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ENDOMORPHISM RINGS OF PROTECTIVE MODULES
BY

ROGER WARE

Abstract. The object of this paper is to study the relationship between certain
projective modules and their endomorphism rings. Specifically, the basic problem is
to describe the projective modules whose endomorphism rings are (von Neumann)
regular, local semiperfect, or left perfect.

Call a projective module regular if every cyclic submodule is a direct summand.
Thus a ring is a regular module if it is a regular ring. It is shown that many other
equivalent "regularity" conditions characterize regular modules. (For example,
every homomorphic image is fiat.) Every projective module over a regular ring is
regular and a number of examples of regular modules over nonregular rings are
given. A structure theorem is obtained: every regular module is isomorphic to a
direct sum of principal left ideals. It is shown that the endomorphism ring of a
finitely generated regular module is a regular ring. Conversely, over a commutative
ring a projective module having a regular endomorphism ring is a regular module.
Examples are produced to show that these results are the best possible in the sense
that the hypotheses of finite generation and commutativity are needed. An applica-
tion of these investigations is that a ring R is semisimple with minimum condition if
and only if the ring of infinite row matrices over R is a regular ring.

Next projective modules having local, semiperfect and left perfect endomorphism
rings are studied. It is shown that a projective module has a local endomorphism ring
if and only if it is a cyclic module with a unique maximal ideal. More generally, a
projective module has a semiperfect endomorphism ring if and only if it is a finite
direct sum of modules each of which has a local endomorphism ring.

1. Preliminaries. Throughout this paper, unless otherwise indicated, all
modules over a ring R will be understood to be left A-modules. R will always have
a unit, and every module will be unitary. All homomorphisms of A-modules will
be written on the right so that if M is an A-module and S'=HomB (M, M) then M
becomes an R — S bimodule, sometimes written RMS. For all notions of homological
algebra the reader is referred to [3]. This section consists of definitions, notation
terminology, and basic facts about projective modules which will be used in the
later ones.

Let A be a ring, M an A-module, and N a submodule of M. We say N is small in
M if whenever A is a submodule of M with N+K=M then K=M. Dually, N is
large in M if N n A=0 always implies A=0.
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If M is an jR-module, the radical of M, denoted J(M), is defined to be the inter-
section of all maximal submodules of M. It may happen that M has no maximal
submodules in which case J(M) = M. Thus, for a ring R,J(R) is the Jacobson
radical of R. It is an easy exercise to show that, for any module M, J(M) coincides
with the sum of all small submodules of M.

If P is a projective i?-module then Pisa direct summand of a free module and
hence J(P)=J(R)P. Bass proved [1, Proposition 2.7] that if P#0 is a projective
module then J(R)P^P. Thus every projective module has a maximal submodule.

The relationship between the radical of a projective module and the Jacobson
radical of its endomorphism ring is contained in the following proposition:

Proposition 1.1. Let P be a projective R-module, S=UomR(P,P) the ring of
endomorphisms of P, and 7={/e S | Im/"is small in P}. Then

(1) 7(5) = 7.
(2)7(S)cHomB(P,7(P)).
(3) There is a ring epimorphism <D: S^ Homs (P/J(P), P/J(P)) with

Ker <D = Horn« (P, J(P)).

(4) IfJ(P) is small in P then J(S) = Horn« (P, J(P)) and hence

S/J(S) ~ Horn« (P/J(P),P/J(P)).

Proof. (1) The proof that T<^J(S) is contained in the proof of Theorem 2.4 in
[8] and will be omitted here.

Now let feJ(S) and suppose Im/+A"=P. Let n: P -> P/K be the natural map.
Then Im/+Ä"=P implies that/w: P-^P/K is an epimorphism so since P is pro-
jective there is an ^-homomorphism g:P-^-P making the following diagram
commutative :

P

Then x-xgfe K for all xeP, i.e. Im (1 -gf)cR. But feJ(S) implies 1 -gf is an
isomorphism on P. Thus Ä"=Im (1 —gf)=P. Therefore Im/is small, so/e 7.    I

(2) By an earlier remark J(P) must contain all small submodules of P, so if
feJ(S) then Im/<=/(P) by (1) and hence/e Horn* (P, J(P)).    I

(3) 4> is defined as follows: Let/s S. Since J(P)=J(R)P, J(P)f^J(P). Therefore
there is a unique map/making the following diagram commutative:

D J D

P/J(P)Í+P/J(P)
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(where v is natural). Define <&(/)=/. Then <P is easily seen to be a ring homomorph-
ism of 5 into Homs (P/J(P), P/J(P)). Moreover, the projectivity of P guarantees
that í> is an epimorphism. Finally, fe Ker Q> if and only if/=0 on P/J(P) if and
only if lmf^J(P) if and only if fe Horn* (P, J(P)).    I

(4) This is immediate from (1), (2), and (3).    I
Remark. There are numerous examples which show that in general

J(S)T^HomB(P, J(P)). However, if P is a finitely generated projective then by
Nakayama's lemma, J(P)—J(R)P is small in P so we have equality. This fact will
be used in later portions of this paper.

Let M be an A-module. A projective cover of M is an epimorphism P -> M with
small kernel, where P is projective. Dually, an infective envelope of M is an injective
module E containing M with M large in E. While it is known (see [5]) that every
module M has a unique (up to an isomorphism fixing M) injective envelope, a
module will not in general possess a projective cover. For example an abelian group
A has a projective cover if and only if A is free. Concerning the uniqueness of
projective covers (when they exist), Bass [1, Lemma 2.3] has shown:

("Uniqueness of Projective Covers".) Suppose P-+ AÍ—>0 is a projective cover
and 0-^A->A'->M-^0 exact with P' projective. Then A'=A, ©P2 with
■Pi ~P, A2C A", and A, O A small in Px.

Thus if P is a projective cover of M then P is unique up to isomorphism. If M has
a projective cover we will denote it by P(M). The injective envelope of M will be
denoted by E(M).

In [1], Bass defines a ring R to be left perfect if every left A-module has a pro-
jective cover and defines A to be semiperfect if every cyclic (left) A-module has a
projective cover. He shows that

(1) A is left perfect if and only if/(A) is left A-nilpotent and A//(A) has minimum
condition.

Recall that an ideal A7 in a ring A is left T-nilpotent iff for any sequence {a(}i™ Ie N
there exists n such that a, a2 • • • an = 0.

(2) A is semiperfect if and only if R/J(R) has minimum condition and idem-
potents can be lifted modulo /(A).

For these and other facts about projective covers, perfect rings, and semiperfect
rings the reader is referred to [1].

The next two elementary facts about projective modules will be used extensively
in what follows.

(1) ("Dual Basis Lemma" [3, VII, Proposition 3.1].) An A-module P is pro-
jective if and only if there exist subsets {xt} of P and {/¡} of HomB (P, A) such that
for each x e P, xf = 0 for almost all i, and x=2¡ (x)ftxt. Moreover, if A is projective,
{x¡} may be taken to be any generating set of P.

Let M be an A-module and T a subset of M. Then we define

AnnB T = {a e A | aT = 0}.
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Clearly, AnnB 7 is a left ideal of R. It is also clear that AnnB Misa two-sided ideal
oiR.

(2) P=Rx is a cyclic projective if and only if AnnB x is a direct summand of R
if and only if P£ Re where e2 = e e R.

Notation. If R is a ring we denote by nJl the category of left i?-modules. For any
index set /and any P-module M we let M(/) = 2ie/ © M¡, where M¡ = M, i el. If«
is a positive integer then

Mn = M(n   where /= {1,...,«}.

Thus Rn will denote the standard free P-module of rank «.
We say that an Ä-module Misa generator for RJi if there exists a set / such that

R is a homomorphic image of Ma\ This is the same as saying that every Ä-module
can be realized as a homomorphic image of a direct sum of copies of M. It is clear
that M is a generator for RJt if and only if 2/eHom« <m,b) M/= R.

Proposition 1.2. Let Rbea ring andP a projective R-module. Then P is a genera-
tor for RJt if and only if every simple R-module is a homomorphic image of P.

Proof. If P is a generator then there is a set / and an exact sequence PU) 1+ R^*0.
Thus if S is a simple i?-module we have an epimorphism g:Pa)-^»S. Now
Pw = IieI® Pu Pi=P, i el. Let gt=g\Pt.

If gi = 0 for all i then g = 0. Hence g#0 implies there exists ie I such that
g¡: P -> S is a nonzero homomorphism.

Conversely, suppose every simple module can be realized as a homomorphic
image of P. Let T=J,feHomRiptB}Pf If T=R then P is a generator. If T^R then 7
can be embedded in a maximal left ideal L of R. Since R/L is simple there exists an
epimorphism g: P-*■ .R/L and since P is projective there is a linear map/: P—>R
such that the following diagram is commutative:

P
/V^

* J»Ö!S&. P/L —* 0

Therefore Pf<£L, but P/c7, a contradiction.    I
We say an P-module P is a progenerator for RJ( if P is a finitely generated pro-

jective generator in nJ(. An .R-module M is said to he faithful if AnnB M=0. Note
that every module M is faithful over the ring P = P/AnnB M.

Proposition 1.3. Let R be a commutative ring and P a finitely generated pro-
jective R-module. Then P is a progenerator if and only if P is faithful.

Remark. This proposition is well known but as its proof is elementary we include
it here for the convenience of the reader :

If a e AnnB P then aP w = 0 for any set /. Hence if P is a generator then aR=0 ;
i.e. a = 0. Thus P is faithful.
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Conversely, suppose A is a finitely generated faithful projective A-module. Then
by the dual basis lemma, if xlt..., xn generate P there exist/i,.. .,fne Homs (A, A)
such that for each xeP

í=i

Therefore, for each i=l,.. .,n,

Xi= 2 (xi)fixi-

Hence for all i= 1,..., n,

(*) j>><¿-S«)^ = °-

Let A be the matrix (Xif — 8i;), i,j=l,...,n, and let A = det A. (The commutativity
of A guarantees the existence of A.) Then A = (— l)n + a where

aeT=        2       pf-
/EHomB(P,B)

But (*) implies that Ax, = 0 for all j= I,..., n, so since A is commutative, AA=0.
But A is faithful so we must have A = 0. Therefore (-l)n=-aeT so 1 e T,
i.e. T=R and A is a generator. Since A is already projective and finitely generated,
A is a progenerator.    |

2. Regular modules.    A ring A is (von Neumann) regular if for every ae R there
exists an element be R such that aba = a.

It is well known that for a ring A the following statements are equivalent :
(1) A is regular.
(2) Every cyclic A-module is flat.
(3) Every principal left ideal is a direct summand.
(4) Every finitely generated left ideal is a direct summand.
(5) For every left ideal K and every right ideal I, I n K= IK.
One notes that conditions (2)-(5) are module theoretic and the following proposi-

tion shows that their equivalence is essentially dependent on the fact that fiA is a
projective A-module:

Proposition 2.1. Let Rbe a ring andP a projective R-module. Then the following
statements are equivalent:

(1) Every homomorphic image of P is flat.
(2) Every cyclic submodule of P is a direct summand.
(3) Every finitely generated submodule of P is a direct summand.
(4) For every submodule K of P and every right ideal I of R, IP n K=IK.

The proof of Proposition 2.1 makes use of the following lemma :
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Lemma 2.2. Let R be a ring and 0-^A-^A-^M^-O an exact sequence of R-
modules with P projective. Then the following statements are equivalent:

(1) M is flat.
(2) Given any xe K, there exists a homomorphism g: A -> K such that xg = x.
(3) Given any xu ..., xn in K there exists a homomorphism g : A -» K such that

Xig = Xifori=l,...,n.

Proof. Chase [4, Proposition 2.1] proved the lemma when A is a free module.
Thus choose F free such that A=A © Q. Then F/K^P/K © Q^M © Q so we
have an exact sequence

(*) 0-*A-^A-^M©ß-^0.

Since Q is projective M © Q is flat iff M is flat.
(1) => (3). Let Xi,..., xn e K and suppose M is flat. Then M © g is flat so there

exists g': F-> K such that xig' = xl, i=l,..., n. Let g=g'\P. Then g: A-> K and
Xj e A, so x¡g = Xi, i= 1,..., w.

(3) => (2). Obvious.
(2) => (1). Assume (2) and let x e K. Then there exists g : A -> K such that xg = x.

Extend g to g': F^ K by defining yg' = 0 for y e Q. Then xg' = x so by Chase's
result applied to (*), M © Q is flat. Therefore M is flat.    I

Proof of Posposition 2.1. (1) o (4). Let 0-^A->A->M^0 be exact. By
[3, p. 122, Exercise 5], M is flat iff for every right ideal / of A, IP n K=IK.

(1) => (3). Suppose K=Rxy+ ■ ■ ■ +Rxn is a finitely generated submodule of A.
Then we have an exact sequence

o->a:-»a^a/a-^o
and by (1), A/A is flat. Thus by the lemma there exists an A-homomorphism
g : A -> K such that xtg = xu i = 1,..., n ; i.e. K is a direct summand of A.

(3) ^ (2). Obvious.
(2) => (1). Let 0-> A-^A-*M->0 be exact. Then for each x e K, Rx is a

direct summand of A so there exists a homomorphism g: A -> K such that xg = x.
By Lemma 2.2, this implies that M is flat.    I

Definition 2.3. We call a projective module satisfying the equivalent conditions
of Proposition 2.1a regular module.

Examples of regular modules. (1) Any projective module over a regular
ring is a regular module.

(2) Any semisimple projective module is a regular module. (By a semisimple
module we mean one which is a (direct) sum of simple submodules.)

Recall that a ring is semiprime if it has no nonzero nilpotent (left) ideals. Thus
the socle ( = sum of minimal left ideals) of a semiprime ring will be a regular
module. Note that since a minimal left ideal of a semiprime ring is a direct summand
it will be projective.
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(3) It is known, cf. [7, Theorem 23, p. 112], that every ring R possesses a unique
largest two-sided ideal M with respect to the property that for each ae M there
exists be M with aba = a.

If R is left noetherian or left perfect then M is a regular (left) P-module.
Proof. First note that if ae M then R = Ra ® P(l —ba) so Ra is a direct Sum-

mand of R, hence of M. Thus we need only show that M is projective.
We assert that every finitely generated P-submodule of M is cyclic.
The proof of this is a straightforward computation—in fact, identical to showing

that in a regular ring every finitely generated left ideal is principal—and will be
omitted here.

If R is left noetherian this implies that M=Ra, ae R. But Ra is a direct summand
of R, hence projective, i.e. M is projective.

In any event, M is the direct limit (union) of its finitely generated submodules,
each of which will be cyclic and hence projective. But over a left perfect ring a direct
limit of projective modules is again projective [1, Theorem P] so if R is left perfect
then M is projective.

(4) Let R be a regular ring and F an infinitely generated free P-module. Let
S = HomB(F, F). Choose a basis {x¡}js/ for F and write F=2©P-x¡- For each
i e I, let p{: F-»- Rxt be the projection onto Rxt. Let P be the right ideal of S
generated by the p¡. Since the pt are orthogonal idempotents of S it is easy to see
that P=2i6/©Pi5' (as a right S-module) and hence P is a projective (right)
«S-module.

We will see later (following Theorem 3.6, §3) that P is a regular right S-module
but that S is not in general a regular ring. In fact, S will be regular if and only if R
has the minimum condition. The reader will note that when R is a field, P is the
ideal of endomorphisms of finite rank.

Properties of regular modules. (1) Let {Pi}ie; be a family of projective modules.
Then 2t © P* is regular if and only if each P¡ is regular.

Proof. Suppose 2I © P¡ is regular. Then for each ;' e I every homomorphic
image of P¡ is also a homomorphic image of 2 © P¡, hence is flat. Therefore each
P¡ is regular.

For the converse we need a lemma, the proof of which is standard and will be
omitted.

Lemma 2.4. Let Q^A^B^C^-Qbean exact sequence of left R-modules.
(1) If B and C are flat then A is flat.
(2) If A and C are flat then B is flat.

Now suppose Pu P2 are regular modules and let P1 © P2 Ly M -> 0 be exact.
Then M=P1f+P2f and we have exact sequences

(a) 0 ̂  A/n PJ--+ M->PJ/PJn P2f © P^/PJn P2f^ 0;
(b) 0 -> PJ n P2f-> PJ^ PJ/PJ n P2f-> 0.
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Now A,,A2 regular implies that PJ,P2f,Pj/PJc\P2f,i=l,2, are flat. Thus
PJ/PJ^ Pif®P2f/Pifr> A2/is flat. Therefore, by Lemma 2.4, applied to (b),
A,/n P2f is flat, and now applied to (a), M is flat. Thus P± ©A2 is regular. By
induction it follows that any finite direct sum of regular modules is regular.

Now suppose {AJjs, is any family of regular modules and let A = 2¡e/ ©-Pi- Let
x e P. Then x = xh+ ■ ■ ■ +xin, xtj ePl.,j= 1,..., n. Then x ePii ©• • •© Pin. But
Afl ©• • • © Aifi is a regular module so Ax is a direct summand of it. Therefore Ax
is a direct summand of A. Hence A is regular.    I

As a consequence of Lemma 2.4 we have
(2) Every submodule of a regular module is flat.
(3) If A is a regular module then A(A) = 0.
Proof. Since every cyclic submodule of A is a direct summand, A can have no

nonzero small submodules, i.e. J(P) = 0.    I
As a consequence of (3) and the fact that J(P)=J(R)P for projective modules

we have
(4) If A is a ring possessing a faithful regular projective then 7(A) = 0. Thus if A

is any ring and A is a regular A-module then AnnH A is an intersection of maximal,
left ideals.

For any (left) A-module M, the singular submodule of M is

ZR(M) = {x e M | AnnB x is a large left ideal of A}.

(5) If A is a regular module then Zfl(A) = 0.
Proof. If x 6 A then Ax is a direct summand of A, hence projective. Therefore

AnnB x is a direct summand of A and thus will not be large unless x = 0.
A result, originally due to Kaplansky [11, Theorem 6], says that if A is commuta-

tive then A is a regular ring if and only if every simple A-module is injective. For
regular modules we have

Proposition 2.5. Suppose A is a commutative ring and P is a regular R-module.
Then every simple homomorphic image of P is injective.

The proof of Proposition 2.5 requires a lemma.

Lemma 2.6. Suppose A is a commutative ring and S is a simple R-module. Then S
is flat if and only if S is injective.

Proof. Let E be the injective envelope of the direct sum of one copy of each of the
simple A-modules. Thus E=E(2tel © S¡) where {Si}ie, is the family of all (iso-
morphism types) of simple A-modules and if ;'#_/ then Si^S¡. Then it is easy to see
that for any A-module M, HomB (M, A) = 0 if and only if M=0. We assert that if
S<=E is simple then S=Slo for some i0 e I.

2ie/ © St is a large submodule of A so S n (2i © St)^0. Since S is simple this
implies there exist indices /,,..., /„ e / such that S<= Sh ©■ • • © Stn. Let 0^=x e S.
Then S=Rx and x=xfl+ • • • +xin, xtj e Sit and not all Xj,=0. lfax=0,ae A, then
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axh-\-\-axin = 0. Then axik e (J,f^k © 5i;) n Sik and hence axik = 0, k= 1,..., «.
Therefore AnnB x<= AnnB jci(t, & = 1,..., «. Since S is simple, AnnB x is a maximal
ideal of R so for each k, either AnnB xik = R or AnnB xi)c = AnnB x. Since the simple
modules Sh,..., Sin are nonisomorphic this implies there exists k0 such that
AnnB x=AnnB xifco and AnnB xik = R, k^k0, i.e. xifc = 0, k^kQ and S=Siko, proving
the assertion.

Now let S be any simple P-module and let Sio be the copy of S in E. Then
HomE (S, Sio)^HomR (S, E) and if 0^/e HomB (S, F) then S^lmf^E so by the
above we must have Im^Sj,,. Therefore HomB (S, 5io) = HomB (S, E). Since R is
commutative we have HomB (S, E) = HomB (S, Sio) s HomB (S, S)^S as F-
modules. Since E is injective, [3, VI, 5, (2)] yields, for any F-module M, an iso-
morphism

ExtB (M, HomB (S, E)) s HomB (Tor? (M, 5), F),

i.e. ExtB(M, 5)^HomB(Tor?(M, S), E). Therefore S is flat if and only if
Torf (M, S) = 0 if and only if HomB (Tor? (M, S), F) = 0 if and only if ExtB (M, S)
= 0 if and only if S is injective.    I

Proposition 2.5 is now immediate: If P is a regular module then every simple
homomorphic image is flat, hence injective.    I

Remark. We do not know whether the converse to Proposition 2.5 holds. I.e. if
R is a commutative ring and P is a projective module such that every simple homo-
morphic image of P is injective (flat), is P necessarily regular?

For finitely generated projectives the answer is yes :

Proposition 2.7. For a finitely generated projective module over a commutative
ring R the following are equivalent:

(1) P is a regular module.
(2) Every simple homomorphic image of P is injective.

Proof. (1) => (2) follows from Proposition 2.5.
(2) => (1). Let A = AnnRP and R = R/A. Then P is a faithful finitely generated

projective F-module and since R is commutative Pisa generator for RJt by Proposi-
tion 1.3. Thus P and R have the same simple homomorphic images by Proposition
1.2. But every F-simple homomorphic image of P is an F-simple homomorphic
image and by (2) is F-injective. Therefore it is F-injective. Thus R is a commutative
ring with the property that every simple F-module is injective. By Kaplansky's
result, F is a regular ring. Hence P is a regular P-module. But P has the same
structure as an R or P-module so P is a regular P-module.    I

The following is an immediate consequence of the proof of Proposition 2.7.

Corollary 2.8. Let R be a commutative ring, P a finitely generated projective,
A=AnnRP. Then the following statements are equivalent:

(1) P is a regular R-module.
(2) R/A is a regular ring.
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Corollary 2.9. For a commutative ring R the following statements are equivalent:
(1) R is a regular ring.
(2) R possesses a finitely generated faithful regular module P.

Remarks. (1) The finite generation of P is essential in Corollary 2.9.
Example 2.10. An example of a commutative ring F which is not regular, but

which possesses a faithful regular module.
Let Q be the field of rational numbers, Z the ring of integers and / an infinite

index set. For each i el, let Q¡=Q and let S=YJie, Q¡. Then S is a ring under
coordinate-wise operations. Let P = 2ie/ © Qi = {(adi e S \ at = 0 for all but a finite
number of indices i} and let R be the subring of S generated by P and 1 e S. Then
b = OX), e R iff there exists ne Z such that bx = n for all but a finite number of
indices i. P is an ideal of F and it is easy to see that R/P = Z as rings. Thus F has a
homomorphic image which is not a regular ring so R is not a regular ring.

For each i e I let ex be the element of F with 1 in the /th position and 0 elsewhere.
Thene2 = e¡ andP = 2¡e/ © Fe¡, so Pis projective. Since Pis also semisimple, Pis a
regular module. Finally, if ae R and aP=0 then ae¡ = 0 for all i and hence a = 0.
Therefore P is faithful.

Note that in the foregoing example, F is semiprime and F = Soc (F). Also observe
that Q could be replaced by any field of characteristic 0.

(2) Corollary 2.9 is not true for arbitrary noncommutative rings.
Example 2.11. Let S be the ring of linear transformations of an infinite-

dimensional vector space Kover a field F of characteristic 0. Let I be the (two-sided)
ideal of S consisting of linear transformations of finite rank and let F be the sub-
ring of S generated by / and 1 e S. Then F//s Z, the ring of integers, so F is not a
regular ring. Also note that every nonzero two-sided ideal of F contains I.

Let e be the projection of V onto a cyclic subspace of V so P = Re is a simple
projective F-module, hence regular. If g e R and gP = 0 then RgR is an ideal of F
and RgRe = 0. If RgR¥= 0 then RgR^>Iand e e /whence e2 = 0, which is impossible.
Therefore RgR = 0 so g = 0 and P is a cyclic faithful regular F-module.

With regard to the structure of arbitrary regular modules we have

Theorem 2.12. Let F be any ring. An R-module P is a regular module if and only
ifP is isomorphic to a direct sum of principal left ideals ofR, each of which is a regular
module.

Remark. Theorem 2.12 can be regarded as a slight generalization of [6, Theorem
4] and the proof is similar.

Proof of Theorem 2.12. (<=) This follows from property (1) of regular modules.
(=>) First assume Pis finitely generated. We proceed by induction on « = minimal

number of elements required to generate P:
«= 1. Then P is a cyclic projective so P^Re where e2 = e e R.
Now assume n > 1 and the theorem is true for regular modules requiring less

than « generators. Let {xlt...,xn} be a minimal generating set for P. Then
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A=Ax, © Q and if p: A-»- Q is the projection onto Q with kernel Rx1 then
{xap,..., xnp} generates Q. Since Q is a regular module the induction assumption
implies that Q^Re2 ©■ ■ •© Ren where e2 = ei e A, /=2,..., n, and each Re¡ is
regular. But Ax, is regular so Ax, = Ae, where e\ = exe A. Therefore

PS Ae^-SAe,,.

Now assume A is an arbitrary regular module. By [6, Theorem 1] we may assume
A is countably generated, say A= 2"= i Ax¡. For each n = 1, 2,..., let An = 2?_, Ax(.
Then A=lJ™=i An and each An is a direct summand of A, hence a regular module.
Since A„<=pn + 1 for all « and each An is finitely generated we can write Pn + 1
=Pn © Qn, on finitely generated. Then if Q0=Pi, it is easy to see we have, for
each n = l,2.

pn = 2 © a-
(=0

Thus A = 2r=o © ßi» so A is a direct sum of finitely generated regular modules. But
each finitely generated regular module is isomorphic to a direct sum of principal
left ideals of A.    I

3. Regular endomorphism rings. In this section we investigate the relationship
between regular modules and projective modules having regular endomorphism
rings. More specifically we seek answers to the questions :

(I) If A is a regular module, is HomB (A, A) a regular ring? And conversely,
(II) If A is a projective module such that HomB (A, A) is a regular ring, is A

regular?
To answer these questions we need two lemmas :

Lemma 3.1. Let R be a ring, M an R-module, and S=HomR (M, M). Then for
fe S the following statements are equivalent:

(1) There exists g e S such thatfgf=f.
(2) Ker / and Im f are direct summands of M.

Proof. (1) => (2). Choose geS such that fgf=f Then g\ïmf splits the
sequence 0 -*■ Ker/-»- M -*■ Im/-»- 0 and gf splits the sequence 0 -> Im/-»- M.

(2) => (1). Assume (2) holds. Then there exists g': Im/-»- M such that
yg'f—y for all y e Im/ i.e. xfg'f=xf for all xe M. But Im/is a direct summand
of M so we can extend g' to g on M by taking g = 0 on the complementary summand.
Then for any xeM, xfgf= xfi i.e. fgf=f    I

Corollary 3.2. Let R be a ring, M an R-module, and S=HomB (M, M). Then
S is a regular ring if and only if for eachfe S, Kerf and Im fare direct summands
ofM.

If M is an A-module, N a direct summand of M, and e the projection of M onto
A^ then it is easy to see that e is an idempotent of S=~HomR(M, M) and
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HomB (N, N) = eSe. This fact will be used in the next lemma and later portions of
this paper.

Lemma 3.3. Let R be a ring and suppose M is an R-module having a regular
endomorphism ring. Then every direct summand of M also has a regular endo-
morphism ring.

Proof. Let S=HomB (M, M), N a direct summand of M, and e the projection
onto N. Then HomB (N, N) = eSe. But for any regular ring S and any idempotent
e e S, eSe is a regular ring.    I

Remark. There are examples of modules M=M1 © M2 such that both Mx and
M2 have regular endomorphism rings but such that HomB (M, M) is not regular.
In fact we have the following :

Example 3.4. An example of a regular module P which does not have a regular
endomorphism ring, but which admits a decomposition P=PX © Pi where Pu P2
have regular endomorphism rings: Let F be a field and / an infinite index set. For
each i eilet Kt = K. Let F = n¡°=i -^i- Then with coordinatewise operations F is a
regular ring.

Let PX = R and P2 = 2iE/ © KtcTl*i F( = F. Then P±, P2 are regular F-modules
and HomB (Pu P1)^F^HomB (P2, P2) so both have regular endomorphism rings.
Let P=Pi © P2 (external direct sum). Then P is a regular module.

Let / be the endomorphism of P defined by /: (x1; x2) -*■ (x2, 0). Then
Im/=2te/©Fic:F=P1. Since 2te/ © Ki is not an F-direct summand of F it
cannot be a direct summand of P=Pi ©P2. Therefore HomB (P,P) is not a
regular ring.

Note that Example 3.4 gives a negative answer to question (I). More generally we
have

Theorem 3.5. Let R be any ring. Then the following statements are equivalent:
(1) F is semisimple with minimum condition.
(2) R possesses an infinitely generated free module F such that HomB (F, F) is a

regular ring.

Proof. (1) => (2). If F is semisimple with minimum condition then every sub-
module of every F-module is a direct summand so every F-module has a regular
endomorphism ring by Corollary 3.2.

(2) => (1). Assume F possesses an infinitely generated free module F such that
HomB (F, F) is regular. Since F is (isomorphic to) a direct summand of F,
FsHomB (F, F) is regular by Lemma 3.3.

Since F is regular, 7(F) = 0 and therefore by Bass [1, Theorem P], in order to
show F is semisimple with minimum condition, it is enough to show F satisfies the
descending chain condition on principal right ideals.

Now any decreasing chain of principal right ideals in F is expressible in the form
{ûi- • -anR} for some sequence {an}"=1 in F. Let Fx be a countably generated free
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direct summand of A with basis {xn}„°=1 and let G be the submodule of A, generated
by {xn — tnxn + i\n = i- Since F1 is a direct summand of A, HomB (A,, Ax) is also
regular, by Lemma 3.3. Since the correspondence x„ -»- xn — anxn + , defines an
endomorphism of A, with image G, Corollary 3.2 implies that G is a direct sum-
mand of A,. But then, by [1, Lemma 1.3], the sequence {a1- ■ -anR}n terminates.    I

Thus if A is a regular ring which does not have minimum condition then every
free A-module is certainly a regular module but no infinitely generated free module
can have a regular endomorphism ring.

However, concerning the first question we do have the following:

Theorem 3.6. Let R be a ring and P a finitely generated regular R-module. Then
S=Horn B (A, A) is a regular ring.

Proof. Let/e S. Then Im/is finitely generated and hence a direct summand of
A. Thus Im/ is projective so Ker/ is a direct summand of A. Therefore S is
regular.    I

If A is a ring and n > 0 is an integer, let Mn(R) denote the ring of n x n matrices
over A.

Corollary 3.7. A ring A is regular if and only if Mn(R) is regular.

Proof. If A is regular then An is a finitely generated regular module so by
Theorem 3.6, Mn(A)^HomB (A71, An) is a regular ring.

Conversely, if Mn(R)^HomR (A\ A") is a regular ring then since A is a direct
summand of A", A = HomB (A, A) is regular.    I

We can now show that the projective module A in Example (4), §2, is regular:
To do this it is enough to show each p¡S is regular. Let f=p¡g e ptS. Since

Impi = Ax¡ is cyclic, Im/is cyclic. Therefore Im/is a direct summand of the regular
module Aso Im/is projective. Thus Ker/is also a direct summand of A. Therefore
there exists g e S such that f=fgf and hence fS is a direct summand of the ring S.
Thus/S" is a direct summand of p¡S, so ptS is regular.

By Theorem 3.5, if A does not have minimum condition then S will not be a
regular ring.

With regard to question (II) the answer is also in general negative:
Example 3.8. A cyclic projective module A which is not regular but such that

HomB (A, A) is a field: Let A be a field and A = (£ £). Let P=(g f). Then A is a
cyclic projective A-module and HomB (A, A) s K. Since (g *) ¡s a cyclic submodule
of A which is not a direct summand, A cannot be a regular module.

However, we do have

Theorem 3.9. Let Rbe a commutative ring and A a projective R-module such that
HomB (A, A) is a regular ring. Then A is a regular module.

Proof. First assume A is cyclic, say P^Re where e2 = eeR. Then
eAe^HomB (A, A) is a regular ring and, since A is commutative, eRe = Re. There-
fore Re is a regular module.
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Now assume P is arbitrary and by the dual basis lemma choose a generating set
{xt}ieI for P and {/Jis/CHoitIb (P, F) such that for each x e P, xf = 0 for all but a
finite number of i, and x = '£ieI(x)fixi. For each ie/ define g¡:P->Fx¡ by
Oc)g¡ = (x)fXi, xeP. Then g( is an endomorphism of P. Therefore Pgt is a direct
summand of P, hence a direct summand of Rxt. Thus Pg¡ is cyclic. Moreover, by
Lemma 3.3, Pgt has a regular endomorphism ring so, by the cyclic case, Pgt is a
regular module. Therefore the (external) direct sum 2ie/ © Pg¡ is a regular module.
But P = 2ie/ Pgi and we have a natural epimorphism 2¡ © Pg¡ -*■ 2 -^t -*" 0- Thus
F is a projective homomorphic image of a regular module, so P is regular.    I

Corollary 3.10. Suppose R is commutative and P is a finitely generated pro-
jective R-module. Then the following statements are equivalent:

(1) P is a regular module.
(2) HomB (P, P) is a regular ring.

We conclude this section with a result which is essentially a corollary of
Theorem 3.6.

Proposition 3.11. Let R be any ring, P an R-progenerator, and S= HomB (P, P).
Then the following statements are equivalent:

(1) R is a regular ring.
(2) RP is a regular module.
(3) S is a regular ring.
(4) Ps is a regular module.

Proof. (1) => (2). Obvious.
(2) => (3). P is finitely generated.
(3) => (4). Since BP is an F-progenerator, Ps is a projective ^-module (see

[2, Morita I, p. 9]). Since S is regular this implies Ps is a regular 5-module.
(4) => (1). Again by [2, Morita I, p. 9], F = Homs (Ps, Ps) and Ps is a finitely

generated regular ^-module so F is a regular ring.    |

4. Local modules and local endomorphism rings.    By a local ring we mean a ring
F whose nonunits form a two-sided ideal.

It is well known that for a ring F the following statements are equivalent:
(1) F is local.
(2) F has a unique maximal left ideal M.
(3) Every cyclic F-module is indecomposable.
(4) F is semiperfect and 1 is a primitive idempotent.
(5) R¡J(R) is a division ring.
(6) For any xe R either x or 1 — x is a unit.
As in the case of regular rings, a number of these conditions are purely module

theoretic and are dependent only on the fact that RR is a projective F-module.

Proposition 4.1. Let R be a ring and P#0 a projective R-module. Then the
following statements are equivalent :
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(1) A has a unique maximal submodule M which contains every proper submodule
ofP (so M=J(P)).

(2) Every homomorphic image ofP is indecomposable.
(3) A is indecomposable and every homomorphic image ofP has a projective cover.
(4) A is a projective cover of each of its nonzero homomorphic images.
(5) P=P(R/L)for some maximal left ideal L of R.
(6) J(P) is small in A and P/J(P) is a simple module.
(7) Aor any xeP either xeJ(P) or Ax=A.
(8) A s Re where e2 = e e A and 1 — e is contained in exactly one maximal left ideal

ofR.
Remarks. (1) Mares, in [8], defines a projective module A to be semiperfect if

every homomorphic image of A has a projective cover. Hence (3) can be restated to
say A is semiperfect and indecomposable.

(2) The equivalence of conditions (2) and (4) can be regarded as a dualization of
the basic properties of indecomposable injective modules.

(3) The equivalence of condition (1), (3), (6) can be found in [8]; specifically
(1) => (3) is [8, Theorem 4.1]. However, for the sake of completeness we present the
entire proof of Proposition 4.1 here.

(1) => (2). If P/Nis decomposable there exist submodules A,, P2 of P such that
P=P1+P2,N=>P1nP2 and PX^N,P2^N But then A,#A#A2, so by (1),
A,+A2<=M^A, which contradicts A=A,-I-A2.

(2) => (3). By (2), P is indecomposable. Let 0->N^P^P/N-^0 be exact,
N¥=P. We show AT is small in P. Let N+K=P. Then

P/N n K = N/N nX0 K/N n K.

Thus by (2), either N/N n A=0 or K/N n A=0, i.e. either N<= K or K^N Since
N+K=P and A/^A we must have N<^ K and hence A=A.

Thus P is a projective cover of P/N, so each homomorphic image of P has a
projective cover.

(3) => (4). Let P -> A -> 0 be exact, A #0. By (3), A has a projective cover P(A)
and by the uniqueness of the projective cover, P=P(A) © P'. Since P is indecom-
posable, P' = 0 and hence P=P(A).

(4) => (5). Since P is projective, P has a simple homomorphic image S~R/L
where L is a maximal left ideal of A. By (4), P=P(R/L).

(5) => (6). Choose L a maximal left ideal of A such that A -> R/L is a projective
cover. Then M=Ker(A-^ R/L) is simultaneously a maximal submodule and a
small submodule of A. Therefore M=J(P) so A(P) is small in A and P/J(P)^R/L
is simple.

(6) => (7). LetxEA.Ifx^A(P)thenthemaximalityof/(P)yieldsA(P) + Ax=A.
Since A(A) is small, Ax=A.

(7) => (8). By (7), P is cyclic soP^Re where e2 = eeR. Now Aes A/A(l -e) so
if there exists distinct maximal left ideals Ai, A2 containing 1 — e then P^Re will
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have distinct maximal submodules Mu M2. But then, if xe M1 — M2 we would
have x$J(P) and Rx^M^P, contrary to (7).

(8) => (1). P^Re~R/R(l — e) and since 1 — e is contained in a unique maximal
left ideal of R, P has a unique maximal submodule. Because P is cyclic this sub-
module must contain every proper submodule of P.    I

Definition 4.2. We call a projective module which satisfies the equivalent
conditions of Proposition 4.1 a local module.

Examples of local modules. (1) If F is a local ring then BF is a local F-
module.

(2) More generally, if F is a semiperfect ring it is known that F admits decom-
position R = Rex ©• • • © Ren, where the e¡ are primitive orthogonal idempotents of
F. Then each Fe( is a local F-module.

(3) Let R=(p §). Then since R/J(R)^Z © Q (ring direct sum), F is not semi-
perfect. However, P = (o   q) is a local F-module.

(4) Any minimal left ideal in a semiprime ring is a local module.
Remarks. (1) By Proposition 4.1, F possesses a local module if and only if F

has a simple left module S having a projective cover. In fact, it is easy to see that
there is a one-to-one correspondence between the (isomorphism types of) local
F-modules and the maximal left ideals Lof R such that R/L has a projective cover.
This correspondence is given by L <-> P(R/L).

(2) In [8], Mares shows that every semiperfect module has a decomposition into
a direct sum of local modules which is unique in the sense of the Krull-Remak-
Azumaya Theorem. She also shows that any finite direct sum of semiperfect
modules is again semiperfect so, in particular, a finite direct sum of local modules
is semiperfect. Thus a finitely generated projective P is semiperfect if and only if
P=Pi ©• • -®Pn where the P¡ are local and « is uniquely determined.

With regard to the relation between local modules and projective modules having
local endomorphism rings we have

Theorem 4.2. Let Rbe a ring and F^O a projective R-module. Then the following
statements are equivalent:

(1) P is a local module.
(2) S= HomB (P, P) is a local ring.

Remark. (1) => (2) is contained in [8, Corollary 4.2]. However, we give a differ-
ent proof here :

(1) => (2). If P is local then J(P) is maximal in P and small in P. Thus by Proposi-
tion 1.1, S7/(S)£HomB(P/7(P),P//(P)). Since P/J(P) is simple, S/J(S) is a
division ring, i.e. S is a local ring.

(2) => (1). We need a lemma:

Lemma 4.3. Suppose P is a projective R-module such that HomB (P, P) is a division
ring. Then P is cyclic.
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Proof. Since A is projective, A has a maximal submodule M. If x £ M and
ir: A->A/M is natural then 7r'=7r|Bx: Ax -»- A/M is an epimorphism. The pro-
jectivity of A now yields a map ¡/<^0, making the diagram

P/M-► 0
commutative. Since HomB (A, A) is a division ring >/i must be an automorphism of
A and hence P=Rx.    |

Corollary 4.4. Suppose A w a semiprime ring and A is a projective R-module
such that HomB (A, A) is a division ring. Then A is simple.

Proof. By the lemma Ais cyclic soP^Re where e2 = e e A. Then eAe s HomB (A, A)
is a division ring. Since A is semiprime, [7, Lemma 36.3] yields that Re is a minimal
left ideal, i.e. A is simple.    I

Now suppose A is a projective such that S=HomB (A, A) is local.
By Proposition l.l, J(S)<=HomR (A, A(A)) and we have a ring epimorphism

S/J(S) -> Horn, (P/J(P), A/A(A)) -> 0.

Because S/J(S) is a division ring, this map must be an isomorphism so J(S)
= HomB(A,/(A)) and HomB (P/J(P), P/J(P)) is a division ring. Thus P/J(P) is
a projective A//(A)-module having a division ring as its endomorphism ring. But
R/J(R) is semiprime, so by Corollary 4.4, P/J(P) is a simple A/A(A)-module,
hence a simple A-module. Thus /(A) is the unique maximal submodule of A.

To see that A is local, let x $ J(P), x e P. Let -n: A -> P/J(P) be the natural map
and let 7r' = 7r|Bx: Rx-+P/J(P). Then w' is an epimorphism so there is a nonzero
map i/i : A -> Ax such that the diagram

r7/(/>) -► 0

commutes. Then (x)vW = (x)?r#0 so that (x)¡/> ̂ Ker -n' = Rx n A(A). Therefore
(x)i/i ̂  A(P), whence ¡/< ̂ /(S) = Horn B (P, A(P)). Since 5 is local this implies ¡/< is an
automorphism of A and hence A = Ax. By Propostion 4.1 (7), A is local.    I

Corollary 4.5. Let A be any ring and e2 — eeR. Then Re is a local left R-module
if and only if eR is a local right R-module.

Proof. Re is local iff HomB (Ae, Ae) s eRe g HomB (eR, eR) is a local ring iff eR
is local.    |

If A is a commutative ring and M is a maximal ideal of A we denote by AM the
ring of quotients of A with respect to the set R\M. Elements of AM will be written

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



250 ROGER WARE [March

[a/b], a, be R,b$ M. Then FM is a local ring with unique maximal ideal M'
= {[a/b] \ae M, b $ M}. It is also known that HomB (FM, RM) = RM, and that as
F-modules RMjM' ^R/M. For these and other facts about FM, the reader is
referred to [10, Chapter IV, §§9-11].

Corollary 4.6. Suppose R is commutative and M is a maximal ideal of R such
that RM is a projective R-module. Then RM is a local module. Hence RM is isomorphic
to a direct summand of R.

Proof. HomB(FM, RM) = RM, a local ring, so the projectivity of FM imples RM
is a local module.    I

Remarks. (1) There are commutative rings F having maximal ideals M such
that the unique maximal ideal of FM does not contain every proper F-submodule
of RM. For example let R = Z, p a prime element of Z, and M=pZ. Then the maxi-
mal ideal of RM, M' = {a/b \a,beZ,ae pZ, b $ pZ} does not contain Z which is an
F-submodule of FM. In fact, RM has several distinct maximal F-submodules.

(2) We will see later that over a commutative ring F the local modules are exactly
the projective F-modules of the form RM, M a maximal ideal of F.

Sandomierski [9] has shown that a ring F is semiperfect if and only if every
simple F-module has a projective cover.

Corollary 4.7. For a commutative ring R the following statements are equivalent:
(1) F is semiperfect.
(2) For every maximal ideal M of R, RM is R-projective.
(3) For every projective R-module P, and every maximal ideal M of R, PM

= RM ®B P is R-projective.

Proof. (1) => (2). If F is commutative and semiperfect then R = R1@- ■ • © Fn
where F( is a local ring, /= 1,..., «. Therefore, any maximal ideal M of F has the
form M=Mt © 2y#i © Rj where M¡ is the unique maximal ideal of F¿. But then
it is easy to see that as F-modules RM^(Rt)Mi = Rl. Since F¡ is a direct summand of
R, F( is F-projective and hence RM is F-projective.

(2) => (3). The tensor product of projective modules is always projective.
(3) => (2). Rm = Rm <8>r R and F is F-projective.
(2) => (1). We show every simple module has a projective cover.
Let S=R¡M, M a maximal ¡deal of F. Then by (2) and Corollary 4.6, RM is a

local module with unique maximal submodule M' and RM/M' = R/M=S. But then
FM is an F-projective cover of S.    I

Condition (1) of Proposition 4.1 states that a projective module P is a local
module if P possesses a unique maximal submodule which contains every proper
submodule of P. It is natural to ask whether the second part of this condition is
redundant—namely, if P is a projective module having a unique maximal sub-
module M, does M necessarily contain every proper submodule of P ? While we
do not know the answer to this question in general, we can give an affirmative
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answer for several classes of rings. In order to do this we first make some observa-
tions :

Let P be a projective module having a unique maximal submodule M=J(P).
Then

(1) P is indecomposable.
Proof. A nontrivial decomposition of P would give rise to distinct maximal sub-

modules of P.
(2) P is at most countably generated.
Proof. This follows from (1) and [6, Theorem 1].
(3) If S = HomB(A,A) and if J(S) = HomB (P, J(P)) (in particular, if J(P) is

small in P), then P is a local module.
Proof. If A(5') = HomB (P,J(P)) then S/J(S)^UomR(P/J(P),P/J(P)), which

is a division ring. Therefore S is a local ring so P is a local module.
As a consequence of (3) we have
(4) If P is finitely generated then P is local.
(5) P is isomorphic to an ideal of A.
To prove (5) a lemma is needed :

Lemma 4.8. Let Rbe a ring and P a projective R-module. Suppose A has a finitely
generated submodule N such that J(R)(P/N)=P/N. Then there exists a mono-
morphism A <^> A", for some n<oo. Moreover, we can take n to be the cardinality of
a minimal generating set of N.

Remark. This lemma is an extension of [1, Proposition 2.7] and its proof is a
modification of the proof of Proposition 2.7.

Proof of Lemma 4.8. Note that J(R)(P/N)=P/N if and only if J(R)P+N=P.
Let {yu ..., yn} be a minimal generating set for N. Extend this to a generating set
{ji}teA for P by taking yt e J(R)P, iV 1,..., n. Now take A free on {Xj}ieA and map
A-»-A via Xji-^jj. Since this map splits we may assume that A=A © Q and
Xi=yi + zt, z¡ e Q, ieA. If i=£l,...,n, then yieJ(R)P'=J(R)F. Therefore
Ji=2j aijXj, ai¡eJ(R). Thus, for »VI,..., n,

zi = Xi-y¡ = 2 (K-ai¡)x¡.
i

We will show that for i#>.1,..., », the z¡ are linearly independent. For, let zh,..., zlm
be any finite set of them. Projecting A onto Axtl ©• • • © Axim, the zif map onto
elements z'tj,j=l,.. .,m. We show z'ti,..., z\m are linearly independent. Now
z¡i = 1k = i (8íjfc — aijk)xi¡,j=l,..., m. If Im is the mxm identity matrix, and
A = (ai¡k),j, k=l,..., m, then A eJ(Mm(R)) where Mm(R) is the ring of mxm
matrices over A and hence Im — A is a unit in Mm(R). In particular, its rows are
linearly independent. But the rows of Im — A are the coordinate vectors of the
z'tj,j= 1,..., m. Hence, zh,..., zim are linearly independent.
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We now assert that the projection map p: F-> Rx± ©■ • •© Rxn maps P
monomorphically into Rxx ©• • • © Rxn.

For, let x = 2i a¡*i eP- If xp = 0 then ax = a2= ■ ■ ■ =an = 0 so x = 2i*i.na¡xt.
Now project F onto Q with Kernel P. Then 0 = 2i*i.n a^i and, since the z¡ are
independent for /# 1,..., «, this implies a( = 0 for all i. Therefore x = 0.

Now the composite mapping P 1+ Rxx © • • • © Rxn s F" gives the desired
monomorphism.    I

Proof of (5). Let xeP-J(P). Then since J(P) is maximal, 7(P) + Fx=P and
since J(P)=J(R)P this gives J(R)(P/Rx)=P/Rx. Lemma 4.8 now yields a mono-
morphism P ^> R.

As a corollary to (4) and (5) we have

Proposition 4.9. Suppose R is a left noetherian ring and P is a projective module
possessing a unique maximal submodule. Then P is a local module.

With regard to other classes of rings for which 7(F) maximal in P implies P is
local we have

Proposition 4.10. Suppose R is a ring such that idempotents can be lifted modulo
J(R) and suppose P is a projective module such that J(P) is maximal in P. Then P is
local.

Proof. Let R = R/J(R). P/J(P) is a simple F-module and hence a simple pro-
jective F-module. Thus there is an idempotent ë of F such that P/J(P)^Rë.

Let w : F -> R be the natural map. Since idempotents can be lifted modulo J(R)
there exists e2 = eeR such that -rr(e) = e. Let Tr' = Tr\Re: Re -> Rë. Then 77' is an
epimorphism and we assert that 77' : Re -> Rë is a projective cover of Rë. For
Ker 77' = Re n 7(F) and since e2 = e, Re n J(R)=J(R)e. But Re is projective so
J(Re)—J(R)e. Since Re is cyclic this implies 7(F)e is small in Re and hence Re is a
projective cover of Rë.

Since F -> P/J(P) £ Rë is an epimorphism we conclude from the uniqueness of
the projective cover that Re is isomorphic to a direct summand of P. But P is
indecomposable and hence P^Re. Therefore P is local.    I

Proposition 4.11. Let R be any commutative ring and P a projective R-module
with J(P) maximal in P. Then P is local. Moreover, if M is the maximal ideal of R
such thatP/J(P)^R/M then P^RM.

Corollary 4.12. For a projective module P over a commutative ring R the
following statements are equivalent:

(1) P is a local module.
(2) P has a unique maximal submodule.
(3) P^RMfor some maximal ideal M of R.
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Hence over a commutative ring F the one-to-one correspondence between the
(isomorphism types of) local modules and the maximal ideals M such that R/M
has a projective cover can be given by M<-> RM.

Proof of Proposition 4.11. Let M be the maximal ideal of F such that
P/J(P) = R/M. We assert that, for beR — M, the mapping x\-^bx is an epi-
morphism of P.

The projectivity of RR gives a homomorphism i/i: R-^P making the diagram

natural

commutative. Since b$ M the commutativity of this diagram guarantees that
b(l)>l> = (b)'l> i J(P). Thus bP<£J(P). Because 7(P) is maximal this implies J(P) + bP
=P. Now P/bP is a projective F/Fè-module. The Jacobson radical of the ring R/Rb
can be written J'/Rb where 7' is an ideal of F such that Rb^J'^R and J(R)<=J'.
Therefore J(P) + bP=P => J(R)(P/bP)=P/bP => J'(P/bP)=P/bP, i.e. (J'/Rb)(P/bP)
=P¡bP. Since P/bP is a projective R/Rb-module and 7'/FZ> is the Jacobson radical
of the ring R/Rb, Lemma 4.8 (with « = 0) implies thatP/6P = 0. (This is also a direct
consequence of [1, Proposition 2.7].) Thus x h» bx is an epimorphism of P.

Since P is indecomposable this mapping must be an automorphism of P. There-
fore, given b £ M and y eP, there is a unique xeP such that bx=y. Hence P can
be made into an FM-module in a way that extends the action of F.

If [a/b] e RM, b$ M, and 7 eP let [a/b]y = the unique element* such that bx — ay.
Now as an FM-module P is also indecomposable and projective so since FM is a

local ring P = rmRm- Therefore P is F-isomorphic to RM. Corollary 4.6 and the
projectivity of P now imply that P is local.    I

5. Semiperfect and perfect endomorphism rings. In [8], Mares shows that if P is
a finitely generated semiperfect module then HomB (P, P) is a semiperfect ring. We
have the following converse.

Proposition 5.1. Let R be any ring and P^O a projective R-module. If
5 = HomB (P, P) is semiperfect then P is a finite direct sum of local modules. Hence
P is finitely generated and semiperfect. Moreover, the number of indecomposable
summands ofP is the same as the number of indecomposable components ofS. By the
Krull-Remak-Azumaya theorem this number is an invariant of P and S.

Proof. If S is semiperfect then S=Se1 ©• • ■© Sen where the e¡ are primitive
orthogonal idempotents of S and l=ex+ • • • +en. Then the 5e¡ are local ^-modules.
LetPi=Pei.ThenP=P1 ©• • -©Pn. ForthesumPH-h Pn is clearly direct and
if x e P then x = xex H-h xen, so x e Pj + • ■ • + Pn. Since e¡ is the projection onto
P4 we have HomB (P¡, P¡) = etSei and since Sei is a local S-module

etSet ^ Homs (Se%, Se,)

.   natural    _
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is a local ring. Because each A( is projective this implies A¡ is a local module,
i=l,...,n.    |

Mares, in [8], defines a perfect module to be a projective module A with the prop-
erty that for every (index) set /, every homomorphic image of A(/) has a projective
cover. It is clear that a perfect module is semiperfect. Mares shows that if A is a
finitely generated (left) perfect module then HomB (S, S) is a left perfect ring.
Again we have a converse:

Proposition 5.2. Let R be a ring and A^O a projective R-module such that
S=HomB (A, A) is a left perfect ring. Then A is a finitely generated perfect module.
In particular, A=A, ©• • -®Pn where HomB (P(,P¡) is a left perfect local ring,
1 = 1,...,«.

The proof of Proposition 5.2 requires a lemma:

Lemma 5.3. Let R be a ring, A a projective module which is a finite direct sum of
cyclic modules, and S=HomR (A, A). Then the following statements are equivalent:

(1) For any set I, A(A(/)) is small in Pa\
(2) J(Pin) is small in Pa)for some infinite set I.
(3) J(S) is ¡eft T-nilpotent.

Proof. Clearly (1) => (2).
(2) => (3). In [8, Theorem 7.4], Mares proves local A-nilpotence of J(S) and

when A is finitely generated, the local A-nilpotence of J(S) implies A-nilpotence.
(3) => (1). Let P=P1 ©• • •© Pn where A¡ is cyclic, and let e¡: P-* A¡ be the

projection onto A¡. Then S¡ = HomB (A¡, Pi) = eiSei so J(Sl) = eiJ(S)ei. Since J(S) is
left A-nilpotent this implies J(St) is left A-nilpotent, /= 1,..., n. Now let / be any
set. Then P('>=P<;> ©• ■ •© A<" and hence J(P(n)=J(P{n) ©- • ©A(Pi"). There-
fore J(PU)) is small in P(,) if and only if J(Pkn) is small in Pk'\ k=l,...,n. Hence
to prove the implication (3) => (1) we may assume P is cyclic.

Thus let P^Re, e2 = e e A. For each iel let <p¡ be the composite mapping
Re~p^ p^pw xhen the set te<pi \iel) generates P(7). We now show J(P(,)) is
small in Pu\

Suppose /(A(i)) + A=A(,). For xeA(/) let x denote its image in A(/)/A. If
A(/)/A=0 we are done. Otherwise, let O^x e Pa)/K. Then we can write

x = 2a>ie,Ph>       aheJ(R).
h

For each *', let bh = ahe. Since

e(e<Pu) = (e-e)9h = e<Ph

we have

x=2bhe(Ph,       bheJ(R)e.
h
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Again, for each ilt we have
_       „       _
e<P«i = 2, ¿WW       bhi2eJ(R)e.

la

Continuing in this way we get

e<Phi2...i„ -1=2 e<lÍ2~f»e<P¡li2-V èil-i„ 6 7(A)«
i

and hence for each n
—

OiAis- • •efll2...i,le<p(l...f„.
¡1.in

Since x/0, there is a sequence ¡10,..., /„0 such that

But then by theKönig Graph Theorem,therewouldbeasequence/10, /20,..., i„o> • ■ ■
such that for all n,

^ÍlcAl0Í20'  " '^ilO-inO   ̂    0.

Rewrite this sequence so bk = bil0...ik0 for all k. Then ¿>fc eJ(R)e for each A: and for
all h, ¿>i¿>2- • -¿»„t^O.

Let bk = ake, ak e R, k= 1, 2,.... Then for all «

(ea2e)(ea3e) ■ • -(eane) ^ 0.

Therefore <?7(F)e is not left 7-nilpotent. But S= HomB (P, P) s HomB (Fe, Re) ~ eRe
so J(S) = eJ(R)e and 7(S) is not left 7-nilpotent, contrary to (3). Therefore
P(/>/F=0.    |

Remark. The construction in the proof that (3) implies (1) is due to Bass
[1, pp. 473-474].

The proof of Proposition 5.2 is now easy: Assume P^O is a projective module
such that 5'=HomB (P, P) is a left perfect ring. Then by Proposition 5.1, P is a
finitely generated semiperfect module so, in particular, P is a finite direct sum of
cyclic modules. Since J(S) is left 7-nilpotent, Lemma 5.3 implies that J(Pin) is
small in PU) for all sets /. But [8, Theorem 5.2] states that a direct sum 2 = 2 © ßi
of semiperfect modules g¡ is semiperfect if and only if 7(0 is small in Q. Hence
P(/) is a semiperfect module for any set /, i.e. P is perfect.    I

Note added in proof. It has been brought to the attention of the author that
Theorem 3.5 is due to G. M. Tsukerman (Siberian Math. J. 7 (1966), p. 932). Also,
Theorem 2.12 has appeared in a recent paper by D. J. Fieldhouse (Math. Ann. 184
(1969), pp. 1-18, Theorem 8.7).

This paper was extracted from the author's doctoral dissertation at the University
of California at Santa Barbara, and it was completed during his tenure as a National
Science Foundation Trainee. The author would like to express his gratitude for the
guidance and inspiration given to him by his thesis advisor, Julius Zelmanowitz.

The author would also like to thank the referee for his valuable suggestions.
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