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Abstract

We consider the endomorphisms of a Brandt semigroup Bn, and the
semigroup of mappings E(Bn) that they generate under pointwise compo-
sition. We describe all the elements of this semigroup, determine Green’s
relations, consider certain special types of mapping which we can enumer-
ate for each n, and give complete calculations for the size of E(Bn) for
small n.
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1 Introduction

For a group G, the set M(G) of all functions G → G admits two natural
binary operations: it is a semigroup under composition of functions (written
multiplicatively) and a group under pointwise composition (written additively)
using the group operation in G. If we write maps on the right, we find that
function composition distributes on the left over pointwise composition, so that
f(g + h) = fg + fh for all f, g, h ∈ M(G). This endows the set M(G) with
the structure of a near-ring, see Meldrum (1985). Now M(G) contains the set
End(G) of endomorphisms of G (a semigroup under composition of functions),
and it is easy to see that the endomorphisms are precisely the elements that
always distribute on the right: (f + g)h = fh + gh for all f, g ∈ M(G) if and
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only if h ∈ End(G). We let E(G) be the subnear-ring of M(G) generated by the
subset End(G). The fact that End(G) is a right distributive semigroup implies
that E(G) is generated by End(G) as a group (that is, using only the pointwise
composition). These ideas have their origin – as part of the more general theory
of distributively generated near-rings – in Neumann (1956) and more particularly
in Fröhlich (1958). The near-ring E(G) is called the endomorphism near-ring
of G, see Lyons and Malone (1970).
If the group G is replaced by a semigroup S, then the above ideas may be
generalised. The set M(S) of all functions S → S is now a seminear-ring: it
is a semigroup under both composition of functions and pointwise composition,
and left distributivity holds. We consider the subsemigroup E+(S) of M(S)
generated by End(S) using pointwise composition: E+(S) will be a subseminear-
ring, but we focus on its semigroup structure. Earlier work has been done in the
second author’s thesis (Samman, (1998)) and the case of a Clifford semigroup S
has been considered in Gilbert and Samman (2009) where it is shown that for
certain semilattices of groups S, the semigroup E+(S) is again a semilattice of
groups with a precisely defined structure.
In the present paper, we turn to another class of inverse semigroups, and take
S to be a finite Brandt semigroup Bn. The endomorphism semigroup of Bn is
obtained by adjoining a zero to the symmetric group Sn of degree n, and so we
have a rich but fully understood supply of endomorphisms. The key components
in our approach to the structure of E+(Bn) are then: combinatorial information
about the symmetric group Sn; Green’s relations; and a filtration by ideals
determined by the support of mappings in E+(Bn), that is by the subsets not
mapped to 0. In addition to some general structural results on E+(Bn), we also
record the results of some calculations in E+(Bn) for n 6 6 carried out by the
computer algebra package GAP (The GAP group, 2007).
This research was supported by the BAE Systems Postdoctoral Summer Re-
search Programme, which enabled the second author to visit the School of
Mathematical and Computer Sciences at Heriot-Watt University, Edinburgh in
2007 and 2008. The authors are grateful to Nik Ruškuc for the injection of his
GAP skills into their proceedings, and to Des Johnston for further computing
expertise.

2 Background

A (left) seminear-ring is a set L admitting two associative binary operations +
and · that satisfy the left distributive law: for all a, b, c ∈ L we have a(b+ c) =
ab + ac. An element d ∈ L is called distributive if, for all a, b ∈ S, we have
(a+ b)d = ad+ bd: the set of distributive elements is clearly a subsemigroup of
(L, ·). We say that L is a distributively generated seminear-ring if it contains a
subsemigroup of distributive elements (K, ·) that generates (L,+).
Let S be a semigroup and let M(S) be the set of all functions S → S. Then
M(S) is a seminear-ring, under the operations of composition of functions and
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pointwise composition: for s ∈ S and f, g ∈M(S) we have

s(fg) = (sf)g and s(f + g) = (sf)(sg).

Our first result identifies the distributive elements in M(S), and is a straight-
forward generalisation of Lemma 9.6 of Meldrum (1985).

Lemma 2.1. The set of distributive elements of M(S) is precisely the set of
endomorphisms End(S).

Proof. Suppose that f, g ∈M(S) and φ ∈ End(S). Then for each s ∈ S,

s(f + g)φ = ((sf)(sg))φ = (sfφ)(sgφ) = s(fφ+ gφ),

and hence φ is a distributive element. Conversely, suppose that d ∈ M(S) is
distributive, and for any s ∈ S let cs ∈M(S) be the constant function at s ∈ S,
defined by xcs = s for all x ∈ S. Then for any s, t, x ∈ S we have

(st)d = ((xcs)(xct))d = x(cs + ct)d = x(csd+ ctd) = (sd)(td),

and d is an endomorphism. ¤

The subsemigroup of (M(S),+) generated by End(S) is therefore a distribu-
tively generated seminear-ring that we denote by E+(S). We call E+(S) the
endomorphism seminear-ring of S.
We now define the Brandt semigroups, and determine their endomorphisms.
For any integer n > 1, we set [n] = {1, 2, . . . , n}. The Brandt semigroup Bn has
underlying set ([n]× [n]) ∪ {0} with multiplication

(i, j)(k, l) =

{
(i, l) if j = k

0 if j 6= k

with 0 acting as a (two-sided) zero element in Bn. The set of idempotents of Bn

is {0, (1, 1), (2, 2), . . . , (n, n), }, and the product of distinct idempotents in Bn is
always 0. We shall denote the set of idempotents of Bn by Idem(Bn), to avoid
a clash with the established use of E for the endomorphism seminear-ring. We
now determine the endomorphisms of Bn: the following result is probably well-
known, and is in any case a simple consequence of Munn’s description (Munn
(1955)) of all endomorphisms of Rees matrix semigroups (see also Houghton
(1977)), but we give a proof for the sake of completeness.

Proposition 2.2. The endomorphism monoid End(Bn) is isomorphic to the
monoid (Sn)0 obtained by adjoining the zero map to the group Sn, where Sn is
the symmetric group of degree n. A permutation σ ∈ Sn induces the endomor-
phism of Bn mapping (i, j) 7→ (iσ, jσ) and 0 7→ 0.

Proof. Let θ ∈ End(Bn). Then 0θ = 0. Suppose that, for some (i, j) ∈ Bn, we
have (i, j)θ = 0. Then for any p, q ∈ [n],

(p, q)θ = ((p, i)(i, j)(j, q))θ = (p, i)θ(i, j)θ(j, q)θ = 0.
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Therefore, if θ 6= 0 we have (i, j)θ 6= 0 for all i, j ∈ [n].
A non-zero θ ∈ End(Bn) therefore determines two functions θ1, θ2 : [n]× [n] →
[n] such that

(i, j)θ = ((i, j)θ1, (i, j)θ2). (2.1)

Now for any k ∈ [n] we have (i, k)θ(k, j)θ 6= 0 if and only if (i, k)θ2 = (k, j)θ1,
and then

(i, k)θ(k, j)θ = ((i, k)θ1, (k, j)θ2). (2.2)

Comparing (2.1) and (2.2) we deduce that

(i, j)θ1 = (i, k)θ1
(i, j)θ2 = (k, j)θ2.

It follows that θ1 depends only on the first coordinate, θ2 depends only on the
second coordinate, and then the equality (i, k)θ2 = (k, j)θ1 implies that θ1 = θ2.
We write σ = θ1 = θ2, with σ now regarded as a function [n] → [n].
Now σ must be injective, for suppose that jσ = kσ. Then

((i, j)(k, l))θ = (iσ, jσ)(kσ, lσ)
= (iσ, , lσ) 6= 0.

Therefore (i, j)(k, l) 6= 0 and so j = k. Hence σ is a permutation of [n].
Conversely, it is clear that for any permutation σ of [n], the mapping (i, j) 7→
(iσ, jσ), 0 7→ 0 is an endomorphism of Bn(G). ¤

3 Green’s relations

If α ∈ E+(Bn) we define its support to be the set

supp(α) = {(i, j) : (i, j)α 6= 0}.

Let α ∈ E+(Bn) and suppose that

α = σ1 + σ2 + · · ·+ σm , σr ∈ Sn,m > 2,

where each σr is regarded as an endomorphism of Bn as in Proposition 2.2 ,
with (i, j)σr = (iσr, jσr). Then

(i, j)α = (iσ1, jσ1)(iσ2, jσ2) · · · (iσm, jσm)

=

{
(iσ1, jσm) if (i, j) ∈ supp(α)
0 otherwise

and (i, j) ∈ supp(α) if and only if

jσ1 = iσ2 , jσ2 = iσ3 , . . . , jσm−1 = iσm ,
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For r > 2 write ϕr = σrσ
−1
r−1 and set ϕ1 = σ1. Then

(i, j) ∈ supp(α) ⇐⇒ j = iϕ2 = iϕ3 = · · · = iϕm

and ϕ1, ϕ2, . . . , ϕm determine the σr (and hence determine α) since we have
σr = ϕrϕr−1 · · ·ϕ2ϕ1. Moreover, for a given α 6∈ End(Bn), if (i, j) ∈ supp(α)
then j is determined by i: hence for a given i ∈ [n] there exists at most one j
with (i, j) ∈ supp(α), and hence | supp(α)| 6 n. We record these observations,
and some other useful facts about supports, in our next result.

Lemma 3.1. (a) If α, β ∈ E+(Bn) then supp(α+ β) ⊆ supp(α) ∩ supp(β).

(b) If σ1, σ2 ∈ End(Bn) then | supp(σ1 + σ2)| = n.

(c) If α 6∈ End(Bn) then | supp(α)| 6 n and there exists U ⊆ [n] and π ∈ Sn

such that supp(α) = {(i, iπ) : i ∈ U}.
(d) If α ∈ E+(Bn) and (i, i) ∈ supp(α) then (i, i)α = (j, j) for some j ∈ [n].

Proof. (a) is obvious. To prove (b), consider α = σ1+σ2 with σ1, σ2 ∈ End(Bn).
Then (i, j) ∈ supp(α) if and only if jσ1 = iσ2 and so supp(σ1+σ2) = {(i, j) : j =
iσ2σ

−1
1 }. It follows that | supp(σ1+σ2)| = n. Part (c) was proved above, and for

part (d) we note that since the idempotents in Bn commute, any α ∈ E+(Bn)
must map idempotents to idempotents. ¤

Rephrasing part (c) of Lemma 3.1, the support of α = σ1 + · · ·+ σm ∈ E+(Bn)
(with m > 2) is determined by a partial bijection U → V of [n], that is by
an element π of the symmetric inverse monoid In (see Howie (1995)). Then α
is determined by its support mapping π and by two further partial bijections
λ = σ1|U and ρ = σm|V . We call λ and ρ the left action and the right action
of α. Then if (i, j) ∈ supp(α) we have j = iπ and (i, j)α = (iλ, jρ). However,
not every choice of π, λ, ρ gives rise to an element of E+(Bn), and we now
characterize those choices that do. In what follows, for any subset U ⊆ [n], we
denote by stabSn(U) the pointwise stabiliser of U in Sn.

Proposition 3.2. The triple (π;λ, ρ) of partial bijections of [n] represents an
element α = σ1 + · · · + σm of E+(Bn) with m > 2 if and only if π, λ and ρ
extend to permutations π∗, λ∗ and ρ∗ such that, if U is the domain of π and H
is the subgroup of Sn generated by π∗ and stabSn(U), then Hλ∗ = Hρ∗.

Proof. Suppose that π, λ and ρ arise from an element α = σ1+· · ·σm of E+(Bn).
Set λ∗ = σ1, ρ∗ = σm and as above, let π be the partial bijection defined by
iπ = j if and only if (i, j) ∈ supp(α). Choose π∗ to be any permutation of [n]
extending π. Then H = 〈stabSn(U), π∗〉 does not depend on the choice of π∗.
Now σm = ϕmϕm−1 · · ·ϕ2σ1 where ϕk = σkσ

−1
k−1 and satisfies iϕk = j = iπ for

all (i, j) ∈ supp(α). Hence ϕk ∈ H for all k and therefore Hσ1 = Hσm.
Conversely, suppose that π, λ and ρ do extend to permutations π∗, λ∗ and ρ∗
such that ρ∗ = hλ∗ for some h ∈ H. We may write h = smπ∗sm−1π∗ · · · s2π∗ for
some m > 2, where sk ∈ stabSn(U) for all k. We may assume that at least one
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sk acts fixed-point-free on [n]\U , for if no such sk exists in the given expression
for h, we may choose such an s ∈ stabSn

(U) and if q = o(sπ∗) in Sn, we consider
the expression h(sπ∗)q instead. Now set ψk = skπ∗, and define σ1 = λ∗ and
σk = ψk · · ·ψ2λ∗ for k > 2. Let α = σ1 + · · ·+ σm.
Now σkσ

−1
k−1 = ψk = skπ∗ and so, if i ∈ U and j = iπ, then iσk = iskπ∗σk−1 =

jσk−1, and hence {(i, iπ∗) : i ∈ U} ⊆ supp(α). But if r 6∈ U and sk acts fixed-
point-free on [n]\U then rσk = rskπ∗σk−1 6= rπ∗σk−1 and so (r, rπ∗) 6∈ supp(α).
It follows that supp(α) = {(i, iπ) : i ∈ U}, and clearly α has left action equal to
λ and right action equal to ρ. ¤

The support and actions of an element in E+(Bn) also determines its Green’s
classes, as our next result explains.

Proposition 3.3. (a) The R–class and the L–class of an endomorphism σ
in E+(Bn) each consists only of σ.

(b) Two elements in E+(Bn) are R–related if and only if they have the same
support and the same left action, and are L–related if and only if they
have the same support and the same right action.

(c) For any α ∈ E+(Bn), the R-class of α and the L–class of α have the same
size.

(d) If α has support mapping π : U → V with π∗ ∈ Sn extending π, then |Rα|
is equal to the size of the orbit of H = 〈stabSn(U), π∗〉 on the subset U .

(e) The H–relation on E+(Bn) is trivial.

(f) Two elements α, β are D–related if and only if they have the same support
mapping π : U → V extending to π∗ ∈ Sn such that their left and right
actions extend to permutations in the same coset of H = 〈stabSn(U), π∗〉
in Sn.

Proof. For (a), we observe that if σRβ with σ 6= β then σ = β + γ for some
γ ∈ E+(Bn), and then σ cannot be an endomorphism, by Proposition 3.1. The
same reasoning applies to the L–relation.
(b) Let α = σ1+· · ·+σm and suppose that α has support mapping πα : Uα → Vα

with left and right actions λα, ρα. Similarly, let β = τ1 + · · ·+ τt with support
mapping πβ : Uβ → Vβ with left and right actions λβ , ρβ .
Suppose that αRβ so that, for some γ, δ ∈ E+(Bn) we have α = β+γ and β =
α + γ. By part (a) of Lemma 3.1, supp(α) ⊆ supp(β) and supp(β) ⊆ supp(α):
it follows that supp(α) = supp(β), and so πα = πβ . Then for all (i, j) in the
support, we have

(i, j)α = (iλα, jρα) = (i, j)(β+γ) = (i, j)β(i, j)γ = (iλβ , jρβ)(i, j)γ = (iλβ , jργ)

and hence iλα = iλβ . Therefore α and β have the same support and the same
left actions.
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Conversely, suppose that α and β as above have the same support mapping
π : U → V and the same left action λ. It suffices to show that there exists
γ ∈ E+(Bn) such that α = β + γ. Represent α by the triple (π;λ, ρ) and
β by the triple (π;λ, ξ). Extend π to a permutation π∗ and extend λ to a
permutation λ∗. (Note that we could take λ∗ = σ1 or λ∗ = τ1). Then if
H = 〈stabSn(U), π∗〉, the coset Hλ∗ does not depend on the choice of λ∗, and
by Proposition 3.2 the right actions ρ and ξ extend to permutations ρ∗, ξ∗ such
that Hρ∗ = Hλ∗ = Hξ∗. There exist ϕk , 2 6 k 6 m and ψl , 2 6 l 6 t such
that, if i ∈ U then iϕk = iπ = iψl, and with ρ∗ = ϕm · · ·ϕ2λ∗, ξ∗ = ψt · · ·ψ2λ∗.
Now let pj = o(ψj)− 1 and consider the factors in the product

ω = ϕmϕm−1 · · ·ϕ2ψ
p2
2 · · ·ψpt

t ψtψt−1 · · ·ψ2λ∗,

regarding ψ
pj

j as the product of pj separate factors each equal to ψj . Hence
there are (m− 1)+ p2 + · · ·+ pt + t = q factors in all, which we rename in order
as χi , (1 6 i 6 q), starting with χ1 = λ∗ and concluding with χq = ϕm. Then
for i > 2, χi|U = π and clearly ω = ϕmϕm−1 · · ·ϕ2λ∗ in Sn so that ω|V = ρ.
We define υi = χiχi−1 · · ·χ1. Then for 1 6 k 6 t, we have υi = τi so that
β = υ1 + · · · + υt. If we then define γ = υt+1 + · · · + υq we find that β + γ
has support mapping π, left action λ and right action obtained by restricting
υq = χqχq−1 · · ·χ2χ1 = ω to V , so that the right action is υq|V = ω|V = ρ. It
follows that β + γ = α.
The proof of the characterisation of Green’s L–relation proceeds in the same
way, and we omit the details.
Now part (c) follows for an endomorphism σ ∈ E+(Bn) by part (a). So consider
α ∈ E+(Bn) \ End(Bn), with support mapping π and actions λ, ρ. By part (b)
the R–class Rα of α consists of those mappings represented by triples (π;λ, ξ)
where ξ is a partial bijection with domain V that extends to some permutation
ξ∗ such that Hλ∗ = Hξ∗, and the L-class Lα of α consists of those mappings
represented by triples (π; η, ρ) where η is a partial bijection with domain U that
extends to some permutation η∗ such that Hη∗ = Hρ∗. The mappings

Rα → Lα , (π;λ, ξ) 7→ (π;πξ, ρ)

and
Lα → Rα , (π; η, ρ) 7→ (π;λ, π−1η)

(where π−1 : V → U is a partial bijection on [n]) are then inverse bijections.
For part (d), let α have left action λ and extend λ to λ∗ ∈ Sn. As above, the coset
Hλ∗ does not depend on the choice of λ∗, and we see by part (a) and Proposition
3.2 that |Rα| is the number of distinct actions on V by permutations ρ∗ such
that Hλ∗ = Hρ∗. There are |H| choices for ρ∗, and the number of distinct
actions on V is equal to the number of distinct actions of H on U .
Part (e) follows from part (b). Two mappings that are both R and L–related
have the same support and the same left and right actions and so are equal.
Part (f) also follows from part (b) and Proposition 3.2. Suppose that αDβ
and let γ ∈ E+(Bn) be such that αRγLβ. By part (b), α, β and γ have the
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same support mapping π, and if α is represented by the triple (π;λ, ρ), β by
(π; η, ξ), then γ is represented by (π;λ, ξ) and Hρ∗ = Hλ∗ = Hξ∗ = Hη∗.
Conversely, if α, β are represented by (π;λ, ρ) and (π; η, ξ) respectively, with
Hρ∗ = Hλ∗ = Hξ∗ = Hη∗, we take γ represented by (π;λ, ξ) and then αRγLβ.
¤

4 Classification by support

4.1 Endomorphisms

σ ∈ End(Bn) is induced by a permutation σ ∈ Sn, and such elements of E+(Bn)
are characterised by their support:

σ ∈ End(Bn) ⇐⇒ supp(σ) = Bn \ {0}.

As shown in Proposition 3.3, endomorphisms lie in singleton R and L–classes,
and we further observe:

Proposition 4.1. For any σ ∈ End(Bn) we have σ+σ = σ+σ+σ in E+(Bn),
with support {(i, i) : 1 6 i 6 n}. Hence σ generates a subsemigroup of order 2
in E+(Bn).

4.2 Elements with full support

An element α ∈ E+(Bn) is said to have full support if | supp(α)| = n. Propo-
sition 3.1 shows that the sum of any two endomorphisms in E+(Bn) has full
support, and that for any α ∈ E+(Bn) with full support we have supp(α) =
{(i, iπ) : 1 6 i 6 n} for some permutation π ∈ Sn.
Let α = σ1 + σ2 + · · ·+ σm have full support, where σj ∈ End(Bn) and m > 2.
Then as in section 3,

(i, j) ∈ supp(α) ⇐⇒ j = iϕ2 = iϕ3 = · · · = iϕm

and hence π = ϕk for all k , 2 6 k 6 m. Since σk = ϕk · · ·ϕ2σ1 it follows that

α = σ1 + πσ1 + · · ·+ πm−1σ1.

Then (i, j)α = (iσ1, jπ
m−1σ1) = (i, jπm−1)σ1. Hence α is determined by its

support mapping π and its left action σ1. For fixed π, σ1 we obtain a sequence
of distinct mappings α for m = 1, 2, . . . , o(π), where o(π) is the order of the
permutation π in the symmetric group Sn.

Proposition 4.2. The number of elements of full support in E+(Bn) is given
by

n!
∑

π∈Sn

o(π).

8



The sequence
(∑

π∈Sn
o(π)

)
is sequence A060014 in Sloane (2007): its initial

values are

n 1 2 3 4 5 6
1 3 13 67 471 3271

As a corollary of part (d) of Proposition 3.3 we have:

Proposition 4.3. The size of an R or L–class of an element α having full
support and action permutation π is equal to the order of π in Sn.

Proposition 4.4. The set {α ∈ E+(Bn) : | supp(α)| 6 n} is an ideal of E+(Bn)
and is generated, as a subsemigroup, by the subset of elements with full support.

Proof. It is obvious from part (a) of Lemma 3.1 that {α ∈ E+(Bn) : | supp(α)| 6
n} is an ideal. In order to show that, as a subsemigroup, it is generated by the
elements of full support, by part (b) of Lemma 3.1 it suffices to show that a
sum α = σ1 + σ2 + σ3 of three endomorphisms may also be written as the sum
of elements of full support.
To this end, let ϕ2 = σ2σ

−1
1 and ϕ3 = σ3σ

−1
2 , and let r be the order of ϕ2 in

Sn. Consider the mappings

β = σ1 + ϕ2σ1 + · · ·+ ϕr−1
2 σ1 + σ1

and γ = ϕ2σ1+ϕ3ϕ2σ1 = ϕ2σ1+σ3. Then β and γ are of full support, and β+γ
has the same left and right actions as α. Moreover, we have (i, j) ∈ supp(β+γ)
if and only if iϕ2 = j = iϕ3 and so supp(β + γ) = supp(α). It follows that
α = β + γ. ¤

4.3 Elements with partial support

An element α ∈ E+(Bn) with | supp(α)| < n is said to have partial support. In
this case, by part (c) of Lemma 3.1, the support is given by supp(α) = {(i, iπ) :
i ∈ U} for some partial bijection π ∈ In with domain U .

Lemma 4.5. If 0 6= α ∈ E+(Bn) has partial support then 3 6 n and 1 6
| supp(α)| 6 n − 2. Morever, given any k with 1 6 k 6 n − 2, and any partial
bijection π : U → V between two subsets U, V ⊆ [n] of size k, there exists
α = σ1 + σ2 + σ3 ∈ E+(Bn) such that supp(α) = {(i, iπ) : 1 6 i 6 n}.
Proof. We know from part (b) of Proposition 4.3 that if σ1, σ2 ∈ End(Bn)
then α = σ1 + σ2 has full support. So suppose that α = σ1 + σ2 + σ3 with
σj ∈ End(Bn). Regarding the σj as permutations in Sn, we set ϕ2 = σ2σ

−1
1

and ϕ3 = σ3σ
−1
2 . Then

(i, j) ∈ supp(α) ⇐⇒ j = iϕ2 = iϕ3.

Hence ϕ2 and ϕ3 are permutations agreeing with the partial bijection π on its
domain. If | supp(α)| > n − 2 then ϕ2 and ϕ3 are permutations of degree n
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agreeing on n− 1 elements: hence ϕ2 = ϕ3, and α has full support. So if α has
partial support, then | supp(α)| 6 n− 2. Since α 6= 0 we must have n > 3.
Now given two sets of distinct integers U = {a1, . . . ak} and V = {b1, . . . , bk},
each of size k 6 n− 2 and with 1 6 ap, bq 6 n for all p, q, choose ϕ2 to be any
permutation in Sn such that apϕ2 = bp for all p , 1 6 p 6 k, and let φ be any
permutation in Sn whose set of fixed points is precisely {a1, . . . , ak}. (This is
always possible if k 6 n − 2). Set ϕ3 = φϕ2. Then iϕ2 = iϕ3 if and only if
i ∈ {a1, . . . ak}. Hence if we set

α = σ1 + ϕ2σ1 + ϕ3ϕ2σ1

for any σ1 ∈ Sn, it follows that

supp(α) = {(a1, b1), . . . , (ak, bk)}.

¤

However, although we can construct each possible support for some α of the
form α = σ1 + σ2 + σ3, it is not true that every mapping in E+(Bn) arises in
this way.

Example 4.6. Take n = 3. Then the mapping α = (1 2) + (2 3) + (1 3 2) + id
has partial support equal to the singleton set {(1, 2)}, with (1, 2)α = (2, 2).
Suppose that α = σ1 + σ2 + σ3. Then 1σ1 = 2 , 2σ3 = 2 and for {a, b} = {1, 3}
we have a = 2σ1 = 1σ2 , b = 2σ2 = 1σ3. Hence only two possibilities arise, and
for each we find that σ1 + σ2 + σ3 has full support, with support permutation
(1 2 3) in each case.

4.4 Elements with singleton support

By Lemma 4.5 there are no elements of E+(B2) with singleton support. For
n > 3, we shall now describe the subsemigroup of E+(Bn) consisting of the
elements of singleton support, together with 0. For each (i, j) ∈ Bn , (n > 3) we
let

E(i,j) = {α ∈ E+(Bn) : supp(α) = {(i, j)}} ∪ {0}.
Proposition 4.7. Let n > 3.

(a) The number of mappings in E+(Bn) with singleton support is equal to
n2(n2 − n+ 1).

(b) If i 6= j then E(i,j) is a subsemigroup of E+(Bn) that is isomorphic to Bn.

(c) If i = j then E(i,i) is a subsemigroup of E+(Bn) that is isomorphic to
Idem(Bn).

(d) The set of all mappings in E+(Bn) with singleton support, together with
zero, forms a subsemigroup of E+(Bn) isomorphic to the zero direct union
of n(n− 1) copies of Bn and n copies of Idem(Bn).
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Proof. (a) Suppose that α ∈ E+(Bn) with | supp(α)| = 1. If supp(α) = {(i, i)}
then, by part (d) of Lemma 3.1, (i, i)α = (j, j). Given i, any value of j can
occur: without loss of generality, suppose i = 1. Set ϕ2 = 1 and ϕ3 = (2 3 . . . n).
Then (1, 1)(1 + 1 + (2 3 . . . n)) = (1, 1) and so if σ : 1 7→ j then (1, 1)(σ + σ +
(2 3 . . . n)σ) = (j, j). There are n possibilities for i and n for j, and therefore
E+(Bn) contains n2 mappings α with supp(α) = {(i, i)}.
Now suppose that supp(α) = {(i, j)} with i 6= j. We claim that for any p, q ∈ [n]
we can find α (with support {(i, j)}) such that (i, j)α = (p, q). Without loss of
generality suppose that (i, j) = (1, 2). Now take ϕ2 = (1 2) and ϕ3 = (2 3 . . . n).
Then (1, 2)(1 + ϕ2 + ϕ3) = (1, 2)(2, 1)(1, 3) = (1, 3). If p 6= q, choose σ with
1σ = p and 3σ = q. Then (1, 2)(σ + ϕ2σ + ϕ3σ) = (p, q). If p = q we
need a slightly different approach. Again assuming that (i, j) = (1, 2), choose
ϕ2 = (1 2), ϕ3 = (2 3 . . . n) and ϕ4 = (1 3 2). Then if β = 1 + ϕ2 + ϕ3 + ϕ4 we
have supp(β) = {(1, 2)} with (1, 2)β = (1, 1). Then for any σ : 1 7→ p the map
α = σ+ϕ2σ+ϕ3σ+ϕ4σ has supp(α) = {(1, 2)} with (1, 2)α = (p, p). There are
n(n− 1) possibilities for the support element (i, j), and for each of these there
are n2 possibilities for (i, j)α. Therefore E+(Bn) contains n3(n− 1) mappings
α with supp(α) = {(i, j)} with i 6= j.
The total number of mappings in E+(Bn) with singleton support is therefore
n2 + n3(n− 1) = n2(n2 − n+ 1).
For part (b), we observe that each α ∈ E(i,j) is completely determined by the
element (i, j)α, and that if β ∈ E(i,j) then either α + β = 0 or the element
(i, j)α(i, j)β is non-zero and completely determines α+ β. It follows that E(i,j)

is a subsemigroup of E+(Bn), and that the mapping defined by α 7→ (i, j)α and
0 7→ 0 is an isomorphism E(i,j) → Bn. Similarly, for part (c), we observe that
each α ∈ E(i,i) is completely determined by the element (i, i)α ∈ Idem(Bn),
and that the mapping defined by α 7→ (i, i)α and 0 7→ 0 is then an isomorphism
E(i,i) → Idem(Bn). For part (d) it follows from part (a) of Lemma 3.1 that if
α ∈ E(i,j) and β ∈ E(k,l) with (i, j) 6= (k, l) then α+ β = 0. ¤

5 Enumerating elements of E+(Bn)

5.1 n = 2

When n = 2, End(B2) = {1, τ, 0}, where τ is the transposition (1 2). There are
six other non-zero elements of E+(B2), with full support. The Cayley table for
the semigroup (E+(B2),+) is
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+ 1 τ γ µ ν δ η ξ 0
1 δ µ 0 0 η δ 0 µ 0
τ ν γ γ ξ 0 0 ν 0 0
γ 0 γ γ 0 0 0 0 0 0
µ η 0 0 µ 0 0 η 0 0
ν 0 ξ 0 0 ν 0 0 ξ 0
δ δ 0 0 0 0 δ 0 0 0
η 0 µ 0 0 η 0 0 µ 0
ξ ν 0 0 ξ 0 0 ν 0 0
0 0 0 0 0 0 0 0 0 0

The actions of the elements of E+(B2) on the non-zero elements of B2 are shown
in the following table:

α (1, 1)α (1, 2)α (2, 1)α (2, 2)α
1 (1, 1) (1, 2) (2, 1) (2, 2)
τ (2, 2) (2, 1) (1, 2) (1, 1)
γ (2, 2) 0 0 (1,1)
µ 0 (1, 1) (2, 2) 0
ν 0 (2, 2) (1, 1) 0
δ (1, 1) 0 0 (2, 2)
η 0 (1, 2) (2, 1) 0
ξ 0 (2, 1) (1, 2) 0
0 0 0 0 0

5.2 n = 3

For n = 3, Proposition 4.2 gives us 3! × 13 = 78 elements of full support.
By Lemma 4.5, the only possible partial supports are singleton sets, and by
Proposition 4.7 we find 63 such mappings. Hence |E+(B3)| = 7+78+63 = 148.

5.3 n > 3

We have investigated the size of the semigroup E+(Bn) for n = 4, 5, 6 using the
computational discrete algebra system GAP (The GAP group, 2007). Propo-
sitions 4.3 and 4.4 give exact calculations for support sizes n and 1, but our
calculations show that the bulk of the elements of E+(Bn) have support size
n−2. Our GAP code, which is given in an appendix, counts elements of E+(Bn)
by enumerating triples (π;λ, ρ) as in Proposition 3.2. We summarize our find-
ings (including those for n = 2, 3) in the following table, recalling that support
size n− 1 does not occur (by Lemma 4.5).
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Enumeration of elements of E+(Bn) by support size

n 2 3 4 5 6
endomorphisms 3 7 25 121 721

full support 6 78 1, 608 56, 520 2, 355, 120
support size n− 2 — 63 5, 112 1, 005, 000 142, 533, 000
support size n− 3 — — 208 53, 400 17, 743, 200
support size n− 4 — — — 525 289, 350
support size n− 5 — — — — 1, 116

|E+(Bn)| 9 148 6, 953 1, 115, 566 162, 922, 507

Appendix: GAP code for enumeration

The following GAP code produces a list suppulist of all possible supports of
size suppsize for elements of E+(Bn), and then constructs for each support U ,
a list actionlist of all triples (π;λ, ρ) that represent elements of E+(Bn) with
support U , as in Proposition 3.2. The number of elements found for each U is
the summed by the counter esize.

#Enumeration of E(B_n) by triples

#Set required value of n here
n:=4;

#Set required support size here
suppsize:=2;

#Initialize counter
esize:=0;

sn:=SymmetricGroup(n);

#Define suppulist as list of possible sets U of size suppsize in degree n

ulist:=[];
seed:=[1..suppsize];
for g in sn do
Add(ulist,AsSortedList(OnTuples(seed,g)));
od;
suppulist:=DuplicateFreeList(ulist);

#List all possible U,V,pi in the list pilist

pilist:= [];
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for uset in suppulist do
stabuset:=Stabilizer(sn,uset,OnTuples);
stabtrans:=RightTransversal(sn,stabuset);
for g in stabtrans do
newpi:=[uset,OnTuples(uset,g),g];
Add(pilist,newpi);
od;
od;

for pee in pilist do
actionlist:=[];
stabu:=Stabilizer(sn,pee[1],OnTuples);
transv:=RightTransversal(sn,stabu);
cosetgens:=AsList(RightCoset(stabu,pee[3]));
hgp:=Group(cosetgens);

#for each left action lam find all possible distinct right actions rho

for lam in transv do
lamaction:=OnTuples(pee[1],lam);
bigrholist:=[];
for rho in RightCoset(hgp,lam) do
Add(bigrholist,OnTuples(pee[2],rho));
rholist:=Unique(bigrholist);;
od;
for rhoaction in rholist do
newaction:=[pee[1],pee[2],lamaction,rhoaction];
Add(actionlist,newaction);
od;
od;

#add new actions to running total

esize:=esize+Length(actionlist);;
od;

#Reveal final total
esize;
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