ µ ◦ π ∈ J ,
((p ⊗ E) ◦ µ ◦ π ◦ u)(x) = (p ⊗ E)((µ ◦ π)(x)) =

∑n
i=1 p(ei) ⊗ (pi ◦ µ ◦ π)(x) =∑n

i=1 p(ei) · (pi ◦ µ ◦ π)⊗ x = 0. This completes the proof.

Theorem 1.6. Let PR be a finitely generated projective module, E = E(PR) and
S = End(ER). Assume that each finitely generated submodule of E embeds in a
finitely presented module of projective dimension ≤ 1. Then each finitely generated
right S/J-module is E-invariant.

Proof. Let X be a finitely generated right S/J-module. By Proposition 1.3 αX
is a monomorphism. It remains to prove that αX is an epimorphism. Consider

a free presentation S(I) → Sn
p→ X → 0 of X in Mod-S. Tensoring with SE

yields an exact sequence in Mod-R, E(I) → En
p⊗E−−−→ X ⊗S E → 0. Now, if

ϕ ∈ HomR(E,X ⊗S E) and j : P → E is the canonical inclusion, there is by the
projectivity of P a morphism t : P → En such that ϕ ◦ j = (p ⊗ E) ◦ t. Then,
as E is injective, there exists h : E → En such that h ◦ j = t. Thus we have
(p ⊗ E) ◦ h ◦ j = (p ⊗ E) ◦ t = ϕ ◦ j, so that (ϕ − (p ⊗ E) ◦ h) ◦ j = 0. Hence
g := ϕ− (p⊗E) ◦ h factors through the projection π : E → E/P , say as g = f ◦ π.
By Lemma 1.5 we have that f = 0, and so g = 0 and ϕ = (p⊗E) ◦ h. Thus we see
that (p⊗E)∗ is an epimorphism and the commutative diagram:

Sn
p

αSn

(p⊗E)
*

αX

X 0

0HomR(E, En) HomR(E, X ⊗s E)

shows that αX is indeed an epimorphism.

If ER is quasi-injective and S = End(ER), then S/J is a regular right self-
injective ring. If we set Ē := (S/J)⊗SE = E/JE, then we have a bimodule S/JĒR
and, if X ∈Mod-S/J , we have that

X ⊗S E ∼= (X ⊗S/J S/J)⊗S E ∼= X ⊗S/J ((S/J)⊗S E) ∼= X ⊗S/J Ē.
Thus, if we identify X⊗S E with X ⊗S/J Ē, and if ᾱX : X → HomR(Ē,X⊗S/J Ē)

is the canonical morphism and p : E → Ē the canonical projection, we see that
HomR(p,X ⊗S E) ◦ ᾱX = αX . Since HomR(p,X ⊗S E) is a monomorphism, if XS

is E-invariant, then XS/J is Ē-invariant.
Specifically, if X = S/J , then we have proved

Corollary 1.7. Let PR be a finitely generated projective module, E = E(PR),
S = End(ER) and J = J(S). If every finitely generated submodule of E em-
beds in a finitely presented module of projective dimension ≤ 1, there is a canonical
isomorphism S/J = End(E/JE).

Proposition 1.8. Let ER be quasi-injective (or pure-injective) and let X be a right
S/J-module which is E-invariant. If X⊗SE is either E-injective or pure-injective,
then XS/J is injective.
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Proof. Let Ē = E/JE. Since X is E-invariant, it is also Ē-invariant. On the
other hand, as S/J is regular, S/JĒ is flat. By Proposition 1.2 applied to the

adjunction defined by S/JĒR, if we assume that X⊗SE ∼= X⊗S/J Ē is E-injective,

we get that XS/J is injective. Similarly, if X ⊗S/J Ē is pure-injective, then XS/J

is pure-injective and hence, since S/J is regular, injective.

We will say that a module M is completely pure-injective when every pure quo-
tient of M is pure-injective. (Note the change of terminology with respect to [3].)

Corollary 1.9. Let PR be a finitely generated projective module, E = E(PR), S =
End(ER), and J = J(S). Assume that every finitely generated submodule of ER
embeds in a finitely presented right R-module of projective dimension ≤ 1 and
that E/JE is completely pure-injective. Then S is semiperfect and PR is finite-
dimensional.

Proof. By Theorem 1.6, each finitely generated right S/J-module X is E-invariant.
Since the canonical projection S/J → X is a pure epimorphism (since S/J is
regular), we have that the induced R-epimorphism E/JE → X ⊗S E is also pure.
Thus X⊗S E is a pure-injective right R-module by hypothesis, and by Proposition
1.8, XS/J is injective. Then, by Osofsky’s theorem [8, 9], S/J is semisimple and
hence S is semiperfect. This is equivalent to ER (and hence to PR) being finite-
dimensional.

The preceding corollary can be regarded as a generalization of [3, Corollary 6].
A more specific extension of this result is the following:

Corollary 1.10. Let R be a right hereditary ring. Then R is right noetherian if
and only if every finitely generated submodule of E(RR) is finitely presented.

Proof. If every finitely generated submodule of E(RR) is finitely presented, then
RR is right finite-dimensional by Corollary 1.9. Thus, using [5, Corollary 5.20], we
see that R is right noetherian. The converse is clear.

2. Rings of pure global dimension

less than or equal to one

Recall that the pure-injective dimension of a right R-module M is defined as
the smallest nonnegative integer (or ∞) such that there exists an exact sequence
0→M → E0 → E1 → · · · → En → 0, where the Ei, i = 0, . . . , n, are pure-injective
modules and the associated short exact sequences are pure exact. The supremum of
the pure-injective dimensions of the right R-modules is called the right pure global
dimension of R [7, 6], and is denoted by r. pgldim(R). Thus the rings R such that
r. pgldim(R) ≤ 1 provide a natural source of completely pure-injective modules.
The following theorem will be useful in order to apply our results to these rings.

Theorem 2.1. Let R be a ring, E = E(RR), S = End(ER) and J = J(S). If
every finitely generated submodule of ER embeds in a finitely presented module of
projective dimension ≤ 1, then E/JE is a pure-injective R-module.

Proof. Let Ē = E/JE. Consider the exact sequence in Mod-R, 0 → R
j−→

E → E/R → 0, and let g ∈ HomR(R, Ē) ∼= Ē. Then g induces a homomor-
phism h : RR → E such that if q : E → Ē is the canonical projection, then
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q ◦ h = g. By the injectivity of E, h extends to t : E → E, so g extends to a
morphism q ◦ t : E → Ē. Thus, in the exact sequence

HomR(E/R, Ē)→ HomR(E, Ē)
j∗−→ HomR(R, Ē),

j∗ is an epimorphism and hence an isomorphism since HomR(E/R, Ē) = 0 by
Lemma 1.5. Since S/J is E-invariant by Theorem 1.6, we have isomorphisms of
left S/J-modules:

Ē ∼= HomR(E, Ē) ∼= HomR(E, (S/J)⊗S E) ∼= S/J.

Let Ē∗ = HomS/J(Ē, S/J). Since Ē is reflexive as a S/J-module,

Ē ∼= HomS/J(Ē∗, S/J).

Since S/J is right self-injective, applying Proposition 1.1 to the bimodule RĒ
∗
S/J

we obtain that Ē is a pure-injective right R-module.

Remark. As a consequence of Theorem 2.1 we see that, in Corollary 1.9, it is enough
to assume that every proper pure quotient of E/JE is pure-injective, instead of
requiring that E/JE be completely pure-injective.

Corollary 2.2. Let R be a ring such that r. pgldim(R) ≤ 1. Assume, further, that
every finitely generated submodule of E(RR) embeds in a finitely presented module
of projective dimension ≤ 1. Then R is right finite-dimensional.

Proof. If E = E(RR) we have, by Theorem 2.1, that E/JE is pure-injective and
hence completely pure-injective. Then R is right finite-dimensional by Corollary
1.9.

An interesting class of rings of right pure global dimension ≤ 1 is the class of
countable rings [6, 7]. For instance, it follows from the preceding results that every
countable ring R such that every finitely generated submodule of E(RR) embeds
in a finitely presented module of projective dimesion ≤ 1 is finite-dimensional.

The following result is a partial generalization of [1, Theorem 3.2], and shows
that the rings such that r. pgldim(R) ≤ 1 and E(RR) is projective are not far from
being right QF-3 rings (but they need not be, as the ring R =

( Q Q
0 Z
)

shows).

Corollary 2.3. Let R be a ring such that r. pgldim(R) ≤ 1 and E(RR) is projec-
tive. Then R has a faithful injective right ideal.

Proof. By Corollary 2.2 R is right finite-dimensional and, using [10, Lemma 2], we
obtain the result.

The rings R such that every finitely generated right R-module embeds in a free
module have been called right FGF by Faith [2]. It is still an open problem whether
a right FGF ring must be QF.

Corollary 2.4. Let R be a right FGF ring such that r. pgldim(R) ≤ 1 and R has
essential right socle. Then R is QF.

Proof. R is right finite-dimensional by Corollary 2.2. Thus Soc(RR) is finitely
generated and, as RR has essential socle, we see that RR has finite essential socle.
Since each finitely generated right module embeds in a (finitely generated) free right
R-module, we see that every finitely generated right module has finite essential
socle, so that R is right artinian. Then R is QF by [2].
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Recall that a ring homomorphism ϕ : R→ Q is a right flat epimorphism of rings
(or a perfect right localization of R) precisely when RQ is flat and the canonical
morphism Q⊗R Q→ Q is an isomorphism. Goodearl proved that if Q is the right
maximal quotient ring of a right nonsingular ring R, then the canonical morphism
R→ Q is a left flat epimorphism if and only if every finitely generated nonsingular
right R-module embeds in a free module [4, Theorem 7]. In general, this condition
is not right-left symmetric, as is shown by the endomorphism ring of an infinite-
dimensional vector space over a field. However, if r. pgldim(R) ≤ 1, then we have
symmetry.

Corollary 2.5. Let R be a ring such that r. pgldim(R) ≤ 1. Then the following
conditions are equivalent:

(i) R is right nonsingular and every finitely generated nonsingular right R-module
embeds in a free module.

(ii) R is left nonsingular and every finitely generated nonsingular left R-module
embeds in a free module.

(iii) R has a semisimple two-sided maximal quotient ring.

Proof. (i)⇒(iii) Let Q = Qrmax(R) be the maximal right quotient ring of R. By
Corollary 2.2, R is right finite-dimensional and so Q is semisimple [11, Theorem
XII.2.5]. Further, QR is flat by the result of Goodearl mentioned above (cf. also [5,
Theorem 5.17] and [11, Theorem XII.7.1]). But then it follows from [11, Corollary
XII.7.3] that Q is also the maximal left quotient ring of R.

(iii)⇒(i) SinceQ is semisimple, R is right nonsingular by [11, Proposition XII.2.2].
Also, since the left maximal quotient ring Q of R is semisimple, the canonical ho-
momorphism R → Q is a left flat epimorphism. Then, using again [5, Theorem
5.17], we see that every finitely generated nonsingular right R-module embeds in a
free module.

Finally, observe that the proof can be completed by symmetry, bearing in mind
that condition (iii) is left-right symmetric.

An entirely similar argument can be applied to the characterization given by
Cateforis and Goodearl of the right nonsingular rings such that every finitely gen-
erated nonsingular right R-module is projective [5, Theorem 5.18]. This class of
rings is not right-left symmetric in general [5] but, from the preceding corollary and
[5, Theorem 5.18], we have:

Corollary 2.6. Let R be a ring such that r. pgldim(R) ≤ 1 and Q its maximal
right quotient ring. Then the following conditions are equivalent:

(i) R is right nonsingular and every finitely generated nonsingular right R-module
is projective.

(ii) R is left nonsingular and every finitely generated nonsingular left R-module
is projective.

(iii) R is left and right semihereditary, and Q is a semisimple two-sided maximal
quotient ring of R.
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