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Endophytic and epiphytic microbes
as “sources” of bioactive agents

David J. Newman 1* † and Gordon M. Cragg 2 †

1 Retired, Wayne, PA, USA, 2 Retired, Bethesda, MD, USA

Beginning with the report by Stierle and Strobel in 1993 on taxol(R) production by an

endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now

used as leads to treatments of diseases in man, are not produced by the plant or

invertebrate host from which they were first isolated and identified. They are probably

the product of a microbe in, on or around the macroorganism. At times there is an

intricate “dance” between a precursor produced by a microbe, and interactions within

the macroorganism, or in certain cases, a fungus, that ends up with the production of a

novel agent that has potential as a treatment for a human disease. This report will give

examples from insects, plants, and marine invertebrates.

Keywords: endophyte, epiphyte, natural product sources, ultured microbes, novel sources

Introduction

Due to the differences in timing of reports in the literature, we have attempted to identify when
the first report of endo- or epiphytic microbes being involved in the production of a particular
compound, or class of compounds, isolated from a host organism was reported. As mentioned in
the abstract, we will cover, albeit only superficially in some cases, developments from a descriptive
aspect, but essential citations will be given so that interested readers can investigate further.
In addition to the three sources given in the abstract, we will also comment on some very
interesting, relatively recent relationships between fungi and bacteria, a relationship that is not
usually recognized.

Marine Sourced Materials

In the early 1980s, Frincke and Faulkner (1982) from the Scripps Institution of Oceanography
in California investigating the compounds produced (better terms today might be “found in”
or “isolated from”) by sponges in the Eastern Pacific off the West coast of California, isolated,
and purified the compound known as renieramycin A (Figure 1; 1). Inspection of the structure
of this molecule showed that the base structure closely resembled a series of known antitumor
agents that had been isolated from fermentation of a terrestrial microbe, the saframycins A–
C (Figure 1; 2–4). These compounds had been reported (Arai et al., 1977) from Streptomyces
lavendulae initially as antibiotics, and later as having antitumor activity (Arai et al., 1980).
Faulkner was not able to determine the antitumor activity of his isolate due to the very small
amount of material isolated. Twenty years later, the Fusetani group in Tokyo (Nakao et al., 2004)
reported the same material from an entirely different sponge, a Neopetrosia species using an
antileishmanial assay rather than an antitumor assay; thus demonstrating that the same molecule
may well have quite different activities dependent upon the bioassay used for following the
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FIGURE 1 | Compounds from Marine-sourced Microbes.

isolation. It may be relevent at this point to make the point that
most of the marine-derived materials reported in the literature
were identified by bioactivity driven isolation techniques.

This series of discoveries could be considered the beginnings
of a tsunami of reports over the last 30 plus years, that now have
led to the possibility that the majority of compounds isolated
from multicellular marine invertebrates involve production

by a microorganism. We have used the term multicellular
to differentiate from single celled organisms, though even
that definition might be incorrect as knowledge evolves. The
production may have, but equally may not have an interaction
with the nominal “host producer.”

We will now give some specific examples of what we have just
described; these will to some extent be in chronological order by
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discovery of the original compound, but the “proof” (direct or in
some cases circumstantial) has occurred at differing time points
from the original report(s).

Dolastatins

This collection of linear and cyclic peptides with very unusual
amino acids in their structures, were first described by the Pettit
group at Arizona State University working in conjunction with
the National Cancer Institute, using the NCI’s bioactive assays
initially, and were shown to have potent antitumor activities. Due
to the very limited abundance of the nudibranch fromwhich they
were first isolated, once the initial structures were determined, the
molecules had to be synthesized chemically in order to advance
them into preclinical development, and then into clinical trials as
an antitumor agent in the case of dolastatin 10 (Figure 1; 5). The
full details of the initial discoveries and synthetic methodologies
were well described by Flahive and Srirangam (2012).

In the late 1990s to early 2000s, the Hawaiian group led by
Moore reported that the probable producer of these molecules
was a cyanobacterium on which the nudibranch grazed. Thus,
dolastatins 3, 10, and 12 were reported from cyanobacteria
(Luesch et al., 2002) and although not formally reported in the
literature, Dr. Valerie Paul (then at the University of Guam
Marine Station) observed D. auricularia (the nudibranch from
which the dolastatins were originally isolated) grazing upon
cyanobacteria containing dolastatins, She subsequently isolated
dolastatins from both the nudibranch and the cyanophyte (Paul,
personal communication).

Although none of the naturally occurring dolastatins
successfully transitioned from discovery to a clinically approved
drug, an analog that was based upon the dolastatin 10 structure
has become an approved antitumor drug. The modified
dolastatin now known as vedotin, based on auristatin E
(Figure 1; 6), was used as a warhead on a monoclonal antibody
directed against Hodgkins lymphoma. This combination, known
as Adcetris(R) (Figure 1; 7) was approved in 2011 by the US
FDA, but would never have been synthesized in the absence
of the knowledge of the dolastatin structures. As of early 2014
there were 21 variations (different combinations of auristatin
E or F and different MAbs/linkers) in clinical trials or close to
entering them (Newman and Cragg, 2014). Currently (March
2015) there are nine combinations of monoclonal antibodies
linked to auristatin E in Phase I to Phase III clinical trials, and
two using auristatin F in Phase I trials against cancer targets. The
“drop-out” of molecules at the Phase I level is very frequent, so
the difference in numbers is not unusual.

Didemnins

The first marine-derived agent to go into clinical trials for cancer
was the cyclic depsipeptide didemnin B (Figure 1; 8). This was
one of a number of very similar compounds reported by the
Rinehart group at the University of Illinois in the early 1980s
from the tunicate Trididemnum solidum. As with the dolastatins,
a total synthesis was necessary in order to obtain enoughmaterial

for preclinical and clinical trials, and this was reported in 1987
(Rinehart et al., 1987).

The compound progressed through to Phase II clinical trials
but did not proceed beyond this level due to a combination of
lack of activity and toxicity. Full details of the synthetic methods
and the clinical development was published by Lee et al. (2012).

What was a major discovery as to the source came from two
papers, one from Japan published in 2011 (Tsukimoto et al., 2011)
demonstrating that a free-living microbe from Japanese waters
produced didemnin B, and the other reported by a Chinese-
Saudi-USA consortium giving the full genomic sequence of
the didemnin gene cluster from a microbe collected in the
Red Sea (Xu et al., 2012). This later paper demonstrated the
temporal production of the didemnins via previously suggested
intermediates in “real time” by using mass spectrometric
techniques on the growing microbe (Xu et al., 2012). The free-
living microbes in both cases were from the unusual genus,
Tistrella with T. mobilis in the first report and T. bauzanensis and
T. mobilis in the second. Thus, there is no doubt that these are the
source of these depsipeptides.

A very close chemical relative, aplidine was isolated from the
same tunicate differing only by two hydrogen atoms on the side
chain, with a pyruvyl instead of a lactyl group as in didemnin B.
This compound was later found in the Mediterranian tunicate
Aplidium albus by PharmaMar scientists, and is currently
in multiple clinical trials from Phase II to Phase III with
PharmaMar. An MAA (equivalent to the US NDA) filing is due
in 2015.

Ecteinascidin 743

In the 1969/1970 time frame, Sigel and colleagues reported on
the antitumor activity of an ethanolic extract of the tunicate
Ecteinascidia turbinata [published in book form in 1970 (Sigel
et al., 1970)].The active compounds, all with the base skeleton of
the napthyridinomycin alkaloids exemplified by the saframycins
(tetrahydroisoquinoline alkaloids), were then isolated from the
same Caribbean tunicate E. turbinata 17 years later as a complex
of similar molecules. The first formal report was by Holt in
his PhD thesis in 1986 (Holt, 1986). This was followed in 1990
by two simultaneous reports, one from the Rinehart group
at the University of Illinois (Rinehart et al., 1990) and the
other from the Wright group at Harbor Branch Oceanographic
Institution (Wright et al., 1990). The molecules were licensed
to the Spanish company PharmaMar for preclinical and clinical
development, being approved in the EU in 2007 as Yondelis(R) for
the treatment of sarcoma. In November, 2014 an NDA was filed
in the USA by Janssen (who licensed the molecule) for the same
indication. The full story of the production by aquaculture and
then semisynthesis was reported by Cuevas and Francesch (2009)
and Cuevas et al. (2012), and should be consulted for further
information.

Although the production of the molecule for clinical use
was via semisynthesis from cyanosafracin (a cyano derivative of
a microbial metabolite), there were suggestions that an as yet
uncultured bacterium, Candidatus Endoecteinacidia frumentenis
(AY054370), was involved in the production of these molecules.
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This organism was found in ecteinascidin 743 producing E.
turbinata collected in both the Caribbean and the Mediterranean
(Moss et al., 2003; Perez-Matos et al., 2007). These reports,
coupled to the suggestions by Piel (2006) as to how to utilize
bacterial symbionts from invertebrates, led to the confirmation
of these suggestions by Rath et al. (2011).

By using the known gene clusters of the saframycin (Li
et al., 2008) and safracin (Velasco et al., 2005) metabolites as
markers, the “contig” encoding the NRPS biosynthetic enzymes
involved in trabectedin production was identified as well as the
producing organism. This was the γ-proteobacterium known
as Candidatus Endoecteinascidia frumentensis (AY054370),
previously suggested as the actual producer even though not yet
cultured. An example of what can now be done using advanced
genomic techniques.

Candidatus Entotheonella
Metabolite Production in the Sponge Theonella

swinhoei
The work reported in the journal Nature by the Piel group
early in 2014 on the production of metabolites from the
yellow or “Y” biotype of this sponge, effectively laid to
rest circumstantial arguments about sponge metabolites being
derived from microbes in the sponge (Wilson et al., 2014). In a
tour-de-force, this group isolated two phylotypes of the candidate
genus Entotheonella with genomes greater than nine megabases
and multiple distinct biosynthetic gene clusters from this sponge,
via cell disruption and FACS sorting into reaction wells with a
single cell per well. From genomic studies, 31 of the reported 32
polyketide metabolites (most of which have reported bioactivity)
previously isolated from this sponge variant were attributed to
a single phylotype. These as yet uncultured bacteria are widely
distributed in sponges and belong to an environmental taxon
proposed as the candidate phylum Tectomicrobia.

Calyculin Production in Discodermia calyx
Almost simultaneously with the Theonella swinhoei results, a
similar series of experiments, but looking at the production of
the well-known phosphatase inhibitor, calyculin (Figure 1; 9)
isolated from the sponge Discodermia calyx, demonstrated that
the molecule was in fact produced by the symbiotic bacterium,
Candidatus Entotheonella sp. A (Wakimoto et al., 2014).

The potential for use of these gene clusters in the production
of previously known and unknownmetabolites is discussed in the
recent papers by Helfrich et al. (2014) and Guo et al. (2015) which
should be consulted for examples. These are not the only papers
dealing with this subject but they are amongst the most recent.

Plants and Endophytes/Epiphytes
From our perspective, the situation with plants, and whether
or not microbes have anything to do with the metabolites
found from studying compounds isolated from plant materials,
is now roughly at the same stage of “proof” as the situation
which existed 2 or 3 years after the initial discovery by
Faulkner’s group of the renieramycins (vide infra). This applies
to compounds isolated from plants either by using bioactivity-
driven isolation, or by what used to be known as “grind

and find/phytochemical investigations,” where compounds were
isolated and then sometimes the purified chemical entities would
be investigated pharmacologically.

The major difference is that the discovery of renieramycin
closely followed the beginning of the systematic discovery of
metabolites in organisms from the marine environment, whereas
roughly two centuries had elapsed between pure compound
discovery from terrestrial plants, dating approximately from
Seturner’s identification of purified morphine in 1817, and the
discovery of potential microbial involvement in plant metabolite
production. We should note that there are conflicting reports
as to the dates recorded in the literature for the isolation
of morphine, which range from 1803 to 1817, but the full
chronology showing that the initial 1803-04 report was not the
isolation of an alkaloid (basic) but rather an acidic compound
(possibly meconic acid) has been given by Newman and Cragg
in 2010, and should be consulted for the full story (Newman and
Cragg, 2010).

In 2003, Strobel suggested that every one of the approximately
350,000 species of vascular plants on Earth serves as a host for at
least one endophytic microbe, organisms (often fungal in nature)
that live within the tissues of the plant but do not cause any
deleterious effect on the plant host. This suggestion was possibly
due to his initial work on the microbial production of taxol(R) by
an endophytic fungus originally isolated from the inner tissues
of the taxol-producing Taxus brevifolia tree and reported in 1993
(Stierle et al., 1993).

Does this comment mean that plants do not produce
secondary metabolites but that microbes are involved in every
facet of production? No, this is not our contention at this state
of knowledge.

What we will show in this section is that in the case of
some well-known compounds with a variety of pharmacological
activities, the actual producers are in some cases a microbe (often
fungal in origin), and in other cases, microbes are involved but
variable results are obtained on fermentation of the microbe at
this stage of knowledge.

In some cases, there are reports of isolated microbes not
known to be involved with a plant producing what were thought
to be “plant-only” compounds such as chalcones. An excellent
example would be the work reported by Moore et al. in 2002
demonstrating the presence of Type III PKS systems in the
marine bacterium Streptomyces maritimus (Moore et al., 2002).

Taxol(R) from Endophytes
As mentioned above, the report on the potential of isolated fungi
to produce secondary metabolites that were in low quantity in
the host plant, caused a substantial number of natural product
chemists and biologists to start investigating, not only the
production of taxol(R), but also to look at other pharmacologically
interesting molecules which will be considered in subsequent
sections.

In the case of taxol(R) there have been many publications over
the last 20 years where investigators have demonstrated that low
levels of taxol(R) could be obtained from many endophytic fungi
isolated, not just from Taxus species but from a multiplicity of
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plants, even including hazelnut producing plants, first reported
in 2000 (Service, 2000).

In the case of the hazelnut, much more information plus
transcriptome analyses were published by Ma et al. (2013),
demonstrating the genes necessary for taxol(R) biosynthesis.
Recently, Yang et al. identified paclitaxel production in
an endophyte, Penicillium aurantiogriseum from hazel and
identified the gene clusters involved, demonstrating evolution
of the biosynthetic machinery in this Penicillium species
independent of the plant host (Yang et al., 2014). In this
case, there is little doubt that the fungus produces the
compound.

Although one paper was recently published that claimed not
to be able to identify any taxane biosynthesis in three fungi
(including the original isolate from Strobel, though obtained
from a repository, not the original investigators) and two that
they isolated themselves from Taxus species (Heinig et al.,
2013), many other investigators have been able to obtain
genetic information including the full biosynthetic pathway from
endophytic fungi.

The following recent papers should be consulted for the
results demonstrating production of taxol(R) by a variety of
endophytic fungi including identification of the relevant genetic
machinery in the fungi investigated (Zaiyou et al., 2013; Kusari
et al., 2014a,b). These papers demonstrate the potential, and
the Soliman and Raizada paper in 2013 is of significant interest
because it points out that the experiments utilized in all
previous work relied upon axenic culture methods, whereas
in the plant there would be significant interaction/competition
between different microbes. They demonstrated increased yields
when competitive fungi and other agents were introduced into
the cultures, a phenomenon known to “induce” expression
of cryptic gene clusters (Soliman and Raizada, 2013). One
excellent example of this type of response is the report
where suspension cells of Taxus chinensis var mairei were
co-cultured in a bioreactor with its endophytic microbe,
Fusarium mairei with a doubling of the yield of taxol(R)

(Li et al., 2009).
Thus, we consider that there is sufficient evidence to implicate

fungal endophytes in the production of taxol(R) in plants but
the fungi so far investigated, except in the case of Penicillium
and hazel, may not be the only “player(s)” in the system, since
as mentioned above the genes required for taxol(R) biosynthesis
may well require activation of cryptic clusters in the interacting
microbe(s). Many examples, though not from this system, have
been published (Bertrand et al., 2014; Whitt et al., 2014), and
recently Kusari et al., published a paper that covered interactions
across a variety of kingdoms and phyla relevant to this thesis
(Kusari et al., 2013).

One consistent comment made by reviewers/authors arguing
against fungal/microbial involvement in taxol(R) production in
plants is that a major source of this compound for commercial
use is plant tissue culture. However, to the authors’ knowledge,
there are no axenic plant tissue culture processes for any “plant-
derived metabolite.” Thus, until an axenic (not surface sterilized
or aseptic) plant tissue culture process that produces a metabolite
is proven, microbes can still be involved.

Non-taxanes
In a recent short review paper, investigators in Proksch’s group
in Germany gave an excellent summary of the plant-associated
compounds that have now been isolated and reported through
late 2012 from endophytic microbes isolated from the “producing
plant(s).” These included vincristine, camptothecin plus its 9-
methoxy and 10-hydroxy derivatives, podophyllotoxin, hypericin
and its probable biosynthetic precursor, emodin, azadirachtin A
and B and some of the loline alkaloids (Aly et al., 2013).

To this excellent review should be added the following
recent papers covering some of the compounds above and
some unusual findings which give further direct evidence of
fungal involvement. Thus, Ramesha et al. (2013) identified three
endophytic fungi isolated from the fruit and seed regions of the
plant Miquelia dentata Bedd which is reported to have very high
concentrations of camptothecins in its seeds, as Fomitopsis sp.,
Alternaria alternata, and Phomosis sp. What is very intriguing is
that in a paper a year later, the authors reported that, contrary to
what they would have expected, these three fungi were inhibited
by camptothecins, so there may well be negative feedback loops
controlling production (Shweta et al., 2014).

Swainsonine
The relationship between fungal presence and swainsonine
production was first published in 2003 (Braun et al., 2003) and
very interestingly, the fungus, an Undifilum sp., was transferred
by vertical transmission via the seed (Oldrup et al., 2010; Ralphs
et al., 2011). Subsequently, in the last 3 years, three papers
have been published that definitively prove that the compound
swainsonine (Figure 2; 10), the active component of “locoweed,”
is in fact produced by endophytic fungi isolated from the
producing plant. The paper published by Cook et al. (2013)
covered the production of the alkaloid from a fungal endophyte
in the seeds of Ipomoea carnea, and the abolition of production by
treatment of the seeds with a fungicide, but production of other
metabolites such as the calystegnines was unaltered.

Thus, removal of the fungus from the seed abolished
production of the compound but other plant-derived metabolites
were unaltered. This is a rather nice proof of the actual producer
since without the fungus, the germinated plant did not produce
swainsonine.

In the middle of 2013, the same group published details of
the chemistry of swainsonine isolated this time from the original
plant source of the alkaloid, the Australian-sourced Swainsonia
canescens (Grum et al., 2013), and again, an endophytic fungus
closely related to the genus Undifilum was the actual producer.
In 2014, a follow-up paper from the same group (Cook et al.,
2014) covered the production of the alkaloid from a variety of
plant hosts and their associated fungi over wide geographic areas
of the world.

Huperzine
Huperzines A and B (Figure 2; 11, 12) are acetylcholinesterase
inhibitors originally reported as part of Traditional Chinese
Medicine (TCM) (Qin and Xu, 1998) isolated from Huperzia
serrata. Huperzine A was originally synthesized as a racemic
mixture and reported in 1990 with some definition of its
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FIGURE 2 | Compounds from Endophytic Fungi.

pharmacological properties (Kozikowski et al., 1990), and later,
of its binding to acetylcholinesterase (Raves et al., 1997). The
material was launched as a nutraceutical and some clinical trials
are still ongoing.

However, in 2014, two papers were published identifying an
endophytic fungus isolated from H. serrata that produced the
compound (Dong et al., 2014; Shu et al., 2014). The same year,
another group demonstrated the ability of fungal endophytes
also isolated from H. serrata to biotransform huperzine A to
form bioactive sesquiterpenoid hybrids given the trivial name of
Huptremules A–D. All of these hybrids however, were two orders
of magnitude less active as AchE inhibitors compared to the
parent compound (Ying et al., 2014). What is of interest however,
is that these investigators did not discover the producing fungus
referred to above. From the data provided, it is not certain if
plants from the same geographic area were used, or if similar
meteorological conditions applied in each case, as these are
known to affect metabolites found in plants.

Rohutikine
Rohutikine (Figure 2; 13) came into prominence as themodel for
the semisynthetic compound flavopiridol (Figure 2; 14) which

reached Phase II clinical trials in cancer and was heading for
Phase III when Sanofi-Aventis discontinued development. In
2014, flavopiridol was licensed to Tolero Pharmaceuticals in
Utah, USA who are planning to initiate Phase III studies in acute
myelogenous leukemia.

Rohutikine was also the basis for Piramal’s P276-00 (Figure 2;
15) whose status is uncertain due to Piramal’s recent cessation of
small molecule drug discovery, though it was in clinical trials in
the USA for cancer.

Initially the sources of rohutikine were Amoora rohituka
and Dysoxylum binectariferum. It was later reported from
Schumanniophytonmagnificum and S. problematicum. Due to the
therapeutic potential observed for rohutikine derivatives, there
was a search for other producers including endophytes. In 2012
Mohana Kumara et al reported the production of rohutikine by
fermentation of the endophytic fungus Fusarium proliferatum
isolated fromD. binectariferum (Mohana Kumara et al., 2012). In
2014 the same group reported that four other fungal species, three
Fusarium isolates from D. binectariferum and one, Gibberella
fujikuroi isolated from A. rohituka, also produced the compound
on fermentation., They did make the point that the yield dropped
on extended cultivation, though this may be due to the loss of
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as yet unknown co-factors (see discussion earlier on competitive
fermentations and switching on of cryptic clusters) (Mohana
Kumara et al., 2014).

Kaempferol
In a recent paper, Huang et al. (2014) described the isolation
of endophytic fungi from surface sterilized rhizomes of the
high-altitude plant Sinopodophyllum hexandrum Royal collected
in the Taibai Mountains of China. These isolated fungi
produced both podophyllotoxin and kaempferol (Figure 2; 16,
17) on fermentation. The reason for looking at this particular
plant/geographic area was the initial report by Ying (1979)
that this plant produced both of the compounds. One fungus
produced only kaempferol but another identified as Mucor
fragilis Fresen. (Mucoraceae) produced both compounds and was
deposited in the China Center for Type Culture Collection as M
205032. The authors suggested horizontal gene transfer (HGT)
from the plant to the fungus but equally the fungus, under cryptic
cluster control (vide infra), could be the source for the plant to use
as protective agents against attack.

Plant-derived Compounds from

Epiphytes/Endophytes (and/or Root Associated

Microbes)
Due to the differences in definition by multiple authors as to
epiphyte and endophyte, when a compound is reported from
microbes that are not “within” the tissues of the plant we have
discussed them in this section. As information is published, the
actual producer may “move” within these definitions as shown
below for maytansine and the ergot alkaloids.

Maytansine
For many years, maytansine (Figure 3; 18) and congeners were
thought to be exclusively plant-derived secondary metabolites.
Maytansine was first reported by Kupchan et al. (1972) isolated
in very low yield from Maytenus ovatus collected in Ethiopia,
and later isolated fromM. buchananii and Putterlickia verrucosa.
The compound also exhibited anti-parasitic and antimicrobial
activity, and based on maytansine exhibiting potent cytotoxic
activity against humanKB cells, as well as several other cancer cell
lines, researchers became interested in using this pharmacophore

for the treatment of cancer. Though total syntheses were reported
by the Meyers (Meyers and Shaw, 1974) and Corey research
groups (Corey et al., 1980), these syntheses were multi-step, time-
and labor-intensive, and impractical for large-scale synthesis for
clinical trials, so large-scale extraction processes were used to
obtain enough material for clinical trials.

Since maytansine was a 19-membered, halogenated
ansamycin, an unusual structure for a plant secondary
metabolite, but a chemotype that is commonly produced
by eubacteria, and was found to be present in some but not
all individual P. verrucosa plants, a search commenced for
microorganisms (fungal or eubacterial endophytes) that could
produce its core structure.

In 1977, investigators at Takeda Industries in Japan reported
the discovery of ansamitocins P-0, P-1, P-2, P-3 (Figure 3; 19), P-
3′, and P-4, which are maytansine-like derivatives with either an
ester or hydroxyl moiety at C3, from two subspecies of Nocardia
(subsequently renamed as Actinosynenna pretiosum) isolated
from the Carex species of grassy plants (Higashide et al., 1977).
Because the only difference betweenmaytansine and ansamitocin
P-3 is the ester moiety at C3, and none of the biosynthetic genes
leading to the production of maytansine had been found in the
plant host (Yu et al., 2012), researchers speculated that the P-
3 precursor was produced by an endophyte or symbiont in the
rhizosphere, followed by uptake of the bacterial metabolite and
converted into maytansine.

This hypothesis seemed plausible, since several ansamitocins
are produced by eubacteria, higher plants, and mosses,
contradicting the common evolutionary theory that natural

products are produced by taxonomically-related organisms.
Wings and coworkers grew axenic cultures of P. verrucosa and

could not amplify genes involved in maytansine biosynthesis,

and a maytansine-producing eubacterium could not be cultured

outside of its natural habitat (Wings et al., 2013). By using
molecular techniques such as rDNA sequencing and single

strand conformation polymorphism, they identified that the

A. pretiosum ssp. auranticum eubacterium present in the
rhizosphere of the plant is involved in maytansine biosynthesis.

Whether this is an epiphyte or a root-associate endophyte is not

yet fully elucidated.

FIGURE 3 | Compounds from Epiphytic and “Endophytic” Microbes.
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Based on rDNA sequence analysis, the A. pretiosum ssp.
auranticum eubacterium had the identical 16S rDNA sequence
as that amplified from the DNA of a maytansine-producing
P. verrucosa plant (Wings et al., 2013). Other non-maytansine
producing P. verrucosa plants lacked this 16S rDNA sequence.
These data are consistent with the absence of maytansine in cell
cultures derived from maytansine-producing P. verrucosa plants
as well as greenhouse grown Maytenus sp., and Putterlickia sp.,
plants and their corresponding cell cultures (Wings et al., 2013).

Mounting evidence has shown that the microorganisms in the
rhizosphere of plants in different environments as well as those
in non-rhizosphere communities in the surrounding soil appear
to differ (Gunatilaka, 2006). This may explain why maytansine
is found in mosses and higher plants. However, nominally
ansamitocin-producing plants have been speculated to contribute
to the structural diversity of ansamitocins via infection of their
root system because only two known ansamitocins have been
found in eubacteria, while there are 22 known in plants (Wings
et al., 2013).

In 2014, the debate as to whether the ansamitocin derivatives
produced in the rhizosphere were subsequently transported into
the plant and then trans-esterified to produce maytansine from
ansamitocin P3, was decided in favor of the production of
maytansine by a consortium of microbes in the rhizosphere of
the plants Putterlickia verrucosa and P. retrospinosa, though the
exact organism(s) performing the reaction are not yet identifiable
(Kusari et al., 2014c). Thus, the materials found in specific areas
may well be the products of multiple interactions outside of and
within the “nominal plant producer.”

Ergot Alkaloids
There is one well defined series of compounds that are considered
to be produced via epiphytes that has been known for centuries;
the production of the ergot alkaloids such as lysergic acid α-
hydroxyethylamide (Figure 3; 20) due to the contamination of
rye by the fungus Claviceps purpurea.

In a recent publication, Beaulieu et al reported on the
expansion of biosynthetic capabilities beyond Claviceps species,
including bacterial and fungal symbionts depending upon the
host plant (Beaulieu et al., 2013). What is significant, though it
had been known for a reasonable amount of time, was the vertical
transmission of the epiphyte in the seeds of the infected plant, and

they described the allocation of these alkaloids during the early
ontology of Morning Glory plants (Ipomoea species), though the
fungus in these cases was close to a Periglandula-like species.
As mentioned earlier in this review, I. carnea was reported to
produce swainsonine via a vertically transmitted microbe as well.

In 2014, Hodgson et al. (2014) reported that vertical
transmission of fungal endophytes is widespread in “forbs” (also
known as herbs or Phorbs) which are defined by the USDA
(United States Department of Agriculture) as:

“Vascular plant without significant woody tissue above or at the

ground. Forbs and herbs may be annual, biennial, or perennial

but always lack significant thickening by secondary woody growth

and have perennating buds borne at or below the ground surface.

In plants, graminoids are excluded but ferns, horsetails, lycopods,

and whisk-ferns are included. (http://plants.usda.gov/growth_

habits_def.html)”

Thus, the phenomenon of such vertical transmission is not
rare but an integral part of how a plant may recruit defensive
measures. As to whether these are co-evolution, horizontal
gene transfer or mutualistic survival methodologies, one can
make a choice, but it is now becoming quite evident that such
interactions between plants and microbes are very common and
not rare occurrences.

Compounds from Fungal-Bacterial
Interactions

Rhizoxin and Derivatives
Rhizoxin (Figure 4; 21) was reported in 1984 by Iwasaki et al.
(1984) from a Rhizopus species that caused rice blight and its
antitumor activity was then reported by Tsuruo et al. (1986). It
entered clinical trials as a tubulin interactive agent but did not
proceed beyond Phase II due to a lack of significant responses in
patients (Hanauske et al., 1996).

Many chemists used total synthesis to make rhizoxin and
several derivatives (Nakada et al., 1993; Hong and White, 2004).
In the early 2000s, Partida-Martinez and Hertweck began to
investigate the biosynthesis of the compound in Rhizopus via
fermentation, and rapidly discovered that rhizoxin was not
a fungal metabolite, but rather a product of an eubacterial

FIGURE 4 | Compounds from Fungal-endophytic Bacterial Association.
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endosymbiont Burkholderia sp. On isolation and purification of
this bacterium, they demonstrated that the organism contained
the biosynthetic genes involved in the production of rhizoxin
(Partida-Martinez and Hertweck, 2005, 2007).

These observations were consistent with four Rhizopus species
producing rhizoxin and two species that did not, when collected
in diverse geographical areas. Furthermore, laser microscopic
observations of Rhizopus sp. mycelium stained with a mixture
of bacteria-specific dyes revealed the appearance of a high
number of live endosymbiotic eubacteria within fungal cells.
Notably, when Rhizopus sp. was cultured in the absence of
the Burkholderia endosymbiont, rhizoxin was not produced.
However, when the Burkholderia sp. was isolated from the
fungus and cultured in the absence of Rhizopus sp., rhizoxin
and potent cytotoxic derivatives (1000–10,000 times more active
against K-562 leukemia cells) were produced (Scherlach et al.,
2006). Interestingly, the isolated eubacterial endosymbiont lost
its ability to produce these metabolites over time, but rhizoxin
increased upon the reintroduction of Rhizopus sp. into cultures.
The authors speculated that the decrease in rhizoxin was most
likely due to the down-regulation of its biosynthetic genes in the
absence of Rhizopus sp.

Deletion of a Burkholderia p450 gene involved in rhizoxin
biosynthesis produced di-desepoxy rhizoxin derivatives, but
whether this gene was involved in catalyzing the formation of
both epoxide moieties in rhizoxin was unclear (Scherlach et al.,
2012). The epoxidation steps were also determined to be oxygen
independent.

To elucidate the biosynthetic steps required to install the
epoxide moieties, the authors used two different Burkholderia-
Rhizopus associations from different regions of the world
that either produced rhizoxin or the monoepoxide derivative
WF-1360F (Figure 4; 22). Using these combinations, they
“switched” the symbiotic associations by cross-infecting each
endosymbiotic-freeR.microporus fungus with the endosymbiotic
eubacterium of the other fungus. Interestingly, the symbiotic

association that previously produced rhizoxin produced WF-
1360F, whereas the other association produced rhizoxin. Thus,
these results led the authors to revise their proposed mechanism
of rhizoxin biosynthesis in the 2005 Nature paper (Partida-
Martinez and Hertweck, 2005).

These events are most likely triggered by chemical signals.
These are probably produced via the symbiotic phytotoxin
production resulting from the strain-specific association of
Burkholderia sp. and Rhizopus sp.. In addition, these may be
further influenced by plant interactions upon infection of the rice
seedlings.

Thus, the vertically transmitted eubacterial intracellular
symbiont of Rhizopus sp. delivers WF-1360F to the host fungus,
which is then involved in catalyzing the epoxidation of the WF-
1360F to give rhizoxin. This is a more potent phytotoxin that
plays an essential role in the vegetative spore formation of the
fungus containing the endosymbiont, most likely for colonizing
rice (Partida-Martinez et al., 2007). In this unparalleled tripartite
relationship, both the pathogenic fungus and endosymbiont
benefit by gaining access to nutrients that are released once the
phytopathogenic fungus colonizes the roots of Oryza sativa.

Insect-Microbe Interactions
We will discuss two of the many potential examples of this type
of interaction. Though many are postulated, in the two examples
given, the interactions have been characterized as harnessing
the metabolites produced as protective factors of benefit to the
arthropod hosts.

Dentigerumycin Production
The seminal work published on dentigerumycin (Figure 5; 23)
by Oh and coworkers, demonstrated how fungus-growing ants
and actinobacteria work together to produce a specific toxin
that specifically eliminates specialized fungal parasites (Oh et al.,
2009a). In 2001, the eubacterium Pseudonocardia sp., fungal
isolates (used as a food source for these attine ants), and

FIGURE 5 | Compounds from Microbe-Insect Association.
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the parasitic fungus Escovopsis sp. were isolated from the nest
of the ant Apterostigma dentigerum in Gamboa, Panama. The
Pseudonocardia sp., isolated from the ant cuticle, was observed
to strongly inhibit Escovopsis sp. from the same ant colony, while
the fungal isolates were resistant to this bacterium.

The active component isolated from the Pseudonocardia
sp. was the depsipeptide dentigerumycin, which contained
highly unusual amino acid residues, such as piperazic acid,
γ-hydroxypiperazic acid, β-hydroxyleucine, N-hydroxyleucine,
and a polyketide-derived side chain linked to a pyran ring.
Dentigerumycin inhibited the growth of the Escovopsis sp., as well
as Candida albicans strains, including the amphotericin-resistant
version ATCC200955, in liquid culture assays.

Thus, the symbiosis between Pseudonocardia sp. and fungus-
farming ants is an example of novel ways ants have evolved to
protect the fungal cultivar from “garden parasites.” Notably, the
authors speculated that the eubacterial mediator Pseudonocardia
sp. and the fungus Escovopsis sp. will undergo antagonistic
coevolution, such that new eubacterial metabolites will target
resistant Escovopsis sp. Such evolutionary processes may well
play major roles in the continuous production of new, diverse
secondary metabolites from mutualistic interactions.

Mycangimycin Production by Beetle Symbionts
Scott and coworkers reported the existence of chemically-
mediated protection supplied by a eubacterial source against
the fungal antagonist, Ophiostoma minus, of the fungal food
source (Entomocorticium sp. A) required for the development
of Southern pine beetle (Dendroctonus frontalis) larvae (Scott
et al., 2008). Adult beetles harbor Entomocorticium sp. A in
a specialized compartment, make holes in the barks of trees,
deposit larvae within the bark and phloem of trees, and inoculate
them with this fungus. This process can be challenged by a
parasitic fungus that can outcompete Entomocorticum sp. A,
ultimately disrupting beetle larvae development.

As part of the beetle’s defense mechanism, its specialized
compartment harboring food is also a source of different species
of actinomycetes, which are also deposited with Entomocorticum
sp. A. The authors were able to demonstrate the antifungal
activity of one actinomycete morphotype against O. minus with
an MIC of 1.0µM, which was 19 times more susceptible than
Entomocorticum sp. A (MIC, 19.0µM). The active antifungal
agent was determined to be the linear 20-carbon polyunsaturated
peroxide, mycangimycin (Figure 5; 24) (Oh et al., 2009b). This
compound also exhibited potent antifungal activity against C.
albicans, C. albicans ATCC 10231, C. albicans ATCC 200955, and
Saccharomyces cerevisiae, with MIC values ranging between 0.7
and 1.4µM. The following year, there was a report of a free-living
actinomycete producing the same material from an Egyptian soil
sample (Atta, 2010).

The basic scaffold of mycangimycin resembles those of
some known antimalarial agents, and when assayed against
Plasmodium falciparum, the compound exhibited antimalarial
activity with an EC50 of 17 ng/ml, which is comparable to other
antimalarial drugs with EC50 values close to 10 ng/ml. More
studies need to be completed to determine the mechanism
of action of mycangimycin, as well as whether it possesses

other biological properties. However, this is a good example of
how specialized small molecules that serve as mediators within
mutualistic interactions can also function as new therapeutics.

In Conclusion

In this short review, we have attempted to demonstrate that in
all kingdoms of life, microbes may play a role in the production
of secondary metabolites in “higher hosts.” Does this mean that
we are saying that “ALL secondary metabolites irrespective of the
higher host are microbial in origin”? The current answer overall
is NO for plants, but in the marine environment, the pendulum
may well be swinging toward “YES.”

With the recognition of chalcone synthases being present
in marine microbes, it might be of interest to note that 262
terpene synthase genes have recently been identified from
terrestrial microbial genome sequences by workers at the Kitasato
Institute and we have inserted their conclusions in the following
paragraph.

“Terpenes are generally considered to be plant or fungal

metabolites, although a small number of odoriferous terpenes

of bacterial origin have been known for many years. Recently,

extensive bacterial genome sequencing and bioinformatic analysis

of deduced bacterial proteins using a profile based on a hidden

Markov model have revealed 262 distinct predicted terpene

synthases. Although many of these presumptive terpene synthase

genes seem to be silent in their parent microorganisms, controlled

expression of these genes in an engineered heterologous

Streptomyces host hasmade it possible to identify the biochemical

function of the encoded terpene synthases. Genes encoding such

terpene synthases have been shown to be widely distributed in

bacteria and represent a fertile source for discovery of new natural

products” (Yamada et al., 2015).

Thus, can one now claim that terpene synthases and chalcone
synthases are all from eukaryotes in the future?

However, when one investigates the relationships between
hosts and microbes in marine and terrestrial environments, it is
striking that the types of interaction, in particular those leading
to secondary metabolites are many and complex. They are not
as simple as saying that “X” is a plant metabolite and “Y”
comes from a marine invertebrate. Yes, each was isolated from a
specific “host” but the question as to what combination of events
produced the compound is no longer simple to answer.

Investigators have to take into account that as yet uncultivated
microbes are probably the major sources of these interactions,
and that simple culturing techniques may not be adequate to
identify the range of potential interactions. It is not a one
host/one microbe style of interaction but probably involves many
interactions between microbes and the host, not just a simple
one to one relationship. When one then has to consider “cryptic
gene clusters and their control (cf the terpene synthase discussion
above).”

What has to also be recognized, and it is alluded to in
some of the examples given above, is that in Nature, microbes
are not “singletons,” they are part of essential consortia. Many
examples are available to demonstrate this, with one being
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the mixed cultures inside a very protective biofilm that is the
essential part of the metabolism of phosphates in sewage plants.
Similar collections of microbes are present in soils and marine
invertebrates, and also in vertebrates in general, as all one has to
do is to look at the information now appearing on the human
microbiome.

To finish and to give an idea of the magnitude of the
processes potentially involved, the very recent review by Charlop-
Powers et al. (2015) should be consulted to see the magnitude
of secondary metabolites that are potentially present, and
then to think of the vast number of interactions, yet to be
discovered.

References

Aly, A. H., Debbab, A., and Proksch, P. (2013). Fungal endophytes—secret

producers of bioactive plant metabolites. Pharmazie 68, 499–505.

Arai, T., Takahashi, K., and Kubo, A. (1977). New antibiotics, Saframycins A, B, C,

D and E. J. Antibiot. 30, 1015–1018. doi: 10.7164/antibiotics.30.1015

Arai, T., Takahasi, K., Ishiguro, K., andMikami, Y. (1980). Some chemotherapeutic

properties of two new antitumor antibiotics saframycins A and C. Gann 71,

790–796.

Atta, H. M. (2010). Production, purification, physico-chemical characteristics

and biological activities of an antifungal antibiotic produced by Streptomyces

antibioticus, AZ-Z710. Amer. Euras. J. Sci. Res. 5, 39–49.

Beaulieu, W. T., Panaccione, D. G., Hazekamp, C. S., McKee, M. C., Ryan, K.

L., and Clay, K. (2013). Differential allocation of seed-borne ergot alkaloids

during early ontogeny of Morning Glories (Convolvulaceae). J. Chem. Ecol. 39,

919–930. doi: 10.1007/s10886-013-0314-z

Bertrand, S., Azzollini, A., Schumpp, O., Bohni, N., Schrenzel, J., Monod, M., et al.

(2014). Multi-well fungal co-culture for de novo metabolite-induction in time-

series studies based on untargeted metabolomics. Mol. Biosyst. 10, 2289–2298.

doi: 10.1039/C4MB00223G

Braun, K., Romero, M., Liddell, C., and Creamer, R. (2003). Production of

swainsonine by fungal endophytes of locoweed. Mycol. Res. 107, 980–988. doi:

10.1017/S095375620300813X

Charlop-Powers, Z., Owen, J. G., Reddy, B. V. B., Ternei, M. A., Guimarães, D.

O., de Frias, U. A., et al. (2015). Global biogeographic sampling of bacterial

secondary metabolism. Elife 4:e05048. doi: 10.7554/eLife.05048

Cook, D., Beaulieu, W. T., Mott, I. W., Riet-Correa, F., Gardner, D. R., Grum, D.,

et al. (2013). Production of the alkaloid Swainsonine by a fungal endosymbiont

of the ascomycete order Chaetothyriales in the host Ipomoea carnea. J. Agric.

Food Chem. 61, 37973803. doi: 10.1021/jf4008423

Cook, D., Gardner, D. R., and Pfister, J. A. (2014). Swainsonine-containing plants

and their relationship to endophytic fungi. J. Agric. Food Chem. 62, 7326–7334.

doi: 10.1021/jf501674r

Corey, E. J., Weigel, L. O., Chamberlin, A. R., Cho, H., and Hua, D. H.

(1980). Total synthesis of maytansine. J. Am. Chem. Soc. 102, 6613–6615. doi:

10.1021/ja00541a064

Cuevas, C., and Francesch, A. (2009). Development of Yondelis R© (trabectedin, ET-

743). A semisynthetic process solves the supply problem. Nat. Prod. Rep. 26,

322–337. doi: 10.1039/b808331m

Cuevas, C., Francesch, A., Galmarini, C. M., Aviles, P., and Munt, S. (2012).

“Ecteinascidin-743 (Yondelis(R)), Aplidin(R), and Irvalec(R),” in Anticancer

Agents from Natural Products, 2nd Edn., eds G. M. Cragg, D. G. I. Kingston,

and D. J. Newman (Boca Raton, FL: Taylor and Francis), 291–316.

Dong, L.-H., Fan, S.-W., Ling, Q.-Z., Huang, B.-B., and Wei, Z.-J. (2014).

Indentification of huperzine A-producing endophytic fungi isolated

from Huperzia serrata. World J. Microbiol. Biotech. 30, 1011–1017. doi:

10.1007/s11274-013-1519-6

Flahive, E., and Srirangam, J. (2012). “The dolastatins: novel antitumor agents from

Dolabella auricularia,” in Anticancer Agents from Natural Products, 2nd Edn.

eds G. M. Cragg, D. G. I. Kingston, and D. J. Newman (Boca Raton, FL: Taylor

and Francis), 263–289.

Frincke, J. M., and Faulkner, D. J. (1982). Antimicrobial metabolites of the sponge

Reniera sp. J. Am. Chem. Soc. 104, 265–269. doi: 10.1021/ja00365a048

Grum, D. S., Cook, D., Baucom, D., Mott, I. W., Gardner, D. R., Creamer, R.,

et al. (2013). Production of the alkaloid Swainsonine by a fungal endophyte

in the host Swainsona canescens. J. Nat. Prod. 76, 1984–1988. doi: 10.1021/

np400274n

Gunatilaka, A. A. L. (2006). Natural products from plant-associated

microorganisms: distribution, structural diversity, bioactivity, and implications

of their occurrence. J. Nat. Prod. 69, 509–526. doi: 10.1021/np058128n

Guo, F., Xiang, S., Li, L., Wang, B., Rajasärkkä, J., Gröndahl-Yli-Hannuksela,

K., et al. (2015). Targeted activation of silent natural product biosynthesis

pathways by reporter-guided mutant selection. Metab. Eng. 28, 134–142. doi:

10.1016/j.ymben.2014.12.006

Hanauske, A. R., Catimel, G., Aamdal, S., ten Bokkel Huinink, W., Paridaens, R.,

Pavlidis, N., et al. (1996). Phase II clinical trials with rhizoxin in breast cancer

and melanoma. The EORTC Early Clinical Trials Group. Br. J. Cancer 73,

397–399. doi: 10.1038/bjc.1996.68

Heinig, U., Scholtz, S., and Jennewein, S. (2013). Getting to the bottom of Taxol

biosynthesis by fungi. Fung. Divers. 60, 161–170. doi: 10.1007/s13225-013-

0228-7

Helfrich, E. J. N., Reiter, S., and Piel, J. (2014). Recent advances in

genome-based polyketide discovery. Curr. Opin. Biotech. 29, 107–115. doi:

10.1016/j.copbio.2014.03.004

Higashide, E., Asai, M., Ootsu, K., Tanida, S., Kozai, Y., Hasegawa, T., et al. (1977).

Ansamitocin, a group of novel maytansinoid antibiotics with antitumour

properties from Nocardia. Nature 270, 721–722. doi: 10.1038/270721a0

Hodgson, S., Cates, C., Hodgson, J., Morley, N. J., Sutton, B. C., and Gange, A. C.

(2014). Vertical transmission of fungal endophytes is widespread in forbs. Ecol.

Evol. 4, 1199–1208. doi: 10.1002/ece3.953

Holt, T. G. (1986). The Isolation and Structural Characterization of the

Ecteinascidins. Ph.D. thesis, University of Illinois at Urbana-Champaign,

Urbana-Champaign.

Hong, J., and White, J. D. (2004). The chemistry and biology of rhizoxins, novel

antitumormacrolides fromRhizopus chinensis.Tetrahedron 60, 5653–5681. doi:

10.1016/j.tet.2004.04.032

Huang, J.-X., Zhang, J., Zhang, X.-R., Zhang, K., Zhang, X., and He, X.-

R. (2014). Mucor fragilis as a novel source of the key pharmaceutical

agents podophyllotoxin and kaempferol. Pharm. Biol. 52, 1237–1243. doi:

10.3109/13880209.2014.885061

Iwasaki, S., Kobayashi, M., Furukawa, J., Namikoshi, M., Okuda, S., Sato, Z.,

et al. (1984). Studies on macrocyclic lactone antibiotics. VII. Structure of a

phytotoxin rhizoxin produced by Rhizopus chinensis. J. Antibiot. 37, 354–362.

doi: 10.7164/antibiotics.37.354

Kozikowski, A. P., Yamada, F., Tang, X. C., and Hanin, I. (1990). Synthesis and

biological evaluation of (±)-Z-huperzine-A. Tet. Lett. 31, 6159–6162. doi:

10.1016/S0040-4039(00)97013-8

Kupchan, S. M., Komoda, Y., Court, W. A., Thomas, G. J., Smith, R. M., Karim,

A., et al. (1972). Tumor inhibitors. LXXIII. Maytansine, a novel antileukemic

ansa macrolide from Maytenus ovatus. J. Am. Chem. Soc. 94, 1354–1356. doi:

10.1021/ja00759a054

Kusari, S., Lamsho, M., Kusari, P., Gottfried, S., Zuhlke, S., Louven, K., et al.

(2014c). Endophytes are hidden producers of maytansine in Putterlickia roots.

J. Nat. Prod. 77, 2577–2584. doi: 10.1021/np500219a

Kusari, S., Pandey, S. P., and Spiteller, M. (2013). Untapped mutualistic

paradigms linking host plant and endophytic fungal production of

similar bioactive secondary metabolites. Phytochemistry 91, 81–87. doi:

10.1016/j.phytochem.2012.07.021

Kusari, S., Singh, S., and Jayabaskaran, C. (2014a). Biotechnological potential of

plant-associated endophytic fungi: hope versus hype Trends Biotechnol. 32,

297–303. doi: 10.1016/j.tibtech.2014.03.009

Kusari, S., Singh, S., and Jayabaskaran, C. (2014b). Rethinking production of

Taxol(R) (paclitaxel) using endophyte biotechnology. Trends Biotechnol. 32,

304–311. doi: 10.1016/j.tibtech.2014.03.011

Frontiers in Chemistry | www.frontiersin.org 11 May 2015 | Volume 3 | Article 34

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


Newman and Cragg Endophytic and epiphytic microbial compounds

Lee, J., Currano, J. N., Carroll, P. J., and Joullié, M. M. (2012). Didemnins,

tamandarins and related natural products. Nat. Prod. Rep. 29, 404–424. doi:

10.1039/c2np00065b

Li, L., Deng, W., Song, J., Ding, W., Zhao, Q.-F., Peng, C., et al. (2008).

Characterization of the saframycin A gene cluster from Streptomyces l

avendulaeNRRL 11002 revealing a nonribosomal peptide synthetase system for

assembling the unusual tetrapeptidyl skeleton in an iIterative manner. J. Bact.

190, 251–263. doi: 10.1128/JB.00826-07

Li, Y. C., Tao, W. Y., and Cheng, L. (2009). Paclitaxel production using co-culture

of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-

bioreactor. Appl. Microbiol. Biotechnol. 83, 233–239. doi: 10.1007/s00253-009-

1856-4

Luesch, H., Harrigan, G. G., Goetz, G., and Horgen, F. D. (2002). The

cyanobacterial origin of potent anticancer agents originally isolated from sea

hares. Curr. Med. Chem. 9, 1791–1806. doi: 10.2174/0929867023369051

Ma, H., Lu, Z., Liu, B., Qiu, Q., and Liu, J. (2013). Transcriptome analyses of a

Chinese hazelnut species Corylus mandshurica. BMC Plant Biol. 13:152. doi:

10.1186/1471-2229-13-152

Meyers, A., and Shaw, C.-C. (1974). Studies directed toward the total synthesis

of maytansine. The preparation and properties of the carbinolamide moiety.

Tetrahedron Lett. 15, 717–720. doi: 10.1016/S0040-4039(01)82313-3

Mohana Kumara, P., Soujanya, K. N., Ravikanth, G., Vasudeva, R., Ganeshaiah,

K. N., and Shaanker, R. U. (2014). Rohitukine, a chromone alkaloid and

a precursor of flavopiridol, is produced by endophytic fungi isolated from

Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb).Wight Arn.

Phytomed. 21, 541–546. doi: 10.1016/j.phymed.2013.09.019

Mohana Kumara, P., Zuehlke, S., Priti, V., Ramesha, B. T., Shweta, S., Ravikanth,

G., et al. (2012). Fusarium proliferatum an endophytic fungus from Dysoxylum

binectariferum Hook.f, produces rohutikine, a chromane alkaloid possessing

anti-cancer activity. Anton. Van Leeuwen. 101, 323–329. doi: 10.1007/s10482-

011-9638-2

Moore, B. S., Hertweck, C., Hopke, J. N., Izumikawa, M., Kalaitzis, J. A., Nilsen, G.,

et al. (2002). Plant-like biosynthetic pathways in bacteria: from benzoic acid to

chalcone. J. Nat. Prod. 65, 1956–1962. doi: 10.1021/np020230m

Moss, C., Green, D. H., Perez, B., Velasco, A., Henriquez, R., and McKenzie,

J. D. (2003). Intracellular bacteria associated with the ascidian Ecteinascidia

turbinata: phylogenic and in situ hybridization analysis.Mar. Biol. 143, 99–110.

doi: 10.1007/s00227-003-1060-5

Nakada, M., Kobayashi, S., Iwasaki, S., and Ohno, M. (1993). The first

total synthesis of the antitumor macrolide rhizoxin: synthesis of the key

building blocks. Tetrahedron Lett. 34, 1035–1038. doi: 10.1016/S0040-4039(00)

77485-5

Nakao, Y., Shiroiwa, T., Murayama, S., Matsunaga, S., Goto, Y., Matsumoto,

Y., et al. (2004). Identification of Renieramycin A as an antileishmanial

substance in a marine sponge Neopetrosia sp. Mar. Drugs 2, 55–62. doi:

10.3390/md202055

Newman, D. J., and Cragg, G. M. (2010). “Natural products as drugs and leads

to drugs: the historical perspective,” in Natural Product Chemistry for Drug

Discovery, eds A. D. Buss and M. S. Butler (Cambridge: Royal Society of

Chemistry), 3–27.

Newman, D. J., and Cragg, G. M. (2014). Marine-sourced anti-cancer and cancer

pain control agents in clinical and late preclinical development.Mar. Drugs 12,

255–278. doi: 10.3390/md12010255

Oh, D.-C., Poulsen, M., Currie, C. R., and Clardy, J. (2009a). Dentigerumycin: a

bacterial mediator of an ant-fungus symbiosis.Nat. Chem. Biol. 5, 391–393. doi:

10.1038/nchembio.159

Oh, D.-C., Scott, J. J., Currie, C. R., and Clardy, J. (2009b). Mycangimycin, a

polyene peroxide from a mutualist Streptomyces sp. Org. Lett. 11, 633–636. doi:

10.1021/ol802709x

Oldrup, E., McLain-Romero, J., Padilla, A., Moya, A., Gardner, D. R., and Creamer,

R. (2010). Localization of endophytic Undifilum fungi in locoweed seed and

influence of environmental parameters on a locoweed in vitro culture system.

Botany 88, 512–521. doi: 10.1139/B10-026

Partida-Martinez, L. P., and Hertweck, C. (2005). Pathogenic fungus harbours

endosymbiotic bacteria for toxin production. Nature 437, 884–888. doi:

10.1038/nature03997

Partida-Martinez, L. P., and Hertweck, C. (2007). A gene cluster encoding

rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont

of the fungus Rhizopus microsporus. Chem. Bio. Chem. 8, 41–45. doi:

10.1002/cbic.200600393

Partida-Martinez, L. P., Monajembashi, S., Greulich, K.-O., and Hertweck,

C. (2007). Endosymbiont-dependent host reproduction maintains bacterial-

fungal mutualism. Curr. Biol. 17, 773–777. doi: 10.1016/j.cub.2007.03.039

Perez-Matos, A. E., Rosado, W., and Govind, N. S. (2007). Bacterial diversity

associated with the Caribbean tunicate Ecteinascidia turbinata. Anton. Van

Leeuwen. 92, 155–164. doi: 10.1007/s10482-007-9143-9

Piel, J. (2006). Bacterial symbionts: prospects for the sustainable production

of invertebrate- derived pharmaceuticals. Curr. Med. Chem. 13, 39–50. doi:

10.2174/092986706775197944

Qin, G.-W., and Xu, R.-S. (1998). Recent advances on bioactive natural products

from Chinese medicinal plants.Med. Res. Rev. 18, 375–382.

Ralphs, M. H., Cook, D., Gardner, D. R., and Grum, D. S. (2011). Transmission

of the locoweed endophyte to the next generation of plants. Fungal Ecol. 4,

251–255. doi: 10.1016/j.funeco.2011.03.001

Ramesha, B. T., Suma, H. K., Senthilkumar, U., Priti, V., Ravikanth, G.,

Vasudeva, R., et al. (2013). New plant sources of the anti- cancer alkaloid,

camptothecine from the Icacinaceae taxa, India. Phytomedicine 20, 521–527.

doi: 10.1016/j.phymed.2012.12.003

Rath, C. M., Janto, B., Earl, J., Ahmed, A., Hu, F. Z., Hiller, L., et al. (2011).

Meta-omic characterization of the marine invertebrate microbial consortium

that produces the chemotherapeutic natural product et-743. ACS Chem. Biol. 6,

1244–1256. doi: 10.1021/cb200244t

Raves, M., Harel, M., Pang, Y., Silman, I., Kozikowski, A., and Sussman, J. (1997).

Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-

huperzine A. Nat. Struct. Biol. 4, 57–63. doi: 10.1038/nsb0197-57

Rinehart, K., Holt, T. G., Fregeau, N. L., Stroh, J. G., Kiefer, P. A., Sun, F., et al.

(1990). Ecteinascidins 729, 743, 745, 759A, 759B and 770: potent antitumor

agents from the Caribbean tunicate Ecteinascidia turbinata. J. Org. Chem. 55,

4512–4515. doi: 10.1021/jo00302a007

Rinehart, K. L., Kishore, V., Nagarajan, S., Lake, R., J, Gloer, J. B., Bozich, F. A.,

et al. (1987). Total synthesis of Didemnin-A, Didemnin-B, and Didemnin-C.

J. Am. Chem. Soc. 109, 6846–6848. doi: 10.1021/ja00256a046

Scherlach, K., Busch, B., Lackner, G., Paszkowski, U., and Hertweck, C. (2012).

Symbiotic cooperation in the biosynthesis of a phytotoxin. Angew. Chem. Int.

Ed. 124, 9753–9756. doi: 10.1002/ange.201204540

Scherlach, K., Partida-Martinez, L. P., Dahse, H.-M., and Hertweck, C. (2006).

Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of

the rice pathogenic fungus Rhizopus microsporus. J. Am. Chem. Soc. 128,

11529–11536. doi: 10.1021/ja062953o

Scott, J. J., Oh, D.-C., Yuceer, M. C., Klepzig, K. D., Clardy, J., and Currie, C. R.

(2008). Bacterial protection of beetle-fungus mutualism. Science 322, 63. doi:

10.1126/science.1160423

Service, R. F. (2000). Hazel trees offer a new source of cancer drug. Science 288,

1609–1610. doi: 10.1126/science.288.5463.27a

Shu, S., Zhao, X., Wang, W., Zhang, G., Cosoveanu, A., Ahn, Y., et al. (2014).

Identification of a novel endophytic fungus from Huperzia serrata which

produces huperzine A. World J. Microbiol. Biotech. 30, 3101–3109. doi:

10.1007/s11274-014-1737-6

Shweta, S., Shivanna, M. B., Gurumurthy, B. R., Shaanker, U., Santhosh Kumar, T.

R., and Ravikanth, G. (2014). Inhibition of fungal endophytes by camptothecine

produced by their host plant, Nothapodytes nimmoniana (Grahm) Mabb.

(Icacinaceae). Curr. Sci. 107, 994–1000.

Sigel, M. M., Wellham, L. L., Lichter, W., Dudeck, L. E., Gargus, J. L., and Lucas, L.

H. (1970). Food-drugs from the Sea: Proceedings 1969.Washington, DC: Marine

Technology Society.

Soliman, S. S. M., and Raizada, M. N. (2013). Interactions between co-habitating

fungi elicit synthesis of Taxol from an endophytic fungus in hostTaxus plants.

Front. Microbiol. 4:3. doi: 10.3389/fmicb.2013.00003

Stierle, A., Strobel, G., and Stierle, D. (1993). Taxol and taxane production

by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260,

214–216. doi: 10.1126/science.8097061

Tsukimoto, M., Nagaoka, M., Shishido, Y., Fujimoto, J., Nishisaka, F., Matsumoto,

S., et al. (2011). Bacterial production of the tunicate-derived antitumor cyclic

depsipeptide didemnin B. J. Nat. Prod. 74, 2329–2331. doi: 10.1021/np200543z

Tsuruo, T., Oh-hara, T., Iida, H., Tsukagoshi, S., Sato, Z., Matsuda, I., et al. (1986).

Rhizoxin, a macrocyclic lactone antibiotic, as a new antitumor agent against

Frontiers in Chemistry | www.frontiersin.org 12 May 2015 | Volume 3 | Article 34

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


Newman and Cragg Endophytic and epiphytic microbial compounds

human and murine tumor cells and their vincristine-resistant sublines. Cancer

Res. 46, 381–385.

Velasco, A., Acebo, P., Gomez, A., Schleissner, C., Rodriguez, P., Aparicio, T.,

et al. (2005). Molecular characterization of the safracin biosynthetic pathway

from Pseudomonas fluorescens A2- 2: designing new cytoxic compounds. Mol.

Microbiol. 56, 144–154. doi: 10.1111/j.1365-2958.2004.04433.x

Wakimoto, T., Egami, Y., Nakashima, Y., Wakimoto, Y., Mori, T., Awakawa, T.,

et al. (2014). Calyculin biogenesis from a pyrophosphate protoxin produced by

a sponge symbiont. Nat. Chem. Biol. 10, 648–655. doi: 10.1038/nchembio.1573

Whitt, J., Shipley, S. M., Newman, D. J., and Zuck, K. M. (2014). Tetramic acid

analogues produced by coculture of Saccharopolyspora erythraeawith Fusarium

pallidoroseum. J. Nat. Prod. 77, 173–177. doi: 10.1021/np400761g

Wilson,M. C.,Mori, T., Ruckert, C., Uria, A. R., Helf,M. J., Takada, K., et al. (2014).

An environmental bacterial taxonwith a large and distinctmetabolic repertoire.

Nature 506, 58–62. doi: 10.1038/nature12959

Wings, S., Müller, H., Berg, G., Lamshöft, M., and Leistner, E. (2013). A

study of the bacterial community in the root system of the maytansine

containing plant Putterlickia verrucosa. Phytochemistry 91, 158–164. doi:

10.1016/j.phytochem.2012.06.016

Wright, A. E., Forleo, D. A., Gunawardana, G. P., Gunasekera, S. P., Koehn, F. E.,

and McConnell, O. J. (1990). Antitumor tetrahydroisoquinoline alkaloids from

the colonial ascidian Ecteinascidia turbinata. J. Org. Chem. 55, 4508–4512. doi:

10.1021/jo00302a006

Xu, Y., Kersten, R. D., Nam, S.-J., Lu, L., Al-Suwailem, A. M., Zheng, H., et al.

(2012). Bacterial biosynthesis and maturation of the didemnin anti-cancer

agents. J. Am. Chem. Soc. 134, 8625–8632. doi: 10.1021/ja301735a

Yamada, Y., Kuzuyama, T., Komatsu, M., Shin-ya, K., Omura, S., Cane, D. E., et al.

(2015). Terpene synthases are widely distributed in bacteria. Proc. Nat. Acad.

Sci. U.S.A. 112, 857–862. doi: 10.1073/pnas.1422108112

Yang, Y., Zhao, H., Barrero, R. A., Zhang, B., Sun, G., Wilson, I. W., et al. (2014).

Genome sequencing and analysis of the paclitaxel-producing endophytic

fungus Penicillium aurantogriseum NRRL 62431. BMC Genomics 15:69. doi:

10.1186/1471-2164-15-69

Ying, T.-S. (1979). On Dysosma Woodson and Sinopodophyllum, Ying, gen. nov.

of the Berberidaceae. Acta Phytotaxon. Sin. 17, 17–23.

Ying, Y.-M., Shan, W.-G., and Zhan, Z.-J. (2014). Biotransformation of huperzine

a by a fungal endophyte of Huperzia serrata furnished sesquiterpenoid-

alkaloid hybrids. J. Nat. Prod. 77, 2054–2059. doi: 10.1021/np50

0412f

Yu, J.-W., Floss, H. G., Cragg, G. M., and Newman, D. J. (2012). “Ansamitocins

(Maytansenoids),” in Anticancer Agents from Natural Products, 2nd Edn, eds G.

M. Cragg, D. G. I. Kingston, and D. J. Newman (Boca Raton, FL: Taylor and

Francis), 407–427.

Zaiyou, J., Li, M., Guifang, X., and Xiuren, Z. (2013). Isolation of an

endophytic fungus producing baccatin III from Taxus wallichiana var.

mairei. J. Ind. Microbiol. Biotechnol. 40, 1297–1302. doi: 10.1007/s10295-013-

1320-4

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Newman and Cragg. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Chemistry | www.frontiersin.org 13 May 2015 | Volume 3 | Article 34

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive

	Endophytic and epiphytic microbes as ``sources'' of bioactive agents
	Introduction
	Marine Sourced Materials
	Dolastatins
	Didemnins
	Ecteinascidin 743
	Candidatus Entotheonella
	Metabolite Production in the Sponge Theonella swinhoei
	Calyculin Production in Discodermia calyx
	Plants and Endophytes/Epiphytes
	Taxol(R) from Endophytes
	Non-taxanes
	Swainsonine
	Huperzine
	Rohutikine
	Kaempferol
	Plant-derived Compounds from Epiphytes/Endophytes (and/or Root Associated Microbes)
	Maytansine
	Ergot Alkaloids


	Compounds from Fungal-Bacterial Interactions
	Rhizoxin and Derivatives
	Insect-Microbe Interactions
	Dentigerumycin Production
	Mycangimycin Production by Beetle Symbionts

	In Conclusion
	References


