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Abstract 

Background: Development of multidrug resistance (MDR) is a major burden of successful chemotherapy, therefore, 
novel approaches to defeat MDR are imperative. Although the remarkable anti-cancer propensity of silver nanopar-
ticles (AgNP) has been demonstrated and their potential application in MDR cancer has been proposed, the nano-
particle size-dependent cellular events directing P-glycoprotein (Pgp) expression and activity in MDR cancer have 
never been addressed. Hence, in the present study we examined AgNP size-dependent cellular features in multidrug 
resistant breast cancer cells.

Results: In this study we report that 75 nm AgNPs inhibited significantly Pgp efflux activity in drug-resistant breast 
cancer cells and potentiated the apoptotic effect of doxorubicin, which features were not observed upon 5 nm AgNP 
treatment. Although both sized AgNPs induced significant ROS production and mitochondrial damage, 5 nm AgNPs 
were more potent than 75 nm AgNPs in this respect, therefore, these effects can not to be accounted for the reduced 
transport activity of ATP-driven pumps observed after 75 nm AgNP treatments. Instead we found that 75 nm AgNPs 
depleted endoplasmic reticulum (ER) calcium stores, caused notable ER stress and decreased plasma membrane 
positioning of Pgp.

Conclusion: Our study suggests that AgNPs are potent inhibitors of Pgp function and are promising agents for sen-
sitizing multidrug resistant breast cancers to anticancer drugs. This potency is determined by their size, since 75 nm 
AgNPs are more efficient than smaller counterparts. This is a highly relevant finding as it renders AgNPs attractive 
candidates in rational design of therapeutically useful agents for tumor targeting. In the present study we provide 
evidence that exploitation of ER stress can be a propitious target in defeating multidrug resistance in cancers.
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Background
Every year 1.38 million women are diagnosed with breast 

cancer [1]. Although breast cancer is generally consid-

ered fairly chemo-responsive, it can attain resistance to 

a large number of anti-cancer drugs. �is multidrug-

resistant (MDR) phenotype exhibits many distinctive 

cellular features such as increased tolerance to oxidative 

stress and apoptosis, activated DNA repair and modu-

lated signal transduction pathways [2, 3], however, the 

principal component of MDR is linked to P-glycoprotein 

(Pgp) overexpression [4, 5]. As a result, various structur-

ally and functionally unrelated chemotherapy agents are 

actively exported via ATP-fuelled efflux pumps [6], creat-

ing a severe impediment to successful chemotherapy. Pgp 

is the most studied member of the ATP-binding cassette-

type membrane transporters and has gained interest due 

to its ubiquitous nature and owing to its central position 

as a point of convergence of several deregulated molecu-

lar mechanisms [7], such as the PI3K/AKT pathway [8], 

NF-kB pathway [8, 9] and epigenetic regulations [10, 11] 

in drug-resistant cancers. Inhibition of Pgp activity could 

be the ultimate solution to improve the success rate of 

conventional chemotherapy. Although significant scien-

tific effort focused on the development of Pgp inhibitors, 

most of them were dismissed on the grounds of safety, 

efficacy and disappointing performance in clinical trials 

[12].

Silver nanoparticles (AgNPs) have been extensively 

studied in recent years, thus their unique physicochemi-

cal, antibacterial, antifungal and antiviral features are 

already characterized in detail, however, at the same time 

it was suggested that AgNPs might have a potential in 

cancer therapy owing to their prominent anti-prolifer-

ative and cytotoxic features [13, 14]. In fact, it has been 

demonstrated that AgNPs trigger the generation of reac-

tive oxygen species (ROS), unbalance the cellular redox 

homeostasis, induce cell cycle arrest and decrease cancer 

cell viability in vitro and inhibit the growth of tumor tis-

sues in vivo [15–22]. We have verified that AgNPs target 

mitochondria and induce tumor suppressor p53-inde-

pendent cancer cell apoptosis [23]. Apart from modulat-

ing regulatory pathways leading to apoptotic cell death 

[24, 25], exposure to AgNPs might lead to the accumu-

lation and aggregation of misfolded proteins, activation 

of endoplasmic reticulum (ER) stress and unfolded pro-

tein response (UPR) [26]. All these cellular mechanisms 

related to AgNP-induced stress response might depend 

on the actual physical and chemical properties of nano-

particles, like the nature of the capping material, as well 

as nanoparticle size and shape.

We have recently demonstrated, that AgNPs of 28 nm 

diameter are able to modulate the drug efflux activity 

and enhance chemotherapy in multidrug-resistant colon 

cancer cells [27]. An in  vivo study on an MDR cancer 

model also revealed enhanced antitumor effects of 8 nm 

sized AgNPs functionalized with cell penetrating pep-

tides [28]. �ese data suggest that AgNPs are able to 

target the MDR-related biological profile of tumor cells, 

but the molecular background of the reduced transport 

activity and its dependence on the nanoparticle diam-

eters remain elusive. �erefore, our main goal was to 

investigate whether the actual AgNP size would influ-

ence the AgNP-induced molecular mechanisms and the 

inhibitory actions on P-glycoprotein in multidrug-resist-

ant breast cancer cells. For this, quasi-spherical citrate-

coated silver nanoparticles of two different sizes (5  nm 

and 75  nm diameter) were synthetized and the cellular 

events underlying Pgp inhibition were studied in drug-

sensitive MCF-7 and drug-resistant MCF-7/KCR breast 

adenocarcinoma cells.

Methods
Cell culture

�e MCF-7 human breast adenocarcinoma cell line was 

purchased from ATCC. �e drug-resistant MCF-7/KCR 

cell line was developed from MCF-7 under doxorubicin 

selection pressure from 10 nM to 1 µM [29, 30]. Cell lines 

were maintained, and treatments were applied in RPMI-

1640 (LONZA) medium supplemented with 10% FBS, 

2 mM glutamine and penicillin–streptomycin solution at 

37 °C, 5%  CO2 and 95% humidity. To maintain the drug-

resistant phenotype, MCF-7/KCR cells were cultured in 

media with and without 1  µM doxorubicin for 1  week 

each. Before experiments, MCF-7/KCR cells were grown 

in doxorubicin-free medium.

Synthesis and characterization of AgNPs

Citrate-capped silver nanoparticles were synthesized 

according to Wan et  al. with modifications [31]. Briefly, 

to obtain 5 nm AgNPs, 75 mL water and 20 mL 1% cit-

rate solution were mixed and heated, then 1.7 mL of 1% 

 AgNO3 solution and 2 mL of 0.1%  NaBH4 solution were 

added under vigorous stirring at 70  °C. �e resulting 

AgNPs were used as starter seeds for larger AgNPs in a 

stepwise growth approach by adding 2 mL of 1% citrate 

solution, 75  mL water and 2  mL of 1%  AgNO3 in three 

subsequent cycles.

Morphology and size distribution of the synthetized 

nanoparticles was characterized by transmission elec-

tron microscopy using FEI Tecnai G2 20× microscope at 

200 kV acceleration voltage and by Dynamic Light Scat-

tering using Malvern Zetasizer Nano instrument.

Rhodamine 123 accumulation assay

Cells (2 × 106  cells/well) were treated with 5  nm or 

75 nm AgNPs in 150 µM concentration for 65 h or with 
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verapamil in 40  µM concentration for 2  h. �en cells 

were washed and resuspended in serum-free RPMI-1640 

medium containing 10  µM of Rhodamine 123 (RH123, 

Sigma-Aldrich). Following 2  h incubation, cells were 

washed and RH123 fluorescence of at least 10,000 cells/

sample were measured by flow cytometry using FAC-

SCalibur™ platform. Data were analyzed by FlowJo V10 

software. Results were obtained from three independent 

experiments.

Preparation of plasma membrane and cytoplasmic 

fractions

To obtain plasma membrane and cytoplasmic fractions 

[32], MCF-7/KCR cells (2 × 106 cells/dish) were collected 

in ice cold TNM buffer (10  mM NaCl, 1.5  mM  MgCl2, 

10 mM Tris–HCl pH 7.4) and homogenized using glass 

beads (Sigma). Lysates were centrifuged at 2000g, the 

supernatant was collected and centrifuged at 8000g at 

4  °C using Sorvall-RC-28S centrifuge. Supernatant was 

considered as cytoplasmic fraction. �e pellet was resus-

pended in 1  mL ice cold TNM buffer and was layered 

on TNM buffer containing 36% sucrose. Samples were 

centrifuged (Sorvall-WX-Ultra80) at 100,000g, at 4  °C 

overnight. �e interphase was collected and subjected 

to protein precipitation using trichloroacetic acid. After 

centrifugation at 18,000g, the pellet was washed with 

acetone and dissolved in 2×Laemmli Buffer (130  mM 

TrisHCl pH 6.8, 10% ß-mercaptoethanol, 4% SDS, 20% 

glycerin, 0.01% bromophenol blue), which was consid-

ered as plasma membrane fraction.

Immunoblotting

Whole cell extracts were prepared using RIPA lysis 

buffer (50  mM Tris (pH:7.4), 150  mM NaCl, 1  mM 

EDTA, 1% Triton X-100 and 1xPIC). To detect cytoplas-

mic cytochrome c, cells were lysed in sonication buffer 

(50 mM Tris, 2 mM EDTA, 0.5 mM DTT, 50 mM NaCl, 

1xPIC), centrifuged at 13,000 rpm and supernatants were 

collected. 25 µg protein from whole cell lysates, cytoplas-

mic or plasma membrane fractions were resolved on 10% 

SDS-PAGE and transferred to nitrocellulose membrane 

(Amersham). Membranes were blocked with 5% non-fat 

dry milk in TBST (20 mM Tris, 150 mM NaCl and 0.05% 

Tween20). Membranes were incubated overnight with 

primary antibodies (Table 1) diluted in TBST containing 

1% non-fat dry milk. �en species-specific HRP-conju-

gated secondary antibodies (DAKO) were applied. Mem-

branes were developed with ECL reagent (Millipore) and 

visualized by C-DiGit Blot Scanner (LI-COR). Densitom-

etry was performed using ImageJ software. �e presented 

images are representative blots from three individual 

experiments.

Cell viability assay

Cells were seeded at  104/well density in 96-well plates. 

On the following day cells were treated with either AgNPs 

or doxorubicin or their combination. Following treat-

ments cells were washed and incubated with RPMI-1640 

medium containing 0.5  mg/mL MTT reagent (Sigma-

Aldrich). Formazan crystals were solubilized in DMSO 

and absorbance was measured at 570 nm using a Synergy 

HTX microplate reader  (BIOTEK®). Measurements were 

Table 1 List of  primary antibodies (with the  appropriate dilutions) applied in  western blotting and  list and  sequence 

of primers used for qRT-PCR

Antibody Manufacturer and cat no Dilution

Grp94 Santa Cruz sc-13119 1:1500

Grp78 Santa Cruz sc-376768 1:250

GADD153 Santa Cruz sc-7351 1:200

P-glycoprotein Santa Cruz sc-55510 1:500

EDEM Santa Cruz sc-377394 1:200

Cytochrome c Abcam ab13575 1:500

LC3-A/B Cell signaling 12741 1:2000

Na+/K+ ATPase Santa Cruz sc-21712 1:200

α-tubulin eBioscience 14-4502-82 1:1000

Primer Forward Reverse

Grp94 CAG TTT TGG ATC TTG CTG T CAG CTG TAG ATT CCT TTG C

Grp78 TGT TCA ACC AAT TAT CAG CAA ACT C TTC TGC TGT ATC CTC TTC ACC AGT 

GADD153 GGA GCA TCA GTC CCC CAC TT TGT GGG ATT GAG GGT CAC ATC 

EDEM TTG ACA AAG ATT CCA CCG TCC TGT GAG CAG AAA GGA GGC TTC 

GAPDH TGC ACC ACC AAC TGC TTA GC GGC ATG GAC TGT GGT CAT GAG 
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repeated three times using 4 independent biological rep-

licates. Absorbance values of the untreated control sam-

ples were considered as 100% viability.

Apoptosis detection

Cells were seeded at 2 × 106  cells/well density in 6-well 

plates. On the following day cells were treated either with 

AgNPs or doxorubicin or with verapamil or their com-

bination. Cells were collected and Dead Cell Apoptosis 

Kit containing AnnexinV-FITC and propidium iodide 

(Life Technologies) was used according to the manufac-

turer’s recommendation. Fluorescence intensities of at 

least 10,000  cells/sample were measured by FACSCali-

bur™ and data were analyzed by FlowJo V10 software. 

Experiments were repeated three times using at least 

three independent biological replicates.

JC-1 staining

To measure mitochondrial membrane potential via JC-1 

staining, cells were seeded onto cover slips placed into 

24-well plates  (105 cells/well). On the next day cells were 

treated with 150 µM of 5 nm or 75 nm AgNPs for 48 h or 

with apoptosis inducer M627 (12H-benzo{alpha}pheno-

thiazine) [33] in 50 µg/mL concentration for 24 h. JC-1 is 

Pgp substrate, hence before JC-1 loading, 40 µM of vera-

pamil was added to the samples (Additional file 1). After 

an hour cells were washed and incubated with RPMI-

1640 medium containing 10 µg/mL JC-1 (Life Technolo-

gies) for 15  min. Cover slips were inversely mounted in 

Fluoromount™ (�ermoFisher) on glass slides and JC-1 

fluorescence was visualized by OLYMPUS BX51 micro-

scope equipped with Olympus DP70 camera using the 

same exposition time for all samples. Image analysis 

was performed by ImageJ software. Experiments were 

repeated three times using three independent biological 

replicates.

Detection of ROS

ROS production upon AgNP treatments was detected 

by 2′,7′-dichlorofluorescein diacetate (DCFDA) stain-

ing. Cells were seeded onto gelatin-coated cover slips 

placed in 24-well plates, at  105  cells/well density. Cells 

were treated with 150 µM of AgNPs for 48 h, then were 

incubated with RPMI-1640 containing 10  µM DCFDA 

(Sigma-Aldrich) in dark for 20  min. Cover slips were 

mounted on glass slides, and DCF fluorescence was visu-

alized by OLYMPUS BX51 microscope equipped with 

Olympus DP70 camera using the same exposition time 

for all samples. Fluorescence intensity measurements 

were performed using ImageJ software. Measurements 

were repeated three times using three independent bio-

logical replicates.

Reverse transcription and real-time RT-PCR

Total cellular RNA was prepared using  RNeasy® Mini Kit 

(QIAGEN) according to the manufacturer’s recommen-

dation. Two microgram RNA was reverse transcribed 

 (TaqMan® Reverse Transcription kit, Applied Biosys-

tems) in 50  µL total volume. PCR reactions were per-

formed on PicoReal™ Real-time PCR (�ermo Scientific) 

using SYBRGreen qPCR Master Mix (�ermo Scientific) 

with an input of 1 µL cDNA. Each primer (Table 1) was 

used at 200 nM concentration. Relative transcript levels 

were determined by the ΔΔCt analysis using GAPDH as 

reference gene. Experiments were repeated three times 

using three biological replicates.

Cytoplasmic calcium release measurements

MCF-7/KCR cells at 5 × 103 density were seeded onto 

coverslips, which formed the base of a perfusion cham-

ber. Cells were treated with 4 µM Quinidine (Pgp inhibi-

tor, Sigma) and were preloaded with the  Ca2+-sensitive 

fluorescence dye, Fluo4-AM (Sigma) at 5 µM for 20 min 

at 37  °C. �e chamber was mounted on the stage of 

a Zeiss LSM880 confocal laser scanning microscope 

and cells were bathed with standard HEPES solution 

(140 mM NaCl, 5 mM KCl, 10 mM HEPES acid, 1 mM 

 CaCl2, 1  mM  MgCl2, 10  mM glucose) or with 100  µM 

carbachol (Sigma) in HEPES at 37  °C at 5–6  mL/min 

perfusion rate. All experiments were performed using a 

Plan-Apochromat 40X/1.4 oil immersion objective. 6–10 

region of interests (ROIs) were examined in each experi-

ment. Changes in intracellular  Ca2+ concentration were 

determined by excitation at 488  nm, with emitted light 

monitored at 516 nm. Fluorescence signals were normal-

ized to initial fluorescence intensity (F/F0) and expressed 

as relative fluorescence (ΔF/F0), where ΔF indicates the 

changes in fluorescence intensity and  F0 is the baseline 

level.

Results
Silver nanoparticles induce size-dependent cytotoxicity 

in breast cancer cells

�e successful synthesis of quasi-spherical, citrate-coated 

silver nanoparticles of approximately 5 nm and 75 nm in 

diameter was verified by transmission electron micros-

copy (TEM) and the respective size distributions were 

assessed by image analysis and by Dynamic Light Scatter-

ing (DLS) measurements (Fig. 1a–c).

AgNPs were applied on the drug-sensitive breast 

adenocarcinoma MCF-7 as well as on the drug-resist-

ant MCF-7/KCR cell lines. According to TEM micro-

graphs both cells have taken up AgNPs, 5  nm particles 

were localized in membrane-coated bodies while 75 nm 

AgNPs were found mainly in the cytoplasm of the cells 
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(Additional file 2). No AgNPs were found in nuclei, mito-

chondria or within the endoplasmic reticulum.

Drug-resistant phenotype of MCF-7/KCR was verified 

by immunoblotting as a massive expression of P-glyco-

protein was detected, while the drug-sensitive MCF-7 

cells were lacking this ABC transporter (Fig. 1d). In line 

with this, pronounced efflux activity of the drug-resistant 

cells was confirmed (Fig. 1e). �e Pgp inhibitor verapamil 

effectively inhibited the exclusion of the Pgp substrate 

RH123 dye indicating that the elevated efflux activity of 

MCF-7/KCR cells is mainly the result of Pgp overexpres-

sion (Fig. 1e).

Cytotoxicity of AgNPs on MCF-7 and MCF-7/KCR 

cells was determined using MTT assay.  IC50 values 

(Table 2) indicated that toxicity depended on the nano-

particle size, on the treatment time, as well as on the cell 

Fig. 1 Size-dependent cytotoxicity by AgNPs in MCF-7 and drug-resistant MCF-7/KCR cells. a Representative TEM micrographs of the synthesized 
citrate-coated AgNPs. b Size distribution and particle diameter of AgNPs by TEM image analysis and c by DLS. d Representative Western blot of 
P-glycoprotein levels in MCF-7 and MCF-7/KCR cells. e Histogram of Rhodamine 123 (RH123) retention in MCF-7 and MCF-7/KCR cells

Table 2 IC50 values for MCF-7 and MCF-7/KCR cells after 24 and 48-h treatments with 5 nm and 75 nm AgNPs

24 h 48 h

5 nm AgNP (µM) 75 nm AgNP (µM) 5 nm AgNP (µM) 75 nm AgNP (µM)

MCF-7 212 ± 1.0 284.2 ± 1.1 179.4 ± 1.0 222.2 ± 1.1

MCF-7/KCR 244.1 ± 1.0 414.7 ± 1.2 232.9 ± 1.1 259.9 ± 1.1
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type. As expected, smaller AgNPs were more cytotoxic 

than 75  nm counterparts to both drug-sensitive and 

resistant cells. Moreover, 48-h treatments were more 

effective on adenocarcinoma cells than 24-h exposures 

to either sized AgNPs. Although MCF-7 cells were more 

sensitive to both AgNPs, drug-resistant MCF-7/KCR 

cells could be also defeated efficiently by 5  nm and by 

75 nm AgNPs.

Inhibition of Pgp by 75 nm AgNPs sensitizes drug-resistant 

cells to doxorubicin-induced apoptosis

As AgNP treatments might influence Pgp efflux activity 

of drug-resistant cells, we exposed MCF-7/KCR cells to 

5 nm or to 75 nm AgNPs and the accumulation of RH123 

dye was assessed by flow cytometry (Fig. 2a, b). Admin-

istration of Pgp inhibitor verapamil resulted in high 

retention of RH123 in drug-resistant cells. Treatments of 

MCF-7/KCR cells with 5  nm AgNPs led to comparable 

RH123 fluorescence intensities as those of control cells. 

Remarkably, application of 75  nm AgNPs inhibited sig-

nificantly the efflux activity of MCF-7/KCR cells (Fig. 2a, 

b), indicating that functional inactivation of Pgp efflux 

depends largely on nanoparticle size.

Attenuated Pgp protein expression may account for 

the inhibitory effect of 75 nm AgNPs on the efflux activ-

ity. To examine this, we determined Pgp protein levels of 

Fig. 2 Treatments with 75 nm AgNPs reduce the efflux activity of drug-resistant MCF-7/KCR cells without causing significant changes in Pgp 
expression level. a Histograms of Rhodamine 123 accumulation and b mean Rhodamine 123 fluorescence of verapamil-treated, 5 nm or 75 nm 
AgNP-treated MCF-7/KCR cells. c Western blot of Pgp protein levels in MCF-7/KCR cells treated with 5 nm or 75 nm AgNPs. d Densitometric 
quantitation of Pgp western blots. Values are the means ± standard deviations of three independent experiments (****P < 0.0001, ns, non-significant, 
Fisher’s LSD test)
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MCF-7/KCR cells treated with AgNPs by immunoblot. 

Surprisingly, we found no changes in Pgp protein levels 

(Fig.  2c, d). �erefore, we concluded, that the reduced 

transporter activity observed following 75  nm AgNP 

treatments is not coupled to modulated Pgp protein 

expression in MCF-7/KCR cells.

MCF-7/KCR is a cell line manifesting acquired drug 

resistance, which was achieved by doxorubicin selection 

pressure [29, 30]. As 75 nm AgNPs inhibited Pgp efflux 

activity, we wanted to test whether their administration 

can sensitize MCF-7/KCR cells to doxorubicin-induced 

apoptosis. For this, cells were exposed to either doxoru-

bicin alone or to the combination of 75 nm AgNPs and 

doxorubicin, and following treatments MTT assays were 

performed. Results show an increase in doxorubicin 

cytotoxicity after co-treatments with AgNPs, compared 

to cells receiving only doxorubicin (Fig.  3a).  IC50 values 

indicate that when drug-resistant cells are co-treated 

with 75 nm AgNPs, lower concentration of doxorubicin 

is required, whereas a higher dose is necessary to reach 

50% inhibition when doxorubicin is applied alone. To 

examine whether the observed cytotoxicity upon 75 nm 

AgNP + doxorubicin administrations is the result of 

apoptosis, MCF-7/KCR cells were subjected to treat-

ments described above. Additionally, drug-resistant 

cells were exposed to a combination of 4 µM verapamil 

and 20 µM doxorubicin, to assess the apoptotic effect of 

doxorubicin in MCF-7/KCR cells, where Pgp is blocked 

with verapamil. AnnexinV-FITC/PI double staining was 

performed followed by flow cytometry. �e representa-

tive dot plots (Fig.  3b) and the calculated apoptotic cell 

numbers (Fig.  3c) indicated that doxorubicin treatment 

induced apoptosis, which was further enhanced when 

Pgp activity was blocked by verapamil co-treatments. 

Single 75  nm AgNP administrations proved to be non-

cytotoxic, however, the percentage of double positive 

Fig. 3 Treatment with 75 nm AgNPs sensitizes drug-resistant MCF-7/KCR cells to doxorubicin-induced apoptosis. a Cytotoxicity of doxorubicin and 
of doxorubicin and 75 nm AgNP combination in MCF-7/KCR cells. b Representative dot plots of AnnexinV/PI staining, and c number of apoptotic 
drug-resistant cancer cells following 75 nm AgNP and/or doxorubicin treatment or verapamil administration. The values are the means ± standard 
deviations of three independent experiments (*P < 0.03 ****P < 0.0001, Fisher’s LSD test)
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cells increased significantly, thus massive apoptosis was 

triggered when AgNPs and doxorubicin were applied in 

combination (Fig. 3b, c). �ese results verify that 75 nm 

AgNPs sensitize drug-resistant MCF-7/KCR cells to dox-

orubicin-induced apoptosis.

AgNPs induce oxidative stress and mitochondrial damage

Mitochondrial damage can result in lowered cellular 

ATP levels, which may ultimately lead to compromised 

export of Pgp substrates in drug-resistant cells. To exam-

ine whether the functional integrity of mitochondria is 

maintained upon AgNP treatments, we performed JC-1 

staining. MCF-7/KCR cells were treated with 5  nm or 

75  nm AgNPs or with apoptosis inducer M627. Before 

JC-1 loading, cells were pre-treated with verapamil for an 

hour, since we found that JC-1 is a substrate of Pgp. Treat-

ments with M627 decreased the amount of JC-1 aggre-

gates (red fluorescence), whereas increased the quantity 

of JC-1 monomers (green fluorescence) compared to 

control cells, indicating significant mitochondrial dam-

age in M627-exposed MCF-7/KCR cells (Fig. 4a, b). Both 

AgNP treatments caused a decrease in JC-1 aggregates 

compared to untreated cells, thus reduced red-to-green 

fluorescence ratio (Fig. 4a, b). It is noteworthy, that 5 nm 

AgNPs were significantly more detrimental to mitochon-

dria than 75  nm counterparts. Both AgNP treatments 

triggered the release of cytochrome c into the cytoplasm 

of MCF-7/KCR cells, however, the effect of 5 nm AgNP 

exposure was more pronounced, similar to that of M627 

(Fig.  4c). Since mitochondrial dysfunction is coupled 

to oxidative stress, we investigated the ROS generating 

potential of AgNPs. MCF-7/KCR cells were treated with 

5 nm and 75 nm AgNPs and stained with DCFDA. Rep-

resentative images and mean fluorescence intensity val-

ues show that both sized AgNPs induce significant ROS 

production compared to untreated control, however, 

5 nm AgNPs are more potent in this respect than 75 nm 

AgNPs (Fig.  4d, e). Hence, the mitochondrial damage 

caused by 75 nm AgNPs is not the basis for its Pgp inhibi-

tory action in MCF-7/KCR cells.

We measured the intracellular silver amount of MCF-7/

KCR cells treated with either 5 nm or 75 nm AgNPs by 

inductively coupled plasma mass spectrometry. Our 

data indicates that treatments with 5  nm AgNPs result 

in significantly higher intracellular silver concentrations 

compared to 75 nm AgNP exposures (Additional file 3). 

As 75 nm AgNPs, but not 5 nm AgNPs, inhibited greatly 

the membrane efflux activity, therefore, the observed 

intracellular silver concentration cannot explain the 

75 nm AgNP-induced Pgp inhibition and the associated 

molecular phenomena in drug-resistant breast cancer 

cells.

75 nm AgNP treatments cause depletion of ER calcium 

stores and ER stress

Next, we examined whether AgNPs can induce ER stress 

and activate unfolded protein response (UPR) in drug-

resistant cancer cells. �erefore, MCF-7/KCR cells were 

treated with 5  nm or 75  nm AgNPs or received 2  mM 

of ER stress-inducing dithiothreitol (DTT) as a posi-

tive control. �en mRNA expression levels of various 

ER stress markers were assessed by RT-qPCR. 75  nm 

AgNP treatment induced the expression of ER chaperons 

Grp94 and Grp78/Bip, as well as of the ER stress-pro-

voked pro-apoptotic mediator GADD153 in MCF-7/KCR 

cells (Fig. 5a). Importantly, 5 nm AgNPs did not trigger 

expressional changes in ER stress markers in MCF-7/

KCR cells. GADD153 protein expression was elevated 

following 75  nm AgNPs treatment (Fig.  5b, c), whereas 

Grp78 and Grp94 protein levels remained unchanged 

upon 75 nm AgNP expositions (Fig. 5b). �is result is not 

surprising, as many cancer cell types, including MCF-

7, express high basal levels of GRP94 and GRP78 [34], 

hence further increases in their protein levels are not 

always possible during ER stress.

Frequently, depletion of ER calcium stores is the reason 

behind ER stress [35], therefore we measured the calcium 

flux related to 75 nm AgNP treatment in drug-resistant 

cancer cells. Control and 75  nm AgNP-treated MCF-7/

KCR cells were exposed to 100  µM carbachol, an agent 

stimulating  IP3-receptors to release ER-stored calcium 

(Fig. 5d). �e released ER calcium is immediately sensed 

by the pre-loaded fluorescent dye Fluo-4, manifesting an 

increased fluorescence and enabling a rapid, real-time 

detection of calcium flux from pre-set ROIs (Fig. 5e). As 

Fluo-4 is a substrate of Pgp, we pre-treated the samples 

with the Pgp inhibitor Quinidine (this time not with vera-

pamil, as it can influence calcium flux) before measure-

ments. If AgNP treatment leads to ER calcium depletion, 

an exposure to carbachol would result little or no calcium 

(See figure on next page.)
Fig. 4 AgNPs induce oxidative stress and mitochondrial damage in MCF-7/KCR cells. a Representative images of 5 nm AgNP-, 75 nm AgNP-, 
or the apoptosis inducer M627-treated MCF-7/KCR cells after JC-1 staining. JC-1 aggregates show red and JC-1 monomers green fluorescence. 
b Aggregated-to-monomeric JC-1 ratio (red-to-green fluorescence ratio) was determined by image analysis. c Western blot of cytoplasmic 
cytochrome c in MCF-7/KCR cells after 5 nm, 75 nm AgNP or M627 treatments. d Fluorescence microscopic images of DCFDA-stained, AgNP-treated 
MCF-7/KCR cells. e Mean DCF fluorescence intensity determined by image analysis. Values represent the mean ± standard deviation calculated from 
25 cells from two independent experiments (*P < 0.03 **P < 0.002 ***P < 0.0002 ****P < 0.0001, Fisher’s LSD test)
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release into the cytoplasm. In fact, fluorescent micro-

scopic images and the associated histogram prove that 

MCF-7/KCR cells treated with 75  nm AgNPs failed to 

respond to carbachol, indicating that ER calcium stores 

are already depleted or are below the detectable concen-

tration in Pgp-overexpressing drug-resistant cancer cells 

(Fig. 5d–f).

75 nm AgNPs disrupt cellular Pgp distribution
Activation of ER stress and unfolded protein response 

increase the amount of unfolded/misfolded proteins, 

which are ultimately directed to ER-associated pro-

tein degradation (ERAD) by activated ER degradation-

enhancing α-mannosidase-like protein (EDEM) [36]. 

However, in cases of critical ER calcium levels, unfolded 

proteins do not enter the degradation machinery but 

accumulate intracellularly. We presumed that 75  nm 

AgNP treatments lead to accumulation of misfolded/

unfolded Pgp in the ER, cytoplasm or both, hence the 

number of Pgp on the plasma membrane decreases. To 

prove this hypothesis, MCF-7/KCR cells were treated 

with 5 nm or 75 nm AgNPs, or with ER stress-inducing 

DTT, and the transcriptional and translational activation 

of EDEM was examined by RT-qPCR and western blot, 

respectively. Our results indicated that both AgNPs failed 

to induce EDEM expression (Fig. 6a, b), suggesting that 

ERAD has not been activated. To strengthen this argu-

ment, we treated MCF-7/KCR cells with 75  nm AgNPs 

and determined the Pgp protein distribution between 

plasma membrane and cytoplasm. Purity of plasma 

membrane and cytoplasmic fractions were verified by 

detection of  Na+/K+ ATPase and GAPDH, respectively. 

Our results indicated that treatment with 75 nm AgNPs 

lowered the amount of Pgp in the plasma membrane (M), 

with a collateral increase in the cytoplasmic fraction (C) 

compared to the untreated control (Fig. 6c). �is shift in 

Pgp distribution explains the observed inhibition of Pgp 

transporter activity without downregulating its expres-

sion by 75 nm AgNPs.

Discussion
P-glycoprotein (Pgp) is a plasma membrane localized 

ABC transporter, related inherently to the development 

of MDR cancer. Even though the molecular events behind 

the overexpression and elevated efflux activity of Pgp 

have been intensively studied, we still not own proper 

pharmaceutical strategies to defeat intrinsic or acquired 

resistant cancer phenotypes, leading to lower survival 

rates of patients subjected to conventional chemother-

apy [37]. Pgp grants drug-resistance to cancer cells by 

an efflux mechanism powered by ATP hydrolysis, where 

structurally and functionally unrelated drugs are expelled 

from cancer cells [6]. Breast cancer might develop MDR 

associated with Pgp overexpression [5], which is a major 

reason for chemotherapy failure and cancer recurrence. 

Hence, inhibiting Pgp activity could be a logical strategy 

to improve the efficacy of breast cancer therapy.

Silver nanoparticles have recently gained interest in 

nanomedicine due to unique biological properties, which 

are largely dependent on nanoparticle size [38–44]. Our 

group has previously reported that AgNPs of 28  nm 

inhibited Pgp expression and function and sensitized 

multidrug-resistant colon adenocarcinoma cells to vari-

ous antineoplastic agents [27]. Along this line, the pre-

sent study aimed to elucidate (i) whether AgNPs are 

capable to attenuate acquired MDR by modulating Pgp 

activity; (ii) if yes, is Pgp inhibition AgNP size-dependent; 

iii, finally, what is the mechanism behind size-dependent 

Pgp inhibition?

To answer these questions, AgNPs of two differ-

ent sizes were synthetized [31] and multidrug-resistant 

MCF-7/KCR cells, overexpressing Pgp and exhibiting 

active efflux activity, were developed from MCF-7 cells 

using doxorubicin selection. AgNPs effectively killed 

MCF-7/KCR cells, but as expected, these cells were more 

resistant to the cytotoxic effects of both 5 nm and 75 nm 

AgNPs compared to MCF-7 cells, possibly due to their 

more efficient cellular stress management mechanisms. 

In accord with previous reports [41–44], AgNP cytotox-

icity depended on nanoparticle size, as 5 nm AgNPs were 

more toxic than 75 nm AgNPs.

Interestingly, not only cytotoxic propensity, but the 

inhibition of Pgp efflux activity proved to be dependent 

on nanoparticle size, since 75 nm AgNPs, but not 5 nm 

counterparts, were capable to reduce Pgp transport 

activity in drug-resistant MCF-7/KCR cells, although no 

change in Pgp protein expression was observed (Fig. 2). 

�is stresses on the point that for efficient modulation of 

Pgp action, nanoparticles with the proper size must be 

selected. In fact, using the appropriate AgNPs, reversal 

Fig. 5 75 nm AgNP treatment depletes ER calcium stores and leads to ER stress. a Relative mRNA levels of ER stress markers in MCF-7/KCR cells 
treated with 75 nm AgNPs. b Protein levels of ER stress markers detected by immunoblot. c Densitometric quantitation of GADD153 protein levels. 
d Histogram of real-time calcium imaging from at least 5 ROIs (Region of interest) and e fluorescent calcium imaging of untreated and 75 nm 
AgNPs-treated MCF-7/KCR cells upon carbachol administration. Pictures were taken before and 1 min after carbachol exposure. f Representative 
bar graph of cytoplasmic calcium released on carbachol exposure. The values represent the mean ± standard deviation calculated from three 
independent experiments (*P < 0.03 ****P < 0.0001, Fisher’s LSD test)

(See figure on next page.)
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of drug resistance might be achieved and cancer cells 

could be sensitized to chemotherapeutic drugs. Hence, 

we proved that the cytotoxic and apoptosis-inducing 

potency of doxorubicin, a Pgp substrate and a first line 

chemotherapeutic drug to treat breast cancers, has been 

significantly raised in co-treatments with 75 nm AgNPs 

in multidrug-resistant MCF-7/KCR cells.

Inhibition of Pgp efflux activity by 75 nm AgNP treat-

ment, without compromising the Pgp expression was 

quite intriguing, which prompted us to investigate the 

underlying cellular mechanisms. Initially we hypothe-

sized, that augmented ROS production upon AgNP treat-

ments [38–44] would ultimately influence drug transport 

activity by causing mitochondrial dysfunction [44–46], 

diminishing mainly mitochondrium-derived ATP levels 

and making it insufficient to fuel Pgp efflux. In fact, in a 

recent report, Pgp inhibitory potential of the novel com-

pound RY10-4 was partially attributed to its cellular ATP 

diminishing capacity [47]. However, our results indicated 

that 75 nm AgNPs were less potent than 5 nm AgNPs in 

inducing ROS generation and damaging mitochondria 

(Fig. 4). �erefore, oxidative stress-related mitochondrial 

dysfunction is not the reason behind reduced Pgp activity 

in 75 nm AgNP-treated drug-resistant MCF-7/KCR cells. 

Furthermore, since we found higher intracellular sil-

ver concentration in 5  nm AgNP-treated drug-resistant 

cells than in 75  nm AgNP-exposed counterparts (Addi-

tional file 3), we concluded that although high amounts 

of reactive silver might influence cytotoxicity, this is not 

the feature which directs the observed inhibitory effects 

of 75 nm AgNPs on P-glycoprotein. We believe that the 

75 nm AgNP-induced Pgp inhibition and the associated 

molecular phenomena in drug-resistant breast cancer 

cells must be related rather to AgNP size.

Endoplasmic reticulum is a major assembly site of 

secretory and integral membrane proteins. �e ER 

lumen is rich in calcium, which is essential for continu-

ous functioning of ER protein quality control mecha-

nisms, like the calnexin/calreticulin cycle. Calnexin and 

calreticulin are ER resident lectins that ensure proper 

folding and oligomerization of glycoproteins in the ER 

[48–50]. ER stress disturbs the homeostasis of protein 

folding machinery and is manifested by activation of 

ER stress response elements and ER-associated degra-

dation (ERAD) [36, 49, 50]. It has been reported pre-

viously that AgNPs are able to induce ER stress and 

Fig. 6 75 nm AgNP treatment disrupts Pgp protein distribution between the plasma membrane and cytoplasm of MCF-7/KCR cells. a Relative 
mRNA and b protein levels of EDEM, a misfolded glycoprotein-binding protein in MCF-7/KCR cells treated with AgNPs. c Pgp protein levels 
determined from the plasma membrane  (Na+/K+ ATPase-positive) and cytoplasmic fractions (GAPDH-positive) of control and 75 nm AgNP treated 
MCF-7/KCR cells (M-Plasma membrane; C-Cytoplasm)
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disturb cellular calcium homeostasis [51, 52]. Hence, 

we hypothesized that 75  nm AgNPs, by inducing ER 

stress in drug-resistant cells, decrease the number of 

properly folded Pgp reaching the plasma membrane, 

where these transporters should manifest their func-

tion. Our results showed that 75  nm AgNPs, but not 

5 nm AgNPs induce the expression of ER stress markers 

(Grp94, Grp78/Bip, GADD153) in MCF-7/KCR cells. 

Finally, we proved that treatment of drug-resistant cells 

with 75 nm AgNPs depletes ER calcium levels (Fig. 5), 

which is the probable reason for ER stress induction. 

However, it is yet to be verified whether ER calcium 

loss is leading to ER stress or ER stress (due to other 

factors) is leading to calcium loss.

Under ER stress the amount of unfolded/misfolded 

proteins increases, which molecules are ultimately 

degraded by ERAD. For this, EDEM should be transcrip-

tionally and translationally activated, in order to direct 

terminally misfolded glycoproteins from futile calnexin/

calreticulin cycles to ERAD [35, 36]. Under such circum-

stances a reduction in the total Pgp levels is expected. 

Although we have verified the induction of ER stress, 

we have not observed a decrease in Pgp protein levels 

in MCF-7/KCR cells treated with 75 nm AgNPs (Fig. 2). 

�is can be explained by critically low ER calcium levels, 

because in such cases terminally misfolded glycoproteins 

do not or just slowly enter ERAD, and the activation of 

EDEM is not observable. In fact, we showed that EDEM 

expression levels were not changed upon 5  nm and 

75 nm AgNPs treatments (Fig. 6), which can explain why 

under ER stress conditions, induced by 75  nm AgNPs, 

the Pgp transporter activity was inhibited, but this gly-

coprotein was not subjected to ERAD, possibly due to 

critically depleted ER calcium levels. �e validity of this 

hypothesis was further supported by a shift in the distri-

bution of Pgp between plasma membrane and cytoplasm 

upon 75 nm AgNP treatment. Our results demonstrated 

that plasma membrane Pgp levels significantly decreased, 

whereas cytoplasmic Pgp levels increased in MCF-7/KCR 

cells treated with 75  nm AgNPs compared to untreated 

control (Fig. 6).

Conclusions
Our study revealed that larger sized AgNPs are potent 

tools for modulating Pgp activity and sensitizing multi-

drug resistant breast cancers to anticancer agents. We 

provide evidence that exploitation of ER stress can be a 

propitious target in defeating multidrug resistance in 

cancers. �is is a highly relevant finding as it renders 

AgNPs attractive candidates in rational design of thera-

peutically useful agents for tumor targeting.

Additional �les

Additional �le 1. Fluorescence microscopic images of drug-resistant 
MCF-7/KCR cells loaded with JC-1 dye without and with Verapamil pre-
treatment. Images indicate that verapamil treatment improved the reten-
tion of JC-1 dye in drug-resistant cancer cells. (JC-1 staining procedure is 
described in the Materials and Methods section).

Additional �le 2. Internalization of AgNPs in drug-resistant MCF-7/
KCR cells. Intracellular AgNPs were visualized by transmission electron 
microscopy. Representative TEM images of 5 nm and 75 nm AgNP-treated 
MCF-7/KCR cells and the enlarged sections verify the presence of AgNP 
aggregates inside cells (black arrow heads). n and c indicate nucleus 
and cytoplasm, respectively. For TEM imaging of biological samples  105 
cells were seeded onto 0.4 µm pore sized polyester membrane inserts 
(Corning) placed in a 6-well plate. Cells were allowed to grow until the fol-
lowing day when they were treated with AgNPs for 24 h. Then cells were 
washed and fixed in 4% glutaraldehyde in PBS and embedded in gelatine. 
The obtained specimens were sliced to 1–2 mm cubes, which were 
embedded in epoxy (Epon 812, EMS) by a routine TEM sample preparation 
protocol. Blocks were trimmed, thin sections of 70 nm were obtained and 
stained with uranyl and lead solutions. Images were captured by a Philips 
CM10 electron microscope using 100 kV voltage. TEM micrographs were 
taken by a Megaview G2 digital camera (ITEM, Olympus).

Additional �le 3. Intracellular silver concentrations of MCF-7/KCR cells 
treated with either 5 nm or 75 nm AgNPs determined by inductively cou-
pled plasma mass spectrometry (ICP-MS). Results indicate that treatments 
with 5 nm AgNPs lead to significantly higher intracellular silver concentra-
tions compared to 75 nm AgNP exposures. The values represent the mean 
± standard deviation calculated from three independent experiments 
(***, P<0.0002 ****, P <0.0001, Fisher’s LSD test). To determine the intracel-
lular silver amount of AgNP-treated as well as of control MCF-7/KCR cells 
by ICP-MS (Quadrupole Agilent 7700x SP-ICP-MS), cells were digested with 
cc HCl for 90 min at 90°C, then an equal volume of cc  HNO3 was added 
and the samples were further digested for another 90 min. The resulting 
liquid was filtered on 0.45 nm hydrophilic membrane filter and diluted to 
100 mL final volume.
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