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Summary. The nuclei o f  plant  cells ha rbo r  genes 
for two types o f  g lycera ldehyde-3-phosphate  dehy-  
drogenases ( G A P D H )  displaying a sequence diver-  
gence corresponding to the p rokaryo te /eukaryo te  
separat ion.  This  strongly supports  the endosym-  
biotic theory o f  chloroplast  evolut ion and  in par-  
t icular the gene transfer  hypothesis  suggesting that  
the gene for the chloroplast  enzyme,  initially located 
in the genome  o f  the endosymbio t i c  chloroplast  pro-  
genitor, was t ransferred during the course o f  evo-  
lution into the nuclear genome o f  the endosymbio t i c  
host. Codon  usage in the gene for chloroplast  
G A P D H  of  maize  is radically different f rom that  
employed  by present -day chloroplasts  and  f rom that  
o f  the cytosolic (glycolytic) enzyme  f rom the same 
cell. This  reveals the presence o f  subcellular selec- 
t ive pressures which appear  to be invo lved  in the 
op t imiza t ion  ofgene  expression in the economical ly  
impor t an t  graminaceous  monocots .  

Key words: c D N A s  --  G A P D H  evolu t ionary  tree 
--  Hor izonta l  gene transfer  - -  Coding strategies - -  
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Introduction 

G l y c e r a l d e h y d e - 3 - p h o s p h a t e  d e h y d r o g e n a s e  
( G A P D H )  was the first enzyme for which sequence 
da ta  o f  the  Ca lv in  cyc le /g lycolys i s  h o m o l o g u e s  
(Weeden 1981) became  available.  The  recent anal-  
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ysis o f  partial  sequences f rom mus ta rd  (Mart in and 
Cerff 1986) and  subsequent ly  f rom tobacco (Shih et 
al. 1986) showed that  the photosynthe t ic  enzyme of 
higher plants, i.e., its catalytic subuni t  (Cerff 1982a, 
Cerff et al. 1986), is more  s imilar  to the G A P D H  
of  thermophi l ic  bacter ia  than it is to the glycolytic 
enzyme encoded within the same nucleus, thereby 
provid ing  initial evidence in suppor t  o f  the gene 
transfer  hypothesis  for the origin o f  this nucleuS" 
encoded chloroplast  enzyme.  Here  we repor t  the 
first compar i son  o f  comple te  sequences for bo th  ma- 
tu re  p o l y p e p t i d e s  o f  c h l o r o p l a s t  a n d  cytosol ic  
G A P D H  f rom a single plant  species, Z e a  mays.  The 
two enzymes  share only 45% of  their  amino  acid 
residues and show strikingly different codon choice 
patterns,  with chloroplast  G A P D H  using 97% G or 
C in the third base posit ion. 

Materials and Methods 

The maize cDNA library used in the present study had previously 
been constructed at the Max-Planck-lnstitut fiir Ziichtungsfor" 
schung at Cologne in the laboratory of H. Saedler by cloning the 
cDNA into the EcoRI site of the lambda vector NM 1149 
(Schwarz-Sommer et al. 1987). The library was screened by plaque 
hybridization with the heterologous probes from mustard pS 198c 
(cytosolic GAPDH) and pS84b (chloroplast GAPDH, subunit A) 
(Martin and Cerff 1986). The positive maize clones pZm9 (cY" 
tosolic GAPDH) and pZm57 (chloroplast GAPDH) were sub- 
cloned into the EcoRI site of pUC9 and submitted to DNA 
sequence analysis. For clone pZm57 the chemical degradation 
method of Maxam and Gilbert (1977) was used. For clone pZrn9 
Sanger's enzymatic technique (Sanger et al. 1977) was employed 
in combination with the use of the single-stranded DNA ba cte~ 
riophage M13 (Vieira and Messing 1982). 
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Fig. 1. Nucleotide and deduced amino acid 
sequences of cDNAs for cytosolic (clone pZm9, 
lines 1, I') and chloroplast GAPDH (clone 
pZm57, lines 2, 2') from maize. Amino acid 
residues of the mature subunits are numbered 
according to Harris and Waters (1976) and re- 
gions of homologies between the two enzymes 
are boxed. The initiation and termination co- 
dons and the presumptive polyadenylation sig- 
nals aataaa and aataat in the trailers are under- 
lined. The arrow indicates the presumptive 
processing site of the chloroplast GAPDH pre- 
cursor corresponding to the amino terminus de- 
termined for the mustard enzyme (Cerff and 
Witt 1983). To obtain the best alignment of the 
two corresponding coding regions and the most 
probable positions of the insertions and dele- 
tions within the NADP-binding domain, the 
chloroplast sequence was fitted into the general 
GAPDH matrix previously established (Martin 
and Cerff 1986) by maximizing sequence identi- 
ties and conservative replacements within non- 
identical stretches�9 

Resu l t s  and D i s c u s s i o n  

Evidence for a Horizontal Transfer 
of GAPDH Genes 

I n  Fig. 1 the c o m p l e m e n t a r y  D N A s  e n c o d i n g  t h e  

c o m p l e t e  s equences  o f  the catalyt ic  subuni t s  o f  cy-  
to so l i c  ( c lone  p Z m 9 ,  l ines  1 and 1') and ch lorop las t  
G A P D H  (c lone  p Z m 5 7 ,  l ines  2 and 2') f r o m  m a i z e  
are al igned.  T h e  c o d i n g  region o f  c l o n e  p Z m 9  corn- 

prises  338  c o d o n s ,  inc lud ing  start and s top  c o d o n s ,  
and is f o l l o w e d  by a trailer o f  217  n u c l e o t i d e s  plus  
a p o l y A  tail.  T h e  trailer c o n t a i n s  a c o n v e n t i o n a l  
p o l y a d e n y l a t i o n  s ignal  aataaa w h i c h ,  h o w e v e r ,  is  
l oca ted  165 n u c l e o f i d e s  u p s t r e a m  o f  the  p o l y a d e n y l -  
a t ion  site  (under l ined  in Fig. 1). 

C l o n e  p Z m 5 7  (ch loroplas t  G A P D H ,  l ines  2 and  
2' in Fig. 1) starts wi th in  the  s e q u e n c e  c o d i n g  for 
the transit  pept ide  46  c o d o n s  u p s t r e a m  o f  the  pre-  
s u m p t i v e  process ing  site.  It  e x t e n d s  2 3 0  n u c e l o t i d e s  



322 

A Identities Matrix of Plant GAPDH 

Cgtosol 
1 2 3 

1. Maize 
2 .  Pea  ~ ........... 
3. Tobacco [88531 i88 i 
4, Mustard [ 8.8..,'i'.~.~i 
5. E, coil 65  64  63  

C h l o r o p l a s t  

Sequences 

4 1 2 3 4 

!. M a i z e  
2. Pea J ~  
3. Tobacco GapR r~i~i 
4. Tobacco GapB 81 79 79 

64 5. B a c i l l u s  58 57 56 57 
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Fig. 2. The evolution of GAPDH en- 
zymes. The GAPDH evolutionary tree (B) 
is based on the sequence differences calcu- 
lated from the previously published identi" 
ties matrix (Martin and Cerff 1986) and 
that shown in Fig. 2A. These differences 
were transformed into PAM units (accept- 
ed point mutations per 100 residues) by 
correcting for superimposed mutations ac- 
cording to Dayhoff (1972). The approxi- 
mate divergence times were calculated by 
dividing the half PAM values separating 
two particular sequences with the unit evo- 
lutionary rate determined for the animal 
GAPDH enzymes (2.2 PAM per 100 mil- 
lion years, Dayhoff 1978). For sources of 
sequence information in Fig. 2A see Table 
2 and text. 

3' to the termination codon, has a polyA tail, and 
35 nucleotides upstream of  the latter the putative 
polyadenylation signal aataat. The aminoterminus 
of  the purified chloroplast GAPDH from mustard 
starts with methionine at position 0 (Cerff and 
Witt 1983). This corresponds to lysine in the maize 
enzyme leaving 337 amino acids for the polypeptide 
chain of  the mature subunit. 

Maize chloroplast G A P D H  shows 58% sequence 
similarity to the enzyme from Bacillus stearother- 
mophilus (alignment not shown) but shares only 45% 
of its amino acids (54% of its nucleotides) with its 
glycolytic counterpart (amino acids boxed in Fig. 1). 

This indicates a very distant relationship between 
the two maize enzymes and suggests that they maY 
have diverged as early as the pro- and eukaryotic 
lineages. The sequences of  chloroplast and cytosolic 
GAPDHs from maize, pea (Brinkmann and Cerff, 
publication in preparation), tobacco (Shih et al. 
1986), and mustard (cytosolic G A P D H  only, Martin 
and Cerff 1986) together with some sequences from 
animals, bacteria, and yeast have been used to con- 
struct the GAPDH evolutionary tree shown in Fig. 
2B (for details see legend of Fig. 2B). This tree clearly 
demonstrates that chloroplast and cytosolic GAPDH 
diverged long before the plant-animal division pre- 



Table 1. Codon usage ofcytosolic (a) and chloroplast (b) GAPDH from maize 
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a b a b a b a b 

Phe-TTT 3 0 Ser-TCT 2 0 
Phe-TTC 11 11 Ser-TCC 7 20 
Leu-TTA 0 0 Ser-TCA 1 0 
Leu-TTG 1 0 Ser-TCG 4 4 

Leu-CTT 5 1 Pro-CCT 4 0 
Leu-CTC 10 20 Pro-CCC 4 11 
Leu-CTA 0 0 Pro-CCA 2 1 
Leu-CTG 4 9 Pro-CCG 2 5 

IIe-ATT 6 0 Thr-ACT 6 0 
IIe-ATC 16 22 Thr-ACC 11 17 
IIe-ATA 0 0 Thr-ACA 4 0 
Met-ATG 8 7 Thr-ACG 1 6 

VaI-GTT 15 0 AIa-GCT 14 1 
Val-GTC 17 30 A i a - G C C  13 21 
Val-GTA 0 0 Aia-GCA 2 0 
Val-GTG 4 11 Aia-GCG 0 14 
- . . . . . .  

Tyr-TAT 3 0 Cys-TGT 0 0 
Tyr-TAC 6 6 Cys-TGC 2 6 
ter-TAA -- -- ter-TGA -- 1 
ter-TAG 1 -- Trp-TGG 5 5 

His-CAT 3 0 Arg-CGT 1 0 
His-CAC 5 6 Arg-CGC 2 11 
GIn-CAA 0 1 Arg-CGA 0 0 
GIn-CAG 3 8 Arg-CGG 0 5 

Asn-AAT 3 2 Ser-AGT 0 0 
Asn-AAC 10 17 Ser-AGC 10 6 
Lys-AAA 4 0 Arg-AGA 2 0 
Lys-AAG 24 21 Axg-AGG 6 5 

Asp-GAT 7 1 Gly-GGT 14 1 
Asp-GAC 19 31 GIy-GGC 11 24 
GIu-GAA 2 0 Gly-GGA 3 2 
Glu-GAG 13 11 Gly-GGG 2 6 

Cluding the possibility that chloroplast GAPDH 
originated by a gene duplication event in the early 
plant eukaryote. Thus, either animals have lost the 
gene or plants have acquired it horizontally from 
the progenitors of  chloroplasts after their divergence 
from animals. The similarity of  the chloroplast en- 
ZYme to that of  B. stearothermophilus clearly sup- 
Ports the latter alternative in agreement with the 
endosymbiotic theory of chloroplast evolution. 

The evolutionary tree in Fig. 2B reveals three 
Other major points of  interest. First, the enzyme of 
Escherichia coli (Branlant and Branlant 1985) be- 
longs to the eukaryotic part of  the tree, which has 
previously been interpreted in terms of  a possible 
gene transfer event in the opposite, eukaryote to 
prokaryote, direction (for details see Martin and Cerff 
1986). Second, in dicotyledonous (dicot) plants cy- 
tosolic and chloroplast GAPDHs  seem to evolve at 
similar rates as shown by the sequence similarities 
of 88 and 89% for the comparisons tobacco cytosol/ 
Pea cytosol and tobacco chloroplast/pea chloroplast, 
respectively (see values boxed by dashed lines in 
Fig. 2A). With respect to cytosolic G A P D H  it is 
Surprising that 11-17% sequence divergence be- 
tween maize, pea, tobacco, and mustard (see boxed 
Values in the left half of  Fig. 2A) does not lead to 
significant charge differences at the native enzyme 
level, as shown by our previous zymogram analysis 
of cytosolic and chloroplast GAPDHs  from higher 
Plants (Cerff 1982b). Third, in maize, as opposed to 
dicot species, the evolutionary rates of  chloroplast 
and cytosolic G A P D H  differ considerably, the chlo- 
roplast enzyme being more conserved (90/91% po- 
sitional identity with pea/tobacco) than its cytosolic 
Counterpart (8 3/8 3/8 5% positional identity with pea/ 
tobacco/mustard, see values boxed by continuous 
lines in Fig. 2A). This probably reflects a slowdown 

of chloroplast G A P D H  evolution in maize rather 
than a corresponding acceleration of  the evolution- 
ary rate ofcytosolic GAPDH.  This interpretation is 
based on our observation (Table 1) that in maize 
the chloroplast enzyme is subjected to extremely 
selective constraints at the level ofcodon utilization. 

Codon Bias and Gene Expression in Cereals 

It is shown in Table 1 that the codon choice pattern 
of  maize chloroplast G A P D H  is highly skewed. The 
gene uses only 38 amino acid triplets as compared 
to 51 of  the gene for the cytosolic enzyme. This 
difference is absent in the three other G A P D H  pairs 
from pea (Brinkmann and Cerff, unpublished), mus- 
tard (Martin and Cerff 1986), and tobacco (Shih et 
al. 1986), which use between 50 and 59 different 
codons (not shown). The codon bias of  maize chlo- 
roplast G A P D H  is expressed as a 97% preference 
for G (28%) or C (69%) at the third base position. 
In contrast, cytosolic G A P D H  shows 67% third po- 
sition G + C  (20% G and 47% C). 

To obtain a more general impression of  angio- 
sperm coding strategies, the third position G + C  
percentage was analyzed for 27 nuclear genes or 
mRNAs from cereals and dicot plants as well as for 
some chloroplast genes from two plant species (Ta- 
ble 2). The lowest G + C  percentage in the triplet 
third base position (around 30%) is found for chlo- 
roplast genes of  both cereals and dicot species (maize 
and tobacco, see Table 2). With respect to nuclear 
genes, however, the two taxa exhibit clearly different 
coding strategies. While in cereals G + C  values range 
between roughly 40 and 100% in each species (see 
Table 2), values in dicot plants are rather homo- 
geneous, the largest span being found in soybean 
with 39 and 61% G + C  for leghemoglobin and the 
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Table 2. G + C  percentage at the third positions of codons in genes from higher plants. Values in parentheses refer to the G+C 
percentage within noncoding regions of  individual genes (introns and flanking sequences). Coding sequences that are not full length 
with respect to the mature protein are marked with an asterisk. 

Expression induced 
Plant % G + C  Genes or mRNAs by/in/during EMBL codes and references 

Maize 30 3 chloroplast genes CHZMATBE, CHZMO2; 1, 2 
43 (37) Zein Seed development ZMZEOI; 3 
49 (42) Triosephosphate isomerase 4 
52 Adenine nucleotide translocator ZMANT 1; 5 
57 (38) Actin ZMACTI; 6 
64 (41) Alcohol dehydrogenase ZMADH1S; 7 
67 Cytosolic GAPDH This paper 
67 (44) Sucrose synthase Seed development ZMSUCS2; 8 
78 Glutelin 2 Seed development 9 
84 Chloroplast PEP carboxylase Light/phytochrome ZMPEPCR; 10 
84 (45) Al-iocus enzyme Seed development 11 
93 (53) Waxy-locus enzyme Seed development 12 
94 Bronze-locus enzyme Seed development 13 
95 (52) Histones H3-H4 Cell cycle/S-phase 14 
97 (45) Small subunit RuBCase Light/phytochrome 15 
97 Chloroplast GAPDH Light/phytochrome This paper 

Wheat 40 (35) Gliadin Seed development TAGLIAA; 16 
41 (41) HMW-glutenin Seed development TAGLU 1DG; 17 
54* HMW gluten Seed development TAHGO 1; 18 
87* Small subunit RuBPCase Light/phytochrome TARUB2; 19 
97 (52) H3-H4 bistones Cell cycle/S-phase TAHIOI,  TAHIO2; 20, 21 

Barley 38 (41) B-hordein Seed development HVB1HORG; 22 
59* Cytosolic GAPDH 23 
89 a-amylase Gibereilic acid HVAMYA; 24 
91 UDP-glucose SGT Seed development 25 

100" H3-histone Cell cycle/S-phase 26 

Pea 43 Chloroplast GAPDH Light/phytochrome 27 
44 (33) Small subunit RuBPCase Light/phytochrome PSRCOI; 28 
46 (29) Light harvesting protein Light/phytochrome PSCAB80; 29 
46 Cytosolic GAPDH 27 

Mustard 41" Chloroplast GAPDH Light/phytochrome 30 
55 Cytosolie GAPDH 30 

Tobacco 31 6 chloroplast genes 31 
38 Chloroplast GAPDH (Gap B) Light/phytochrome 32 
44* Cytosolic GAPDH (Gap C) 32 
50 Chloroplast GAPDH (Gap A) Light/phytochrome 32 
52 (32) Small subunit RuBPCase Light/phytochrome NTRUBSS; 33 

Soybean 39 (24) Leghemoglobin Root nodules GMGLO3; 34 
47 7S seed storage protein Seed development GM7SAA; 35 
49 (30) Heat shock protein (hs 6871) Heat GMHSP2; 36 
61 (33) Small subunit RuBPCase Light/phytochrome GMRUBP; 37 

Abbreviations: PEP, phosphoenoipyruvate; RuBPCasc, ribulose bisphosphate carboxylase; waxy-locus enzyme = UDP-glucose sOT, 
UDP-glucose starch glycosyl transferase; bronze-locus enzyme, UDP-glucosc flavonol-3-O-glycosyl transferase. This analysis has been 
performed by screening thc EMBL Nuclcotide Sequence Data Library and the sequences of some recent papers with the DNA scquencinB 
program developed by Greavcs and Ware (University of Bristol, unpublished) and adapted to the MULTICS computer of  the UniversitY. 
of Grenoble. Sources of  sequence information: 1, Krebbcrs et al. 1982; 2, McIntosh ct al. 1980; 3, Pcdersen ct al. 1982; 4, Marchionnl 
and Gilbert 1986; 5, Baker and Lcaver 1985; 6, Shah et al. 1983; 7, Dennis et al. 1984; 8, Werr et al. 1985; 9, Prat et ai. 1985; 10, 
Izui et al. 1986; 11, Schwarz-Sommer et al. 1987; 12, K15sgen et al. 1986; 13, D. Furtek, personal communication; 14, Chaubet et 
al. 1986; 15, Lcbrun et al. 1987; 16, Anderson et al. 1984; 17, Thompson et al. 1985; 18, Forde et al. 1983; 19, Smith et al. 1983; 
20, Tabata et al. 1983; 21, Tabata et al. 1984; 22, Forde et al. 1985; 23, Chojecki 1986a; 24, Rogers and Milhman 1983; 25, Rhode 
ct al. 1986; 26, Chojecki 1986b; 27, Brinkmann and Cerff, unpublished; 28, Coruzzi ctal. 1984; 29, Cashmore 1984; 30, Martin and 
Cerff 1986; 31, Maruyama et al. 1986; 32, Shih ct al. 1986; 33, Mazur and Chui 1985; 34, Hyldig-Nielsen ct al. 1982; 35, Schuler et 
al. 1982; 36, Schoeffl et al. 1984; 37, Berry-Lowe et al. 1982 
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Small subunit of  ribulose bisphosphate carboxylase, 
respectively. These findings complement and extend 
a recent correspondence analysis by Boudraa (1987; 
for methodological details see Grantham 1980 and 
references therein) of  the codon choice patterns 
of chloroplast (17 sequences) and nuclear (20 se- 
quences) mRNA sequences from higher plants. This 
analysis showed a segregation of the two mRNA 
classes along the horizontal axis which, according 
to the present data, is due to their overall difference 
in G + C  content at the degenerate codon position. 
However, while the chloroplast sequences, because 
of their low and homogeneous G + C  content (see 
Table 2 and Maruyama et al. 1986), form a rather 
COmpact cluster, the nuclear mRNAs are horizon- 
tally scattered (see Boudraa 1987) and, in view of  
the present findings, may be separated into two hor- 
izontal subclasses: one including all dicot sequences 
and the "relaxed" monocotyledonous (monocot) se- 
quences maize zein, wheat gliadin, and maize actin 
(40, 43, and 57% G+C,  see Table 2), and the other 
Comprising the highly biased monocot sequences 
alpha-amylase and histone H3 from barley (89 and 
100% G+C) and, interestingly, the sequence pre- 
thaurnatin (90% G+C, not shown in Table 2) from 
Thaumatococcus danielli (Edens et al. 1982), a 
member of  the monocot plant family Marantaceae 
(Zingiberales, Liliidae). The high third position G + C 
Content of  90% for prethaumatin, the only noncereal 
monocot sequence presently available (EMBL re- 
lease 9, 1986), presumably indicates that the coding 
Strategies of  cereals investigated here are a charac- 
teristic feature of monocot angiosperms in general. 

Large differences in G + C  content at the degen- 
erate position of codons have previously been re- 
ported for genes of birds and mammals (for review 
see Ikemura 1985). The original work of Bernardi 
et al. (1985) and the subsequent investigations by 
Bernardi and Bernardi (1986) and Aota and Ike- 
mum (1986) suggests that in warm-blooded verte- 
brates these differences are a consequence of the 
Overall mosaic structure of the genome. According 
to these findings genes of birds and mammals are 
embedded in "isochores" (Bernardi et al. 1985), long 
DNA segments (> 300 kilobases) characterized by 
different G + C  levels and fairly homogeneous base 
Compositions. This means that the G + C  content at 
the third base position of  a particular mammal gene 
reflects the G + C level of the surrounding isochore, 
which comprises introns, flanking sequences, and 
"spacer DNA." For the plant genes shown in Table 
2 the total G + C  percentage ofintrons and flanking 
regions, where available, are given in parentheses, 
Yet show little if any correlation to third base po- 
sition values. This observation indicates that the 
differences in codon choice patterns in monocot 
genes are maintained independently of the G + C  

content of the surrounding portions of the genome, 
in contrast to the situation found in birds and mam- 
mals. Since the natural rate of silent substitutions 
will continuously strive towards randomization of  
nucleotide frequencies at the third base position (Ki- 
mura 1982), an extreme bias for particular nucleo- 
tides in certain genes clearly represents the results 
of selection acting at a level below that of  amino 
acid substitution. 

For the cereal genes in Table 2, a rough corre- 
lation between increasing codon bias and gene ex- 
pressivity is observed. The selective mechanism re- 
sponsible for codon bias, therefore, seems to relate 
third position G + C  preference with the tendency 
of a gene to show strong expression in response to 
endogeneous (cell cycle, developmental, hormonal) 
and exogenous stimuli (such as morphogenetic light 
mediated by the photoreceptor phytochrome; e.g., 
chloroplast GAPDH, see Cerff and Kloppstech 
1982). Since no such correlation is found for dicot 
plants, the selective pressure yielding codon bias has 
either evolved in (graminaceous) monocots or has 
been lost in dicots since the divergence of  these 
angiosperm classes. Also the cereal storage protein 
genes (zein, hordein, gliadin) do not appear to con- 
form to the trend just described. However, since 
storage proteins are encoded by multigene families, 
their strong expression during seed development may 
depend on high endogenous levels of  multiple 
mRNAs rather than on the high translational activ- 
ity of individual mRNA species (see below). 

Since it is clear that a broad spectrum of  codon 
bias does exist for cereal genes, one would like to 
know what selective process is involved. One pos- 
sibility is that RNA processing efficiency or RNA 
secondary structure and stability are positively in- 
fluenced by a high G + C  content at the third base 
position. Although RNA secondary structure and 
stability can surely not be excluded as points where 
selection can become effective (see Bernardi and 
Bernardi 1986), "processability" seems rather im- 
probable as a major pressure since the maize gene 
for UDP-glucose starch glycosyl transferase (the 
waxy-locus enzyme) with 13 introns and a poly- 
adenylated mRNA (K1/Ssgen et al. 1986) possesses 
about the same third position G + C  as the maize 
genes for histones H3 and H4 (93 vs 95%), genes 
that boast neither polyadenylation nor introns (Ta- 
bata et al. 1983, 1984; Chaubet et al. 1986). 

A tempting explanation for the occurrence of  
strongly preferred codons in highly expressed mono- 
cot genes is the presence of  distinct classes of  major 
isoaccepting tRNAs with anticodons best adapted 
to only a subset of possible synonymous codons. 
The existence of  such a coding strategy has been 
demonstrated for E. coli (Gouy and Gautier 1982; 
Grosjean and Fiers 1982; Ikemura 1985) and yeast 
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(Bennetzen and Hall 1982; Ikemura and Ozeki 1982), 
where the more heavily a gene is expressed the more 
extreme its codon bias is, and the codons preferred 
correspond to the most abundant tRNA species in 
each isoaccepting subset. Whether such is the case 
for (graminaceous) monocots remains to be shown. 
Data for nuclear tRNAs in plants are currently scarce 
(for a compilation see Sprinzl et al. 1985). The pre- 
diction is that when such data become available for 
cereals, the anticodons of  the major species will cor- 
respond to those triplets having G or C at the third 
position. It is interesting in this connection that the 
highly expressed genes in cereals do not avoid 
"strong" eodons (G/C G/C G/C), in contrast to those 
in bacteria (for review see Grosjean and Fiers 1982) 
and yeast (Bennetzen and Hall 1982). In fact, they 
clearly select for them whenever possible, as shown 
by the codon families for proline (CCX), alanine 
(GCX), arginine (CGX), and glycine (GGX) in Table 
1 (chloroplast GAPDH,  columns b). The gene for 
maize chloroplast G A P D H  is representative in this 
respect for the other cereal genes with a high G + C  
content in the third base position (see Table 2). This 
extends the previous observations by Wells et al. 
(1986) for the highly expressed histone H3 and actin 
genes of  higher animals, which also show this ten- 
dency, although to a lesser extent. Hence, the present 
data and those of  Wells et al. (1986) seem difficult 
to reconcile with the hypothesis of  Grosjean and 
Fiers (1982) that codons with intermediate binding 
energies ("intermediate codons"), preferentially used 
by highly expressed genes of  prokaryotes and yeast, 
are more efficiently translated than "strong" and 
"weak" codons. The studies of  Sharp and Li (1986) 
and of  Holm (1986) suggest that the codon bias of  
a particular gene does not actively modulate but 
rather passively reflects its level of  expression. This 
seems reasonable since changes in gene expression 
may evolve much easier by modifying a single com- 
ponent of the expression system, such as promotor 
strength (Sharp and Li 1986). The preference of  co- 
dons recognized by the most abundant tRNAs in E. 
coli genes encoding abundant proteins is explained 
by Sharp and Li (1986) on the basis o f  selection 
against codons that might impair the efficiency of 
(rapid) translation, and by Holm (1986) in terms of  
constraints on translation accuracy and on the cost 
of  proofreading at the level of  tRNA acylation. If  
these explanations are correct and if they also apply 
to the codon bias of  genes from monocot angio- 
sperms, the present contribution raises the intrigu- 
ing question of  how dicot plants could have escaped 
these selection pressures. The striking absence of  a 
marked codon bias in dicot genes is highlighted by 
a recent publication (Chaboute et al. 1987) showing 
that in the dicot plant Arabidopsis thaliana even the 
H3 and H4 histone genes, usually G/C-rich in all 

higher eukaryotes (Wells et al. 1986 and Table 2), 
use only 54% G + C  in the third base position. 

Splicing of Transcripts from Highly Biased 
Cereal Genes in Transgenic Tobacco 

Where the manipulative transfer of  genes across the 
monocot--dicot boundary is concerned, the different 
coding strategies within these two classes of  angio- 
sperms could be of  considerable importance. Keith 
and Chua (1986), for example, have recently shoWn 
that the gene encoding the small subunit ofribulose 
bisphosphate carboxylase from wheat is inefficientlY 
spliced in transgenic tobacco plants and the spliced 
and unspliced products are polyadenylated at mul- 
tiple novel sites in the wheat 3' flanking region. In 
contrast, the introns of  the corresponding pea gene 
are excised efficiently in tobacco suggesting some 
incompatibility between monocot and dicot splicing 
mechanisms. It is possible that unknown differences 
between the intron sequences o fmonoco t  and dicot 
plants play a discriminative role. However, the G+ C 
content of the exons may be equally important. As 
shown in Table 2, the G + C  content at the third base 
position is 88% in wheat and only 44 and 55% in 
pea and tobacco small subunit genes, respectively. 
It seems possible, therefore, that this high G + C  
percentage may favor secondary structures of  wheat 
primary transcripts that can neither be efficientlY 
spliced nor correctly polyadenylated in tobacco. It 
should be possible to test this hypothesis by intro" 
ducing into tobacco a hybrid small subunit gene 
containing the intron from wheat and the exons frona 
pea and vice versa. In addition, since the splicing 
apparatus from cereals can cope with large differ- 
ences in the G + C  content of  exons, one might ex- 
pect that primary transcripts from dicot genes can 
be efficiently spliced in cereals, a testable hypothesis 
in light of  the currently available cereal transfor- 
mation systems (Fromm et al. 1985, 1986; L/Srz et 
al. 1985; Potrykus et al. 1985; Cocking and DaveY 
1987). 

The amino acid sequence data presented here and 
elsewhere (Martin and Cerff 1986; Shih et al. 1986) 
suggest strongly that early in the evolution of plants 
chloroplasts still possessed the gene for the photO- 
synthetic GAPDH enzyme, but during the course 
of  geologic time relinquished it to the nucleus by an 
intracellular gene transfer process. With respect to 
the notably low G + C  content at the third base po- 
sition for present-day chloroplast genes (see Table 
2 and Maruyama et al. 1986; see also Morris and 
Herrmann 1984), the extreme to which the maize 
chloroplast GAPDH gene has evolved at the third 
base position in response to selective pressure with- 
in the nucleus is striking. By observing the patterns 
of nature that have evolved in the optimization of 
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gene expression subsequent to the transfer of  genes 
between subcellular compartments, we should be 
able to draw conclusions that allow us to optimize 
the expression of  genes transferred between species. 
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