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Abstract 

 

Objective. Obesity is associated with insulin resistance and type 2 diabetes, although the 

mechanisms linking these pathologies remain undetermined.  Recent studies in rodent models 

revealed endoplasmic reticulum (ER) stress in adipose and liver tissues and demonstrated that 

ER stress could cause insulin resistance.  Therefore, we tested whether these stress pathways 

were also present in obese human subjects and/or regulated by weight loss.   

Research Design and Methods.  Eleven obese men and women (BMI: 51.3 ± 3.0 kg/m
2
) were 

studied before and 1 year after gastric bypass (GBP) surgery.  We examined systemic insulin 

sensitivity using hyperinsulinemic-euglycemic clamp studies before and after surgery and 

collected subcutaneous adipose and liver tissues to examine ER stress markers.  

Results.  Subjects lost 39 9% body weight at 1 year after GBP surgery (p<0.001), which was 

associated with a marked improvement in hepatic, skeletal muscle and adipose tissue insulin 

sensitivity.  Markers of ER stress in adipose tissue significantly decreased with weight loss.  

Specifically, Grp78 and spliced XBP-1 mRNA levels were reduced, as were phosphorylated 

eIF2  and stress kinase JNK1 (all p values <0.05).  Liver sections from a subset of subjects 

showed intense staining for Grp78 and phosphorylated eIF2  before surgery, which was reduced 

in post-GBP sections.  

Conclusions. This study presents important evidence that ER stress pathways are present in 

selected tissues of obese humans, and that these signals are regulated by marked weight loss and 

metabolic improvement.  Hence, this suggests the possibility of an integral relationship between 

obesity-related ER stress and metabolic dysfunction in obese humans. 



Introduction  

Increased adiposity is associated with a group of chronic metabolic disorders, including insulin 

resistance, type 2 diabetes, and nonalcoholic fatty liver disease [1].  The prevalence of this 

cluster of abnormalities has increased significantly in the past few decades following the marked 

rise of obesity worldwide [2, 3].  The mechanisms responsible for the emergence of these 

disorders have been an intense area of investigation.  In the past decade it was recognized and 

established that chronic inflammatory and stress responses are a central feature of obesity, 

insulin resistance, and type 2 diabetes and contribute to the metabolic imbalance [4].  However, 

the pathways and mechanisms giving rise to the chronic inflammatory responses remain to be 

elucidated.  

 

Recently, we have identified endoplasmic reticulum (ER) dysfunction as a significant contributor 

to the development of experimental insulin resistance in obese tissues [5]. The ER is a critical 

intracellular organelle that coordinates the synthesis, folding, and trafficking of proteins.  All 

transmembrane and secreted proteins pass through the ER en route to cellular destinations; 

proteins that fail to fold into proper structures are removed from the ER through degradation.  

Under stress conditions, unfolded proteins accumulate in the ER and initiate an adaptive 

response known as the unfolded protein response (UPR).  The UPR is initiated by three ER 

transmembrane sensors (namely PERK (PKR-like ER-regulated kinase), IRE-1 (inositol-

requiring enzyme-1), and ATF-6 (activating transcription factor-6) which activate an adaptive 

response that results in cessation of protein translation and transcriptional increase in protein-

folding chaperones and ER-associated degradation genes [6].  If the stress is too severe, the UPR 

may also induce cellular apoptosis through several different mechanisms involving the various 



branches of the UPR. In mouse models of obesity, ER stress is present in liver and adipose 

tissues, as evidenced by increased activity of both the IRE-1 and PERK branches [7].  The UPR 

is also able to induce activation of the JNK pathway and thereby inhibit insulin signaling through 

the subsequent phosphorylation and/or degradation of IRS1 [7-9].  Data obtained from mouse 

models demonstrate that genetically compromised ER folding capacity induces ER stress, 

activates JNK and leads to whole body insulin resistance in the mouse [7].  In contrast, 

enhancing ER capacity in obese mice through the use of chemical or molecular chaperones 

relieves ER stress in adipose tissue and liver, reduces intrahepatic fat accumulation, and restores 

glucose homeostasis [10]. 

 

Although ER stress is associated with obesity and metabolic dysfunction in rodent models, the 

importance of ER stress in the pathogenesis of obesity-related metabolic disease and the 

potential regulation of ER function by weight loss in human subjects is not known. Therefore, 

the purpose of the present study was to evaluate the effect of marked weight loss induced by 

gastric bypass (GBP) surgery, on insulin sensitivity and ER stress in key metabolic tissues in 

obese human subjects. A euglycemic-hyperinsulinemic clamp procedure, in conjunction with 

stable isotopically labeled tracer infusions, was used to assess insulin action in liver, skeletal 

muscle and adipose tissue, and UPR markers from among the three response branches were 

evaluated in liver and adipose tissue samples obtained before and 1 year after GBP surgery.  

 

 

 

 



Research Design and Methods 

Subjects and Gastric bypass surgery 

Eleven obese subjects  (mean BMI: 51.3 ± 3.0 kg/m
2
; 2 men and 9 women) who were scheduled 

to undergo GBP surgery participated in this study. All subjects completed a comprehensive 

medical evaluation, which included a detailed history and physical examination, routine blood 

tests, and a 12-lead electrocardiogram. No subjects had diabetes, other metabolic diseases, or 

were taking medications that affect insulin action or glucose and fatty acid metabolism. All 

subjects gave their written informed consent before participating in this study, which was 

approved by the Human Research Protection Office and the Center for Applied Research 

Sciences Advisory Committee of Washington University School of Medicine in St. Louis, MO. 

 

All GBP procedures were performed by the same surgeon (J.C.E.) using standard surgical 

techniques.  All patients had an open GBP procedure, which involved constructing a small (~20 

mL) proximal gastric pouch by stapling across the stomach.  A 150 cm Roux-Y limb was 

constructed by transecting the jejunum 30 cm distal to the ligament of Treitz and creating a 

jejunojejunostomy 150 cm distal to the transection.  

 

Metabolic Studies and Sample Analyses 

Insulin sensitivity was examined by using the hyperinsulinemic-euglycemic clamp procedure in 

10 of the 11 subjects before and one year after GBP surgery. Subjects were admitted to the 

Intensive Research Unit at Washington University School of Medicine on the evening before the 

clamp procedure.  The following morning, after subjects fasted overnight, a one-stage 

hyperinsulinemic-euglycemic clamp procedure was performed;  [6,6-
2
H2]glucose and [2,2-



2
H2]palmitate were infused for 6 hours (0-3 h basal period followed by 3-6 h insulin infusion at a 

rate of 15 mU·m
-2

 body surface area [BSA]·min
-1

, initiated with a priming dose of 60 mU·m
-2

 

BSA·min
-1

 for 5 min, and then 30 mU·m
-2

 BSA·min
-1

 for 5 min. Euglycemia was maintained at a 

blood glucose concentration of approximately 5.6 mmol/L (100 mg/dL) throughout the clamp 

procedure by infusing 20% dextrose enriched to 2.5% with [6,6-
2
H2]glucose. Blood samples 

were obtained before beginning the tracer infusion to determine background plasma glucose and 

palmitate tracer-to-tracee ratios (TTRs), and every 10 min during the final 30 min of the basal 

period and of the clamp procedure to determine glucose, and insulin concentrations and substrate 

kinetics.  Plasma insulin was determined by a radioimmunoassay and plasma glucose and 

palmitate tracer to tracee ratios were determined by using gas chromatography-mass 

spectroscopy (GC-MS; MSD 5973 system with capillary column; Hewlett-Packard; Palo Alto, 

CA), as previously described [11, 12]. Glucose and palmitate kinetics were determined by using 

Steele’s equation for steady-state conditions [13, 14] and hepatic insulin sensitivity was 

determined by the reciprocal of the Hepatic Insulin Resistance Index (10000/(basal glucose Ra in 

µmol/kg/min X basal insulin concentration in mU/L), as previously described [15, 16]. 

 

Subcutaneous abdominal adipose tissue samples were collected during basal postabsorptive 

conditions in all subjects by using a 14-gauge needle; samples were immediately frozen in liquid 

nitrogen. Liver tissue samples were obtained by needle biopsy during GBP surgery and by 

percutaneous needle biopsy 1 year after GBP surgery in 4 subjects, and placed in formalin for 

further analyses. 

 

 



mRNA Isolation and quantitative PCR    

Frozen adipose tissue samples were homogenized in TRIzol Reagent (Invitrogen) for total RNA 

isolation according to the manufacturer’s protocol.  cDNA synthesis was performed using 1 µg 

of sample RNA reverse transcribed with the high capacity cDNA archive system (Applied 

Biosystems, Foster City, CA). Real-time, quantitative PCR was performed using SybrGreen 

reagent in the ABI 7300 Real-Time PCR system (Applied Biosystems) to determine the mRNA 

levels of the following genes in adipose tissue samples obtained before and after gastric by-pass 

surgery: 18S, CHOP, sXBP, Grp78, and IL-6.  Primer sequences used to detect these human 

genes are listed below. 

 

hu 18S For GTAACCCGTTGAACCCCATT 

hu 18S Rev CCATCCAATCGGTAGTAGCG 

  

hu Grp78 For CATCACGCCGTCCTATGTCG 

hu Grp78 Rev CGTCAAAGACCGTGTTCTCG 

  

hu sXBP For GGTCTGCTGAGTCCGCAGCAGG 

hu sXBP Rev GGGCTTGGTATATATGTGG 

  

hu CHOP For GGAGAACCAGGAAACGGAAAC 

hu CHOP Rev TCTCCTTCATGCGCTGCTTT 

  

hu IL-6 For AAATTCGGTACATCCTCGACGG 

hu IL-6 Rev GGAAGGTTCAGGTTGTTTTCTGC 

 

Protein Isolation, antibodies and Western blotting 

Frozen adipose tissue samples were homogenized in lysis buffer containing 25 mM Tris-HCl 

(pH7.4), 10 mM Na3VO4, 100 mM NaF, 50 mM Na4P2O7, 10 mM EGTA, 10 mM EDTA, 1% 

NP-40 with protease inhibitors (Sigma). After homogenization, the tissue lysate was centrifuged 

at 4,000 rpm for 15 minutes at 4°C followed by 14,000 rpm for 20 mins at 4°C.  Eighty µg total 

tissue protein was used for direct immunoblotting. Rabbit polyclonal anti-p-eIF2  antibody 

(Invitrogen, #44728G) was used at 1:1000 dilution; mouse monoclonal anti-p-JNK (Cell 



Signaling, #9251) was used at 1:1000 dilution; rabbit polyclonal anti-calnexin (Stressgen) was 

used at 1:1000 dilution; -tubulin (Santa Cruz, #8104) was used at 1:1000 dilution. Horseradish 

peroxidase (HRP)-linked anti-mouse, or anti-rabbit secondary antibody (GE Healthcare) was 

used at 1:4000 dilution. 

 

Immunohistochemical examination of liver sections 

Liver biopsy specimens were evaluated for steatosis and inflammation by hematoxylin and eosin 

staining and for markers of ER stress by using immunohistochemistry.  Human liver sections 

were subjected to routine deparafinization/hydration process and blocked with goat serum 

albumin for 1 hour at room temperature. Primary antibody incubation at 1:50 concentration was 

performed overnight at 4
o
C. After primary antibody incubation, sections were washed with PBS, 

and incubated with secondary antibody at 1:200 dilution for 60 minutes. At the end of the 

secondary antibody incubation sections were washed with PBS followed by application of 

mounting solution containing DAPI (Vector Lab). Secondary antibodies used in the current study 

were FITC- or texas-red conjugated anti-rabbit IgG (Santa Cruz). Negative controls included 

omission of the primary antibody.  Quantification of immunohistochemical staining was 

performed using Axiovision Software and is represented as relative intensity of  6-9 areas per 

slide.  

 

Selection of UPR markers 

We chose UPR markers from among the three branches that respond to ER stress. The 

transmembrane kinase PERK phosphorylates eukaryotic elongation initiation factor 2  (eIF2 ), 

leading to inhibition of general protein translation.  As a result of alternative translation, the pro-

apoptotic transcription factor C/EBP homologous protein (CHOP) is induced.  IRE-1 activates 



the stress kinase c-jun N-terminal kinase1 (JNK1) and also possesses endoribonuclease activity, 

which splices an intron from the mRNA of X-box binding protein-1 (XBP-1), creating an 

activated transcription factor.  Spliced XBP-1 (sXBP-1), along with active ATF-6, translocates to 

the nucleus and induces expression of protein chaperone genes. One well-known target of both 

of these transcription factors is the chaperone glucose-regulated protein 78 (Grp78).  

 

Statistical analyses 

Insulin sensitivity and patient information data sets were normally distributed according to the 

Kolmogorov-Smirnov test, so that comparisons between subjects before and after weight loss 

were performed using parametric procedures.  The statistical significance of the effect of insulin 

infusion on substrate metabolism before and after weight loss was analyzed by using the 

Student’s t-test for paired samples. Results are presented as means ±SEM. All reported p-values 

are two-sided, and a p-value of <0.05 was considered to be statistically significant.   

 



Results 

 

Study subject characteristics and insulin sensitivity 

On average, subjects lost ~40% of their initial body weight at 1 year after GBP surgery (Table 

1).  Weight loss caused a marked decrease in plasma glucose and insulin concentrations and in 

intrahepatic fat content (Table 1).  The Hepatic Insulin Sensitivity Index (HISI) value was 160% 

greater 1 year after than before GBP surgery (p<0.01) (Figure 1A).  Insulin infusion during the 

clamp procedure increased plasma insulin concentration from 18.7±3.1to 43.6±4.2 mU/L before 

and from 4.9±0.8 to 27.0±1.5 mU/L 1 year after GBP surgery.  Plasma glucose concentration 

during insulin infusion were 97.7±1.7 and 99.6±1.9 mg/dL during the clamp procedure 

performed before and after weight loss, respectively. Insulin infusion caused an increase in 

glucose Rd from 1081±69 to 1418±108 µmol/min before GBP surgery and from 813±57 to 

1666±171 µmol/min 1 year after GBP surgery. The increase in glucose Rd during insulin 

infusion was 200% greater after than before weight loss (p<0.01) (Figure 1B). Insulin infusion 

caused a decrease in palmitate Ra from 161±13 µmol/ min to 61±14 µmol/min before GBP 

surgery and from 105±9 to 21±4 µmol/min 1 year after GBP surgery. Insulin-mediated 

suppression of palmitate Ra was 23% greater 1 year after than before weight loss (p<0.01) 

(Figure 1C).  Taken together these data demonstrate marked metabolic improvement in subjects 

following weight reduction by GBP surgery.  

 

Adipose tissue expression and regulation of UPR-related genes 

The expression of UPR induced genes in subcutaneous abdominal adipose tissue was evaluated 

in all 11 subjects before and 1 year after GBP surgery. We first examined the splicing of the 

XBP-1 gene, a critical transcription factor and indicator of ER stress and adaptive responses.  



Following GBP, there was an average 47.5% reduction (p=0.04) in spliced XBP-1 mRNA 

compared to levels in pre-GBP tissues (Figure 2C).  When examined individually, sXBP-1 levels 

were decreased in 9 of the 11 subjects (Figure 2A,B).  Next, we examined the expression of 

GRP78 mRNA as this chaperone can be targeted by sXBP-1 and also by ATF-6, the second 

transcription factor regulating UPR. As seen in Figure 3, the levels of Grp78 mRNA were 

significantly decreased in post-GBP tissues, with an average 40.1% reduction in mRNA post-

GBP (p=0.01).  When examined individually, decreased Grp78 gene expression was evident in 

7/11 subjects (Figure 3A,B) suggesting that its regulation may be greater in variability than 

sXBP-1. In contrast, adipose tissue CHOP expression was not significantly different between the 

samples collected before or after surgery (Figure 4).  Interestingly, in rodent models of obesity, 

we also did not detect a significant regulation of CHOP mRNA expression between lean and 

obese WAT (unpublished results).  Adipose tissue IL-6 expression was determined in order to 

compare the UPR changes to a well-established inflammatory alteration.  Earlier studies have 

shown that IL-6 expression is significantly and consistently down-regulated in adipose tissue 

after weight loss [17-21].  Consistent with these observations, IL-6 mRNA levels were also 

significantly reduced in 8/11 subjects following GBP (Figure 4).  

 

Regulation of biochemical markers of ER stress in adipose and liver  

The presence of tissue ER stress in obesity in rodents is best evaluated by the phosphorylation of 

PERK, IRE-1, or eIF2  and stimulation of JNK activity, as these are more proximal measures of 

UPR activity [7].  Since there are no antibodies that can detect the phosphorylated form of PERK 

or IRE-1 in humans yet, we first measured the phosporylated form of eIF2  in adipose tissue 

before and after GBP.  Figure 5 reveals the presence of robust eIF2  phosphorylation in adipose 



tissue in all obese subjects.  Remarkably, there was a significant reduction in the phosphorylation 

of adipose tissue eIF2  after GBP surgery, which was observed in all of the subjects studied 

(p<0.0001).  We also examined the activity of JNK, which can be activated through the IRE-1 

branch of the UPR during ER stress.  JNK activation, as determined by phosphorylation of the 

JNK1 isoform, was detectable in the obese subjects prior to GBP surgery.  As shown in Figure 

5C, JNK phosphorylation also significantly decreased in adipose tissue post-GBP surgery. Taken 

together, these observations indicate alleviation of ER stress in adipose tissue after substantial 

weight loss. 

 

In a subgroup of 4 subjects, liver biopsy samples were obtained before and 1 year after GBP 

surgery.  H&E staining of the liver sections demonstrated a 90% decrease in intrahepatic 

triglyceride content following GBP surgery (Table 1 and Figure 6A). In these limited number of 

samples, we were also able to examine the effects of weight loss on eIF2  phosphorylation and 

GRP78 protein levels by immunohistochemistry.  Immunostaining with an anti-phospho eIF2  

antibody revealed strong immunoreactivity in liver sections obtained prior to GBP (Figure 6). 

Similarly, immunostaining with an antibody against the ER chaperone GRP78 revealed strong 

staining in the obese subjects prior to GBP. Particularly, areas surrounding the lipid droplets 

revealed intense staining.  In the samples obtained after weight loss, immunoreactivity against 

both phospho-eIF2  and GRP78 was reduced either in general intensity or number of areas.  In 

some cases the signal was reduced markedly (Figure 6 and Supplemental Figure 1) and in others 

partially and with residual and scattered signal.  Although variable among subjects, these results 

indicate that similar to adipose tissue, obesity in humans may also be associated with ER stress 

in liver tissue, which is ameliorated upon weight loss.     



Discussion 

 

Recent data from studies conducted in obese rodent models have demonstrated that ER stress and 

the activation of related stress signaling pathways may be an important mechanism underlying 

insulin resistance and type 2 diabetes [5].  The results of the present study demonstrate that, in 

obese humans, ER stress is present in adipose and liver tissues and is highly regulated by weight 

loss induced by GBP surgery.   

 

Gastric bypass surgery is the most commonly performed bariatric surgical procedure in the 

United States and worldwide, and is an effective approach for achieving weight loss in obese 

patients [1].  Weight loss induced by GBP surgery improves or completely resolves most 

obesity-related medical complications and increases survival [24, 25]. We chose to investigate 

ER stress in patients who had GBP surgery so that comparisons could be made within the same 

individual before and after the metabolic improvements of extreme weight loss.  This approach 

has several important strengths. First, each individual served as his/her own control, which 

removes confounding variables that may not necessarily be accounted for if the control group 

were comprised of a different cohort.  Second, by measuring change over time within an 

individual, we are able to capture the state of the ER in flux.  This is important given the highly 

dynamic nature of the ER, which adjusts its adaptive capacity to the condition of the cells as well 

as to environmental and intrinsic stress signals, such as alterations in metabolism and body 

weight. Given the fluctuating environment of the cell and the adaptive responses of the ER, a 

solitary UPR molecule may not a reliable indicator of ER functional capacity.  Therefore, we 

measured multiple markers of ER stress to assess the different UPR pathways, ranging from 



proximal biochemical activities of the sensors, to their substrates, to the downstream 

transcriptional outcomes of target gene expression. 

 

Our data clearly demonstrate a significant weight loss-induced regulation of ER stress, as 

evidenced by the suppression of biochemical indicators of ER stress such as eIF2 and JNK 

phosphorylation, and downregulation of UPR transcriptional arms via spliced XBP1 and Grp78.  

Given a relatively small patient number, we observed a remarkably consistent effect of weight 

loss on ER stress.  It is interesting that despite marked suppression of eIF2  phosphorylation in 

adipose tissue upon weight loss, there was no change in the levels of CHOP mRNA expression, 

which is generally considered to be downstream of eIF2  phosphorylation. It is possible that 

CHOP is regulated through other signals and does not respond to changes in body weight.  In 

fact, in our recent work in rodent models comparing adipose tissue samples obtained from 

genetic and dietary models of obesity with lean controls, we did not observe any change in the 

expression levels of CHOP mRNA (unpublished results).  Nonetheless, our findings suggest that 

all branches of the UPR are potentially regulated by obesity and weight loss in humans.   

 

The mechanism responsible for weight loss-induced reduction in ER stress in our subjects is not 

known.  Potential factors may include the decrease in adipose and liver triglyceride content or 

the decrease in systemic plasma insulin and glucose concentrations.  Although it is unclear how 

these factors influence ER stress, data from in vitro studies suggest that inflammation, reactive 

oxygen species, saturated fatty acids, or hypoxia could also be involved.  These signals have all 

been shown to compromise ER folding capacity and/or induce ER stress in vitro and have also 

been described in obese, insulin resistant tissues.  Nonetheless, the in vivo physiological 

mechanisms/causes remain unknown.  



 

Two recent studies utilizing lean and obese cohorts have demonstrated regulation of ER stress 

markers.  Boden et al. reported an increase in ER stress proteins and gene expression in 

subcutaneous adipose tissue in obese individuals compared to lean [22].  A second study 

measured ER stress markers within a range of BMIs and found a significant positive correlation 

with increasing BMI [23].  These data support the hypothesis that obesity leads to increased ER 

stress in adipose tissue and complements our findings of the effect of weight loss on tissue stress.  

Interestingly, recent studies have also provided evidence that ER stress pathways are activated in 

pancreatic islets in type 2 diabetes and in atherosclerotic vascular lesions [26, 27].  While this is 

a relatively young field, these observations have raised the possibility that ER dysfunction and 

the resulting stress responses may be important components of chronic metabolic diseases in a 

broader sense.  The extent to which these pathways will be relevant to human metabolic diseases, 

particularly obesity and type 2 diabetes, remains a critical but unanswered question.  

 

In summary, the results from the present study demonstrate that human obesity is associated with 

insulin resistance and ER stress in both adipose tissue and the liver.  Weight loss decreases ER 

stress and improves insulin sensitivity, suggesting the possibility that the ER is involved in 

regulating insulin action in obese humans. These findings, while correlative, are consistent with 

data from studies conducted in rodent models, which have found that obesity is associated with 

ER stress, and that ameliorating ER stress improves insulin action.  Therefore, the ER could be 

an important new target for treating the metabolic complications of obesity.  
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Table 1.  Metabolic characteristics of subjects before and 1 year after gastric bypass surgery. 

 Before Surgery After Surgery 

n (M/F)  10 (2/8) 10 (2/8) 

Age  40.3 ± 2.3 41.3 ± 2.3 

Weight (kg)  143.5 ± 9.44 87.6 ± 5.9
*
 

BMI (kg/m
2
)  51.3 ± 3.0 31.4 ± 2.3

*
 

Glucose (mg/dL)  98.5 ± 4.8 84.2 ± 2.2
†
 

Insulin (mU/L)  18.7 ± 3.1 4.9 ± 0.8
*
 

HOMA-IR   5.3 ± 0.9 1.6 ± 0.5
†
 

Intrahepatic fat content (%)
§
  19.5 ± 5.2 1.9 ± 2.1

*
 

Systolic blood pressure (mm/Hg)  132 ± 7 108 ± 5
*
 

Diastolic blood pressure (mm/Hg)  74 ± 3 63 ± 4
†
 

Total cholesterol (mg/dL)  160 ± 13 161 ± 9 

LDL-cholesterol (mg/dL)  85 ± 10 79 ± 6 

HDL-cholesterol (mg/dL)  48 ± 4 68 ± 5
**

 

Triglyceride (mg/dL)  135 ± 19 72 ± 9
† 

HOMA-IR= homeostasis model assessment of insulin resistance. 

§ 
Data from 4 subjects.  

Values are means ± SEM.   Value significantly different from corresponding Before Surgery 

value; *P< 0.001; 
**

P< 0.01; 
†
P< 0.05. 

 

 



 

 

Figure Legends 
 

Figure 1. Alterations in systemic insulin sensitivity in GBP subjects.   

A.) Hepatic Insulin Sensitivity Index, calculated as the reciprocal of the product of basal glucose 

production and insulin concentration, B.) insulin-stimulated glucose disposal, an index of 

skeletal muscle insulin sensitivity assessed as the relative increase in glucose uptake during 

insulin infusion, and C.) insulin-mediated suppression of palmitate rate of appearance (Ra) into 

plasma, an index of adipose tissue insulin sensitivity assessed as the relative decrease in 

palmitate Ra during insulin infusion in obese subjects before (black bars) and 1 year after (white 

bars) gastric bypass (GBP) surgery.  *Value significantly different from the Before GBP value, 

*p <0.01, **p<0.001.   

 

Figure 2.  Regulation of spliced XBP-1 mRNA in GBP subjects.  

Quantitative RT-PCR was performed on RNA isolated from adipose tissue of patients  before 

and after GBP surgery, n=11.   A.) Percent change in sXBP-1 mRNA  from pre-GBP to post-

GBP levels in each individual patient.  B.) Pre and Post-GBP surgery levels of sXBP-1 mRNA 

normalized to 18S ribosomal RNA.  C.) Average mRNA levels for sXBP-1 in Pre and Post-GBP 

surgery groups.  Data indicates Mean +/- SEM.   * indicates p<0.05.  

 

Figure 3.  Regulation of Grp78 mRNA in GBP subjects.  

Quantitative RT-PCR was performed on RNA isolated from adipose tissue of patients before and 

after GBP, n=11.   A.) Percent change in Grp78 mRNA  from pre-GBP levels in each individual 

patient.  B.) Pre and Post-GBP surgery levels of Grp78 mRNA normalized to 18S ribosomal 

RNA.  C.) Average mRNA levels for Grp78 in Pre and Post-GBP groups.  Data indicates Mean 

+/- SEM.   * indicates p<0.02.  

 

Figure 4.  CHOP and IL-6 mRNA levels in GBP subjects.  

Quantitative RT-PCR was performed on RNA isolated from adipose tissue of patients before and 

after GBP, n=11.   A.) Percent change in CHOP and IL-6 mRNA from pre GBP levels in each 

individual patient.  B.) Pre and Post-GBP levels of CHOP and IL-6 mRNA normalized to 18S 

ribosomal RNA.  C.) Average mRNA levels for CHOP and IL-6 in Pre and Post-GBP groups.  

Data indicates Mean +/- SEM.  * indicates p<0.05.   

 

Figure 5. Adipose tissue p-eIF2α and p-JNK levels after GBP procedure.  

Protein expression levels of p-eIF2α and p-JNK in adipose tissue from patients before and after 

GBP were detected by western blot assay, followed by densitometric analysis. A.) Pre and Post-

GBP levels of p-eIF2α and p-JNK normalized to calnexin.  B.) Average levels of p-eIF2α and p-

JNK in Pre and Post-GBP groups.  C.) Immunoblot analyses of p-eIF2α and p-JNK expression 

levels in patient 67, 68 and 71 before and after GBP.  Data indicates Mean +/- SEM.   * indicates 

p<0.05.  

 

Figure 6. Liver histology and p-eIF2α and GRP78 immunoreactivity after GBP. 

Liver tissue sections from patient #67 obtained during and after gastric bypass surgery (GBP) 

were stained with H&E or with antibodies against p-eIF2  (green) or GRP78 (red). Nuclei are 



stained with DAPI (blue).  The upper panel illustrates severe steatosis in the pre-GBP sample and 

marked reduction after GBP.  Staining is particularly dense around the lipid droplets (appear 

black in the stained samples). Quantification of staining is presented as relative intensity of 

signal in before and after GBP sections. *p <0.01 

 

Supplemental Figure.  Liver tissue sections obtained from three additional subjects during and 

after gastric bypass surgery (GBP) were stained with H&E or with antibodies against p-eIF2  

(green) or GRP78 (red). The upper panel illustrates steatosis in the pre- GBP sample and marked 

reduction after GBP.  Staining is particularly dense around the lipid droplets (appear black in the 

stained samples).  Representative areas are shown for each of the samples.  Quantification of 

staining is presented as relative intensity of signal in before and after GBP sections. *p <0.01 

 

 

 

 

 

 

 

 


	Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss
	Recommended Citation
	Authors

	Regulation of Endoplasmic Reticulum Stress Markers in Human Obesity

