
Endomorphisms for Faster Elliptic Curve
Cryptography on a Large Class of Curves

Steven D. Galbraith1,	, Xibin Lin2,		, and Michael Scott3,	 	 	

1 Mathematics Department,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX,
United Kingdom

steven.galbraith@rhul.ac.uk
2 School of Mathematics and Computational Science,

Sun Yat-Sen University, Guangzhou, 510275, P.R. China
linxibin@mail2.sysu.edu.cn

3 School of Computing, Dublin City University,
Ballymun, Dublin 9, Ireland
mike@computing.dcu.ie

Abstract. Efficiently computable homomorphisms allow elliptic curve
point multiplication to be accelerated using the Gallant-Lambert-
Vanstone (GLV) method. We extend results of Iijima, Matsuo, Chao and
Tsujii which give such homomorphisms for a large class of elliptic curves
by working over Fp2 and demonstrate that these results can be applied to
the GLV method.

In general we expect our method to require about 0.75 the time of
previous best methods (except for subfield curves, for which Frobenius
expansions can be used). We give detailed implementation results which
show that the method runs in between 0.70 and 0.84 the time of the
previous best methods for elliptic curve point multiplication on general
curves.
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1 Introduction
Let E be an elliptic curve over a finite field Fq and let P,Q ∈ E(Fq) have
order r. The fundamental operations in elliptic curve cryptography are point
multiplication [n]P and multiexponentiation [n]P +[m]Q where n,m ∈ Z. There
is a vast literature on efficient methods for computing [n]P and [n]P + [m]Q (a
good reference is [3]). There is a significant difference between computing [n]P
for varying n and a fixed point P , and computing [n]P where both n and P
vary; this paper focusses on the latter case.

� This work supported by EPSRC grant EP/D069904/1.
�� This author thanks the Chinese Scholarship Council.

� � � This author acknowledges support from the Science Foundation Ireland under
Grant No. 06/MI/006.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 518–535, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-01001-9_35

http://dx.doi.org/10.1007/978-3-642-01001-9_35


Endomorphisms for Faster Elliptic Curve Cryptography 519

The Gallant-Lambert-Vanstone (GLV) method [15] is an important tool for
speeding up point multiplication. The basic idea is as follows. If the elliptic curve
E has an efficiently computable endomorphism ψ (other than a standard multi-
plication by n map) such that ψ(P ) ∈ 〈P 〉 then one can replace the computation
[n]P by the multiexponentiation [n0]P + [n1]ψ(P ) where |n0|, |n1| ≈ √

r. The
integers n0 and n1 are computed by solving a closest vector problem in a lattice,
see [15] for details. In principle this computation requires only around 0.6 to 0.7
the time of the previous method (the precise details depend on the relative costs
of doubling and addition, the window size being used, etc). Some examples al-
low higher degree decompositions such as [n0]+[n1]ψ(P )+ · · ·+[nm−1]ψm−1(P )
where |ni| ≈ r1/m which can give further speedups. We call the latter approach
the m-dimensional GLV method.

Gallant, Lambert and Vanstone [15] only gave examples of suitable efficiently
computable endomorphisms in two cases, namely subfield curves (i.e., groups
E(Fqm) where E is defined over Fq; these do not have prime or nearly prime
order unless q is very small) and curves with special endomorphism structure
(essentially, that the endomorphism ring has small class number). Hence, if one
is using randomly chosen prime-order elliptic curves over finite fields for cryp-
tography (or if one wants to use special primes such as NIST primes, see Section
2.2.6 of [18]) then the GLV method is not usually available. Indeed, in Section
7 of [33] one finds the claim “the GLV method is only effective for those excep-
tional elliptic curves that have complex multiplication by an order with small
discriminant.”

In fact, Iijima, Matsuo, Chao and Tsujii [20] constructed an efficiently com-
putable homomorphism on elliptic curves E(Fp2) with j(E) ∈ Fp arising from the
Frobenius map on a twist of E. Apparently they did not realise the application of
their results to theGLVmethod. In this paperwe give a generalisation of the Iijima-
Matsuo-Chao-Tsujii (IMCT) construction and analyse it in the context of the GLV
method. The construction applies to all elliptic curvesoverFp2 such that j(E) ∈ Fp

and, as noted in [20,29], can be used with curves of prime order.
The curves considered in this paper are not completely general: the number

of Fq2 -isogeny classes of elliptic curves over Fq2 is approximately 2q2 whereas
the construction in Section 2 gives only approximately q isomorphism classes
of curves. However, this is a major improvement over earlier papers on the
GLV method which, in practice, were only applied to a finite number of Fq-
isomorphism classes for any given q. The results of this paper therefore overturn
the claims of Section 7 of [33].

The basic idea is somewhat analogous to subfield curves: We take elliptic curves
E with j(E) ∈ Fq and consider the group E(Fqm). However a crucial difference is
that E is defined over Fqm , not Fq. This means that it is possible to obtain curves
of prime order and so there is no need to restrict attention to q being small. Our
method can be used with any prime power q and any elliptic curvesE over Fq and
always gives rise to a GLV method of dimension at least two.

We give experimental results comparing the cost of our algorithm for point
multiplication [n](x, y) with previous methods for this operation (indeed, we
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compare with optimised implementations due to Bernstein [4] and Gaudry-
Thomé [17], which, based on ideas of Montgomery [28], use only x-coordinate
arithmetic). The purpose of our implementation experiments is to give a good
picture of the speedup obtained with the new method compared with using
curves over prime fields; we stress that our implementation is not claimed to be
the best possible and that one could probably achieve further speedups from a
different choice of curve coordinates or different exponentiation methods.

We find that the new method runs in between 0.70 and 0.84 the time of the
previous best methods. The exact performance depends on the platform being
used; our best result is for 8-bit processors. Our methods (unlike methods using
Montgomery ladders, such as [4,17]) can also be used for signature verification.
Our experimental results in Table 4 show that Schnorr signature verification
runs in around 0.73 the time of the best previous methods for the same curve.

Note that our techniques can also be implemented on elliptic curves given
by any equation (e.g., Edwards or Jacobi-quartic form, see [6,7,8]) and exploit
their benefits. We also generalise the method to hyperelliptic curves. The details
of both these cases are omitted due to lack of space, but are given in the full
version of the paper.

The focus in this paper is on curves over fields of large prime characteristic,
since in small characteristic one might prefer to use subfield curves and Frobenius
expansions. However, Hankerson, Karabina and Menezes [19] have experimented
with the method in characteristic 2 and they report that the new method runs
in about 0.74 to 0.77 the time of the best standard method for general curves.

We now give an outline of the paper. First we describe the homomorphism
and explain how it leads to a 2-dimensional GLV method. Section 3 gives a
specific key generation algorithm which may be convenient for some applications.
Section 4 shows how to get a 4-dimensional GLV method for y2 = x3 + B over
Fp2 . Section 5 gives some details about our implementation. The proof of the
pudding is the timings in Section 6. Section 7 discusses known security threats
from using the construction and explains how to avoid them.

2 The Homomorphism

We consider elliptic curves defined over any field Fq with identity point OE .
Recall that if E is an elliptic curve over Fq with q + 1 − t points then one can
compute the number of points #E(Fqm) efficiently. For example, #E(Fq2 ) =
q2 + 1 − (t2 − 2q) = (q + 1)2 − t2. As usual we define

E(Fqm)[r] = {P ∈ E(Fqm) : [r]P = OE}.
When we say that a curve or mapping is ‘defined over Fqk ’ we mean that the

coefficients of the polynomials are all in Fqk . The implicit assumption throughout
the paper is that when we say an object is defined over a field Fqk then it is not
defined over any smaller field, unless explicitly mentioned.

The following result gives the main construction. Novices can replace the
words ‘separable isogeny’ with ‘isomorphism’, set d = 1 and replace φ̂ by φ−1
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without any significant loss of functionality (in which case one essentially obtains
the result of Iijima et al [20]). Recall that if r is a prime we write r‖N to mean
r | N but r2 � N .

Theorem 1. Let E be an elliptic curve defined over Fq such that #E(Fq) =
q + 1 − t and let φ : E → E′ be a separable isogeny of degree d defined over Fqk

where E′ is an elliptic curve defined over Fqm with m | k. Let r | #E′(Fqm) be a
prime such that r > d and such that r‖#E′(Fqk). Let π be the q-power Frobenius
map on E and let φ̂ : E′ → E be the dual isogeny of φ. Define

ψ = φπφ̂.

Then

1. ψ ∈ EndF
qk

(E′) (i.e., ψ is a group homomorphism).
2. For all P ∈ E′(Fqk) we have ψk(P ) − [dk]P = OE and ψ2(P ) − [dt]ψ(P ) +

[d2q]P = OE.
3. There is some λ ∈ Z such that λk − dk ≡ 0 (mod r) and λ2 − dtλ+ d2q ≡ 0

(mod r) such that ψ(P ) = [λ]P for all P ∈ E′(Fqm)[r].

Proof. First note that φ̂ is an isogeny from E′ to E and is defined over Fqk , that
π is an isogeny from E to itself defined over Fq, and that φ is an isogeny from E
to E′ defined over Fqk . Hence ψ is an isogeny of E′ to itself, and is defined over
Fqk (or maybe a subfield). Therefore, ψ is a group homomorphism.

Since φφ̂ = d on E′ it follows that

ψ2 = φπφ̂φπφ̂ = φπdπφ̂ = dφπ2φ̂

and, by induction, ψk = dk−1φπkφ̂. For P ∈ E′(Fqk) we have φ̂(P ) ∈ E(Fqk)
and so πk(φ̂(P )) = φ̂(P ). Hence ψk(P ) = [dk]P .

Similarly, writing Q = φ̂(P ) for P ∈ E′(Fqk) we have π2(Q)− [t]π(Q)+[q]Q =
OE and so [d]φ(π2−[t]π+[q])φ̂(P ) = OE . Using the previous algebra, this implies

(ψ2 − [dt]ψ + [qd2])P = OE .

Finally, let P ∈ E′(Fqm) have order r. Since ψ(P ) ∈ E′(Fqk) also has order
r and r‖#E′(Fqk) it follows that ψ(P ) = [λ]P for some λ ∈ Z. Since ψ is a
homomorphism, ψ([a]P ) = [a]ψ(P ) = [λ]([a]P ) for all a ∈ Z. Since ψk(P ) −
[dk]P = [λk]P − [dk]P = OE it follows that λk − dk ≡ 0 (mod r). Similarly,
λ2 − dtλ+ d2q ≡ 0 (mod r). �
We stress that there is nothing unexpected in the above construction. Consider
the case when φ is an isomorphism: Then E′ ∼= E implies End(E′) ∼= End(E). We
know that End(E) contains the p-power Frobenius map and hence End(E′) con-
tains a corresponding endomorphism. The above Theorem simply writes down
this endomorphism explicitly.

The proof generalises immediately to hyperelliptic curves (see the full version
of this paper or [22]).
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2.1 Special Case of Quadratic Twists

We now specialise Theorem 1 to elliptic curves over Fp where p > 3 and the case
m = 2.

Corollary 1. Let p > 3 be a prime and let E be an elliptic curve over Fp

with p + 1 − t points. Let E′ over Fp2 be the quadratic twist of E(Fp2). Then
#E′(Fp2) = (p − 1)2 + t2. Let φ : E → E′ be the twisting isomorphism defined
over Fp4 . Let r | #E′(Fp2) be a prime such that r > 2p Let ψ = φπφ−1. For
P ∈ E′(Fp2)[r] we have ψ2(P ) + P = OE.

Proof. Let E : y2 = x3 + Ax + B with A,B ∈ Fp. We have #E(Fp2) = p2 +
1 − (t2 − 2p). Let u ∈ Fp2 be a non-square in Fp2 , define A′ = u2A,B′ = u3B
and E′ : y2 = x3 + A′x + B′. Then E′ is the quadratic twist of E(Fp2) and
#E′(Fp2) = p2 + 1 + (t2 − 2p) = (p− 1)2 + t2. The isomorphism φ : E → E′ is
given by

φ(x, y) = (ux,
√
u

3
y)

and is defined over Fp4 .
If r | #E′(Fp2) is prime such that r > 2p then r � #E(Fp2) = (p+1−t)(p+1+t)

and so r‖#E′(Fp4) = #E(Fp2)#E′(Fp2). Hence we may apply Theorem 1. This
shows that ψ = φπφ−1 is a group homomorphism such that ψ(P ) = [λ]P for
P ∈ E′(Fp2)[r] where λ4−1 ≡ 0 (mod r). We now show that, in fact, λ2 +1 ≡ 0
(mod r).

By definition, ψ(x, y) = (uxp/up,
√
u

3
yp/

√
u

3p) where u ∈ Fp2 (i.e., up2
= u)

and
√
u �∈ Fp2 (and so,

√
u

p2

= −√
u). If P = (x, y) ∈ E′(Fp2) then xp2

=
x, yp2

= y and so

ψ2(x, y) = (uxp2
/up2

,
√
u

3
yp2

/
√
u

3p2

)
= (x, (−1)3y)
= −(x, y).

This completes the proof. �
The above result applies to any elliptic curve over Fp (with p > 3) and shows
that the 2-dimensional GLV method can be applied. Note that it is possible for
#E′(Fp2) to be prime, since E′ is not defined over Fp (for further analysis see
Nogami and Morikawa [29]). One feature of this construction is that, since p is
now half the size compared with using elliptic curves over prime fields, point
counting is much faster than usual (this was noted in [29]). Since we are dealing
with elliptic curves over Fp2 , where p is prime, Weil descent attacks are not a
threat (see Section 7).

An exercise for the reader is to show that if E is an elliptic curve over Fp and
if E′ over Fp is the quadratic twist of E then the map ψ satisfies ψ(P ) = −P
for all P ∈ E′(Fp). The homomorphism is therefore useless for the GLV method
in this case.
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Lemma 1. Let p ≡ 5 (mod 8) be a prime. Let notation be as in Corollary 1.
Then one may choose

ψ(x, y) = (−xp, iyp)

where i ∈ Fp satisfies i2 = −1.

Proof. See the full version of the paper. �

Lemma 2. Let notation be as in Corollary 1. Then ψ(P ) = [λ]P where λ =
t−1(p− 1) (mod r).

Proof. The proof of Corollary 1 shows that ψ(P ) = [λ]P for some λ ∈ Z. Since
ψ2(P ) = −P we have λ2+1 ≡ 0 (mod r). Similarly, ψ2(P )−[t]ψ(P )+[p]P = OE ,
so λ2 − tλ+ p ≡ 0 (mod r). Subtracting the second equation from the first gives
tλ+ (1 − p) ≡ 0 (mod r). �

Finally, we give some remarks about the lattice which arises in the GLV method
when decomposing [n]P as [n0]P + [n1]ψ(P ). Recall from [15] that we consider
the lattice

L = {(x, y) ∈ Z2 : x+ yλ ≡ 0 (mod r)}.

It is easy to prove that {(r, 0), (−λ, 1)} is a basis for L; this shows that the
determinant of L is r. The GLV method uses Babai’s rounding method to solve
the closest vector problem (CVP), and this method requires a reduced basis.

Lemma 3. Let notation be as in Corollary 1. The vectors {(t, p− 1), (1− p, t)}
are an orthogonal basis for a sublattice L′ of L of determinant #E′(Fp2). Given a
point (a, b) ∈ R2 there exists a lattice point (x, y) ∈ L′ such that ‖(a, b)−(x, y)‖ ≤
(p+ 1)/

√
2.

Proof. By Lemma 2 we have that tλ + (1 − p) ≡ 0 (mod r), which proves that
(1− p, t) ∈ L. Multiplying by λ and using λ2 ≡ −1 (mod r) gives (t, p− 1) ∈ L.
It is easy to check that the vectors are orthogonal and thus linearly independent.
The vectors both have length

√
#E′(Fp2) ≤

√
p2 + 2p+ 1 = p + 1. This basis

has determinant (p − 1)2 + t2 = #E′(Fp2) so generates a sublattice L′ ⊆ L (if
#E′(Fp2) = r then L = L′).

Finally, simple geometry shows that the maximum distance from a lattice
point is

√
#E′(Fp2)/2 ≤ (p+ 1)/

√
2. �

Computing the coefficients n0, n1 for the GLV method is therefore particularly
simple in this case (one does not need to use lattice reduction or the methods of
[30,21,33]). Further, one knows that |n0|, |n1| ≤ (p+1)/

√
2. As always, an alter-

native to the decomposition method which can be used in some cryptographic
settings is to choose small coefficients n0, n1 ∈ Z directly rather than choosing
a random 0 ≤ n < r and then computing the corresponding (n0, n1).
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2.2 Higher Dimension Decompositions

The GLV method can be generalised to m-dimensional decompositions [n]P =
[n0]P + [n1]ψ(P ) + · · · + [nm−1]ψm−1(P ) (for examples with m = 4 and m =
8 see [13]). Such a setting gives improved performance. As we have found 2-
dimensional expansions using E′(Fp2) it is natural to try to get anm-dimensional
decomposition using E′(Fpm).

In general, to obtain an m-dimensional decomposition it is required that ψ
does not satisfy any polynomial equation on E′(Fpm)[r] of degree < m with
small integer coefficients. Note that ψ always satisfies a quadratic polynomial
equation but that the coefficients are not necessarily small modulo r.

The following result gives a partial explanation of the behaviour of ψ on
E′(Fpm).

Corollary 2. Let p > 3 be a prime and let E be an elliptic curve over Fp.
Let E′ over Fpm be the quadratic twist of E(Fpm). Write φ : E → E′ for the
twisting isomorphism defined over Fp2m . Let r | #E′(Fpm) be a prime such that
r > 2pm−1 Let ψ = φπφ−1. For P ∈ E′(Fpm)[r] we have ψm(P ) + P = OE.

Proof. As in Corollary 1, we have r‖#E′(Fp2m) = #E′(Fpm)#E(Fpm) so The-
orem 1 applies. Using the same method as the proof of Corollary 1 we have
ψm(x, y) = (uxpm

/upm

,
√
u

3
ypm

/
√
u

3pm

) = −P . �
A problem is that the polynomial xm + 1 is not usually irreducible, and it
is possible that ψ satisfies a smaller degree polynomial. For example, in the
case m = 3 one sees that #E′(Fp3) cannot be prime as it is divisible by
N = #E(Fp2)/#E(Fp). If r | #E′(Fp3)/N and P ∈ E′(Fp3)[r] then ψ2(P ) −
ψ(P ) + 1 = OE . Hence one only gets a 2-dimensional decomposition in the case
m = 3.

Indeed, the interesting case is when m is a power of 2, in which case xm +1 is
irreducible and one can obtain an m-dimensional GLV decomposition. Indeed,
Nogami and Morikawa [29] already proposed exactly this key generation method
(choosing E over Fp and then using a quadratic twist over Fp2c ) as a method
to generate curves of prime order. Note that [29] does not consider the GLV
method.

Therefore, the next useful case is m = 4, giving a 4-dimensional GLV method.
On the downside, this case is potentially vulnerable to Weil descent attacks (see
Section 7) and so the prime p must be larger than we would ideally like.

The other way to get higher dimension decompositions is to have maps φ
defined over larger fields than a quadratic extension. An example of this is given
in Section 4.

3 Key Generation

Let p > 3 be prime. We present a key generation algorithm for the quadratic
twist construction. Our algorithm is designed so that the resulting curve
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E′ : y2 = x3 + A′x + B′ over Fp2 has coefficient A′ = −3, which is conve-
nient for efficient implementation when using Jacobian coordinates (see Section
13.2.1.c of [3] or Section 3.2.2 of [18]). The key generation algorithm can be mod-
ified to work with other models for elliptic curves and one can always choose at
least one coefficient to have a special form.

We use Lemma 1, which gives a particularly simple map ψ. It should be clear
that the algorithm can be used in more general cases. Our algorithm produces
curves of prime order, but this can be relaxed by requiring only h < H for some
bound H in line 7.

Algorithm 1. Key generation for quadratic twist construction
Output: p, E′, ψ, λ
1: Choose a prime p = 5 (mod 8) � e.g., a NIST prime (Section 2.2.6 of [18])
2: Set u =

√
2 ∈ Fp2

3: Set A′ = −3 and A = A′/2 ∈ Fp

4: repeat
5: Choose random B ∈ Fp and let E : y2 = x3 + Ax + B
6: Compute t = p + 1 − #E(Fp).
7: until (p − 1)2 + t2 = hr where r is prime and h = 1
8: Set B′ = Bu3 ∈ Fp2 and E′ : y2 = x3 + A′x + B′

9: Set λ = t−1(p − 1) (mod r)
10: Compute i ∈ Fp so that i2 = −1
11: Define ψ(x, y) = (−xp, iyp).
12: return p, (A′, B′), ψ, λ

As remarked earlier, key generation is fast compared with standard ECC,
since the point counting for #E(Fp) is over a field half the usual size (this is
precisely the point of the paper [29]).

4 Using Special Curves

We have seen that one can obtain a 2-dimensional GLV method for any ellip-
tic curve over Fp. However, 2-dimensional GLV methods were already known
for some special curves (i.e., those with a non-trivial automorphism or endo-
morphism of low degree). We now show how one can get higher-dimensional
expansions using elliptic curves E over Fp2 with #Aut(E) > 2.

The two examples of interest are E : y2 = x3 +B and y2 = x3 +Ax. We give
the details in the former case. The latter is analogous.

Let p ≡ 1 (mod 6) and let B ∈ Fp. Define E : y2 = x3 + B. Choose u ∈ Fp12

such that u6 ∈ Fp2 and define E′ : Y 2 = X3 + u6B over Fp2 . Repeat the
construction (choosing p,B, u) until #E′(Fp2) is prime (or nearly prime). Note
that there are 6 possible group orders for y2 = x3 + B′ over Fp2 and three
of them are never prime as they correspond to group orders of curves defined
over Fp.
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The isomorphism φ : E → E′ is given by φ(x, y) = (u2x, u3y) and is defined
over Fp12 . The homomorphism ψ = φπφ−1, where π is the p-power Frobenius on
E, is defined over Fp2 and satisfies the characteristic equation

ψ4 − ψ2 + 1 = 0

corresponding to the 12-th cyclotomic polynomial. Hence one obtains a
4-dimensional GLV method for these curves. This leads, once again, to a sig-
nificant speedup of these curves compared with previous techniques.

Note that −ψ2 satisfies the characteristic equation x2 + x + 1 and so acts as
the standard automorphism (x, y) .→ (ζ3x, y) on E.

5 Remarks on Our Implementation

In this section we briefly describe the implementation we used for our experi-
ments. As mentioned in the introduction, we do not claim that our implementa-
tion is the best possible. We believe that, for the parameters and implementation
platforms considered in this paper, it gives a fair estimate of the speedup ob-
tained by using the GLV method.

The main point of the GLV method is to replace a large point multiplication
[n]P by a multiexponentiation [n0]P +[n1]ψ(P ). There are numerous algorithms
for multiexponentiation, all built on a fundamental observation by Straus, and
much has been written on the topic. One approach is to use ‘interleaving’; this
idea seems to have been independently discovered in [15] and [24]. We refer to
Section 3.3.3 of [18] for details. Another approach is the joint sparse form (see
Solinas [34]). The full version of the paper contains further analysis of multiex-
ponentiation methods (e.g., higher-dimensional joint sparse forms, the Euclidean
Montgomery ladder etc).

Two fundamental ideas used to speed up the computation of [n]P on elliptic
curves are the use of signed binary expansions (for example, non-adjacent forms,
see Definition 3.28 [18] or Definition 9.13 of [3]) and sliding window methods.
A very efficient method (as it only uses a few word operations) to compute the
NAF of an integer n is to compute 3n (using standard integer multiplication),
then form the signed expansion (3n) − n and discard the least significant bit.
The natural extension of non-adjacent forms to windows is called width-w NAFs
(see Section IV.2.5 of [9], Definition 3.32 of [18] or Definition 9.19 of [3]). Instead
of using width-w NAFs one can use sliding windows over NAF expansions (see
Section IV.2.4 of [9] or Algorithm 3.38 on page 101 of [18]). This is convenient
since it is cheaper to compute a NAF than a width-w NAF.

More generally, one can use signed fractional windows [25,26]. Finally, one
could consider fractional sliding windows over NAFs. This does not seem to
have been considered in the literature and it is an open problem to determine
the density in this case. More details of these methods are given in the full
version of the paper.

Our implementation uses interleaving with sliding (non-fractional) windows
of width w = 4 over NAF expansions (we found that using w = 5 was slightly
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slower for our parameters). Hence we must precompute {P, [3]P, [5]P, [7]P, [9]P};
note that the points {ψ(P ), [3]ψ(P ), [5]ψ(P ), [7]ψ(P ), [9]ψ(P )} can be obtained
on the fly at little cost. This is very similar to Algorithm 3.51 of [18], which uses
interleaving over width-w NAFs (the authors of [18] tell us that there is a typo
in line 2 of Algorithm 3.5.1: one should replace “3.30” with “3.35”). We do not
claim that this is the fastest possible approach, but it requires relatively little
precomputation and is very simple to implement. It is possible that one could
obtain slightly faster results using fractional windows or other methods.

The next decision is which coordinate system to use for elliptic curve arith-
metic. The best choice is probably inverted Edwards or Jacobi quartic [6,7,8] but
for legacy reasons our implementation uses Jacobian coordinates. As usual, one
prefers to use mixed additions in the main loop as they are faster. However this
requires that any precomputed values must be “normalized”, that is converted
to affine form, before entering the loop. This conversion, if done naively for
each precomputed point, would require expensive field inversions, so we use the
precomputation strategy of Dahmen, Okeya and Schepers (DOS) [12], as recom-
mended in [8] (there are also recent improvements due to Longa and Miri [23]),
which requires only a single inversion.

The full version of the paper gives more details of the implementation, as
well as a theoretical estimate of the number of Fp2 operations required for our
algorithm.

6 Experimental Results

We now give some timing comparisons for the computation of [n]P (and also
signature verification) on elliptic curves at the 128-bit security level. Our timings
are for the case of quadratic twists as presented in Section 2.1.

6.1 The Example Curve

It is natural to use the Mersenne prime p = 2127 − 1, which is also used in
Bernstein’s surface1271 genus 2 implementation [5]1. This prime supports a
very fast modular reduction algorithm.

Since p ≡ 3 (mod 4) we represent Fp2 as Fp(
√−1). Note that since p �=

5 mod 8 the previously described key generation process is not applicable here.
However it can easily be modified to handle this case as well, although the
homomorphism requires more multiplications to compute.

Let
E : y2 = x3 − 3x+ 44

1 Note that the Pollard rho algorithm using equivalence classes in this case requires
approximately 2125 group operations, the same as for Bernstein’s Curve25519 or
Surface1271. Whether this is precisely the same security level as AES-128 is un-
clear, but since Curve25519 and Surface1271 have been used for benchmarking we
feel our choice is justified.
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be defined over the field Fp. Then #E(Fp) = p+1−twhere t =3204F5AE088C39A7
in hex. By Corollary 1 the quadratic twist E′ over Fp2 of E(Fp2) has #E′(Fp2) =
(p−1)2+t2, which is a primewe call r. The curvewas quickly foundusing amodified
version of Schoof’s algorithm.

We use u = 2 + i instead of u =
√

2 in Algorithm 1. The homomorphism in
this case simplifies to

ψ(x, y) = (ωxx̄, ωy ȳ)

where x̄ denotes the Galois conjugate of x, and ωx = u/up, ωy =
√
u3/u3p as in

the proof of Corollary 1. By Lemma 2 we have ψ(P ) = [λ]P where λ = t−1(p−1)
(mod r).

6.2 Comparison Curve

For comparison purposes we consider an elliptic curve E defined over Fp2 where
p2 = 2256 − 189 is a 256-bit pseudo-Mersenne modulus. This provides approxi-
mately the same level of security as the curve in the previous subsection.

The full version of the paper gives a theoretical comparison of the implemen-
tations. Table 1 gives operation counts for our test implementation. The notation
SSW means sliding windows of window size w = 5 over NAFs, GLV+JSF means
using joint sparse forms for the multiexponentiation and GLV+INT means in-
terleaving sliding windows of size 4 over NAFs as described in Section 5. In our
implementations we averaged the cost over 105 point multiplications.

Table 1. Point multiplication operation counts

Method Fp muls Fp adds/subs
E(Fp2), 256-bit p2 SSW 2600 3775
E(Fp2), 127-bit p SSW 6641 16997
E(Fp2), 127-bit p GLV+JSF 4423 10785
E(Fp2), 127-bit p GLV+INT 4109 10112

The results in Table 1 agree with the rough analysis given in the full version
of the paper. The table includes the often neglected costs of field additions and
subtractions. Note that when implementing Fp2 arithmetic, each multiplication
using Karatsuba requires five Fp additions or subtractions (assuming Fp2 =
Fp(

√−1)), so the number of these operations increases substantially.
Clearly the superiority (or otherwise) of the method depends on the relative

cost of 128-bit and 256-bit field multiplications (and additions or subtractions)
on the particular platform.

To give a more accurate picture we have implemented both methods on two
widely differing platforms, a 1.66GHz 64-bit Intel Core 2, and on an 8-bit 4MHz
Atmel Atmega1281 chip (which is a popular choice for wireless sensor network
nodes). We present the results in the following two subsections.
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6.3 8-bit Processor Implementation

Our first implementation is on a small 4MHz 8-bit Atmega1281 processor. Here
the base field multiplication times will dominate, so this function was written
in optimal loop-unrolled assembly language. We use the MIRACL C library
[31], which includes tools for the automatic generation of such code (and which
holds the current speed record for this particular processor [32]), and we use the
cycle accurate AVR Studio tool to measure the time for a single variable point
multiplication.

Table 2. Point multiplication timings – 8-bit processor

Atmel Atmega1281 processor Method Time (s)
E(Fp2), (256-bit p2) SSW 5.49
E(Fp2) (127-bit p) SSW 6.20
E(Fp2), (127-bit p) GLV+JSF 4.21
E(Fp2), (127-bit p) GLV+INT 3.87

Table 2 show a that our best method for point multiplication takes about 0.70
of the time required for the 256 bit E(Fp2) curve.

Observe that simply switching to an E(Fp2) curve at the same security level
does not by itself give any improvement, in fact it is somewhat slower. The theo-
retical advantage of using Karatsuba in the latter case appears to be outweighed
by the extra “fussiness” of the Fp2 implementation; and of course Karatsuba can
also be applied to the Fp case as well if considered appropriate. Looking at the
timings, a field multiplication takes 1995 μs over Fp2 (256-bit), as against 2327
μs over Fp2 (127-bit p), although for a field squaring the situation is reversed,
taking 1616 μs over Fp2 as against only 1529 μs over Fp2 . Field addition and
subtraction favours the Fp2 case (124 μs versus 174 μs). However using the new
homomorphism and applying the GLV method, our new implementation is still
clearly superior.

Note that for this processor it is probably more appropriate in practice to use
the JSF method for point multiplication, as it is much better suited to a small
constrained enviroment, with limited space for online precomputation.

6.4 64-Bit Processor Implementation

It has been observed by Avanzi [2], that software implementations over smaller
prime fields, where field elements can be stored in just a few CPU registers (as
will be the case here), suffer disproportionally when implemented using general
purpose multi-precision libraries. This effect would work against us here, as we
are using the general purpose MIRACL library [31]. Special purpose libraries
like the mpFq library [17] which generate field-specific code, and implementations
which work hard to squeeze out overheads, such as Bernstein’s implementations
[5] are always going to be faster.
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In the context of a 64-bit processor, while one might hope that timings would
be dominated by the O(n2) base field multiplication operations, for small values
of n the O(n) contribution of the numerous base field additions and subtractions
becomes significant, as also observed by Gaudry and Thomé [17]. Observe that
on the 64-bit processor a 128-bit field element requires just n = 2 (and indeed the
description as “multi-precision” should really give way to “double precision”).
Therefore it is to be expected that the speed-up we can achieve in this case will
be less than might have been hoped.

So is our new method faster? There is really only one satisfactory way to re-
solve the issue – and that is to identify the fastest known E(Fp2) implementation
on a 64-bit processor for the same level of security, and try to improve on it. We
understand that the current record is that announced by Gaudry and Thomé at
SPEED 2007 [17], using an implementation of Bernstein’s curve25519 [4]. This
record is in the setting of an implementation of the elliptic curve Diffie-Hellman
method, which requires a single point multiplication to determine the shared
secret key.

We point out that the clever implementation and optimizations of curve25519
are for the sole context of an efficient Diffie-Hellman implementation – ours is
general purpose and immediately applicable to a wide range of ECC protocols.
In particular the implementation of curve25519 uses Montgomery’s parameter-
isation of an elliptic curve, is not required to maintain a y coordinate, and hence
can achieve compression of the public key at no extra cost (i.e., without the
calculation of a square root).

On the other hand we have the use of a particularly nice modulus 2127 − 1,
which brings many benefits. For example a base field square root of a quadratic
residue x can be calculated as simply x2125

.
In order to be competitive we wrote a specialised hand-crafted x86-64 assem-

bly language module to handle the base field arithmetic, and integrated this
with the MIRACL library. Given that each field element can be stored in just
two 64-bit registers, this code is quite short, and did not take long to generate,
optimize and test.

To obtain our timings we follow Gaudry and Thomé, and utilise two different
methods, one based on actual cycle counts, and a method which uses an operating
system timer. There are problems with both methods [17], so here we average the
two. In practise the two methods were in close agreement, but not of sufficient
accuracy to justify exact numbers – so we round to the nearest 1000 cycles. See

Table 3. Point multiplication timings – 64-bit processor

Intel Core 2 processor Method Clock cycles
E(Fp2), 255-bit p2 Montgomery [17] 386,000
E(Fp2), 127-bit p SSW 490,000
E(Fp2), 127-bit p GLV+JSF 359,000
E(Fp2), 127-bit p GLV+INT 326,000
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Table 3 for our results. As can be seen, our best method takes 0.84 of the time
of the Gaudry and Thomé implementation. Note that point decompression, as
required by a Diffie-Hellman implementation which wishes to minimise the size
of the public key, would require approximately an extra 26,000 clock cycles for
our implementation.

It is interesting to observe from Table 3 that a careful implementation over a
quadratic extension which does not exploit our homomorphism is substantially
slower, taking 490,000 cycles. So again it seems that merely switching to a smaller
field size is not by itself advantageous on a 64-bit processor, although some of the
difference can be explained by the particularly clever parameterization chosen
for curve25519. However by using the GLV method we are able to make up this
difference, and indeed overtake the previous record.

To ensure a fair comparison, we exploited the very useful eBats project [10]
(now incorporated into eBACS [11]). Our eBat implements a Diffie-Hellman key
exchange algorithm, and can be directly and independently compared with an
implementation based on curve25519. There are two main functions for a Diffie-
Hellman implementation, one which calculates the key pair, and a second which
calculates the shared secret. For the key pair calculation we exploit the fact that
for our method a multiplication of a fixed point can benefit from extensive off-
line precomputation, and use a fixed-base comb algorithm (see Section 3.3.2 of
[18]), and so this calculation requires only 146,000 cycles. For the shared secret
calculation we use the GLV+INT method, plus the cost of a point decompression.

Our latest eBat can be downloaded from:
ftp://ftp.computing.dcu.ie/pub/crypto/gls1271-3.tar
Profiling the code reveals that our version (with point compression) spends 49%
of its time doing base field multiplications and squarings, 15% of the time doing
base field additions and subtractions and nearly 6% of the time is required for
the few modular inversions.

6.5 ECDSA/Schnorr Signature Verification

Verification of both ECDSA and Schnorr signatures requires the calculation of
[a]P +[b]Q, where P is fixed. In our setting we must calculate [a0]P +[a1]ψ(P )+
[b0]Q+[b1]ψ(Q) – in other words a 4-dimensional multiexponentiation algorithm
is required. The methods of Bernstein [4] and Gaudry-Thomé [17] are based on
Montgomery arithmetic and are not appropriate for signature verification.

Again we use an interleaving algorithm, using windows over a NAF expansion.
Since P is now fixed, precomputation of multiples of P (and therefore of ψ(P ))
can be carried out offline, and so a larger window size of 6 can be used for the
multiplication of P . This requires the precomputation and storage of 42 points.
For the online precomputation required on Q, we again use sliding windows of
size 4 over NAF expansions.

In Table 4 we compare our method with an implementation that does not
use the GLV method. The notation GLV+INT means a 4-dimensional multiex-
ponentiation as described above and the notation INT means the 2-dimensional
interleaving algorithm which calculates [a]P + [b]Q directly for random a, b < r,
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Table 4. Signature Verification timings – 64-bit processor

Intel Core 2 processor Method Fp muls Fp adds/subs Clock cycles
E(Fp2), 127-bit p GLV+INT 5174 12352 425,000
E(Fp2), 127-bit p INT 7638 19046 581,000

using size 6 sliding windows over NAFs for the fixed point P , and size 5 sliding
windows over NAFs for the variable point Q.

Antipa et al [1] propose a variant of ECDSA with faster signature verification
(note that their method does not apply to Schnorr signatures). The basic method
gives essentially the same performance as our method (they transform [a]P+[b]Q
to a 4-dimensional multiexponentiation with coefficients ≈ √

r). Their method,
as with ours, assumes that P is fixed and that certain precomputation has been
done.

The paper [1] also gives a variant where the public key is doubled in size to
include Q and Q1 = [2�log2(r)/3�]Q. Their method transforms [a]P + [b]Q to a 6-
dimensional multiexponentiation with coefficients of size ≈ r1/3. In this context
(i.e., enlarged public keys) we can improve upon their result. LetM = 2�log2(r)/4�

and suppose the public key featuresQ andQ1 = [M ]Q. The GLV idea transforms
[a]P+[b]Q to [a0]P+[a1]ψ(P )+[b0]Q+[b1]ψ(Q) where a0, a1, b0, b1 ≈ √

r. We now
write a0 = a0,0 +Ma0,1 where a0,0, a0,1 ≈ r1/4 and similarly for a1, b0, b1. Hence
the computation becomes an 8-dimensional multiexponentiation with coefficients
of size ≈ r1/4. Another advantage of our method is that it applies to Schnorr
signatures whereas the method of [1] is only for ECDSA and other variants of
ElGamal signatures.

Finally, we mention that the methods in [27] can also be applied in our setting.

7 Security Implications

The homomorphism ψ of Theorem 1 (at least, in the case when φ is an iso-
morphism) defines equivalence classes of points in E′(Fpm) of size 2m by [P ] =
{±ψi(P ) : 0 ≤ i < m}. By the methods of Gallant-Lambert-Vanstone [14]
and Wiener-Zuccherato [35] one can perform the Pollard rho algorithm for the
discrete logarithm problem on these equivalence classes. This speeds up the solu-
tion of the discrete logarithm problem by a factor of

√
m compared with general

curves. Hence one bit should be added to the key length to compensate for this
attack.

A more serious threat comes from the Weil descent philosophy, and in par-
ticular the work of Gaudry [16]. Gaudry gives an algorithm for the discrete
logarithm problem in E′(Fpm) requiring time O(p2−4/(2m+1)) group operations
(with bad constants) which, in principle, beats the Pollard methods for m ≥ 3.
The proposal for elliptic curves in the case m = 2 is immune to Gaudry’s Weil
descent attack.
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Gaudry’s method also applies to abelian varieties: if A is an abelian varitey
of dimension d over Fpm then the algorithm has complexity O(p2−4/(2dm+1)).
Hence, for Jacobians of genus 2 curves over Fp2 one has an algorithm running in
time O(p1.55), rather than the Pollard complexity of O(p2). Gaudry’s method is
exponential time and so one can secure against it by increasing the field size. For
example, to achieve 128-bit security level with genus 2 curves over Fp2 or elliptic
curves over Fp4 one should take p to be approximately 80 bits rather than the
desired 64 bits (this is a very conservative choice; Gaudry’s algorithm requries
expensive computations such as Gröbner bases and so one can probably safely
work with primes smaller than 80 bits).
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