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Endothelial cells (ECs) form a unique barrier between the vascular lumen and the vascular

wall. In addition, the endothelium is highly metabolically active. In cardiovascular disease

such as atherosclerosis and hypertension, normal endothelial function could be severely

disturbed leading to endothelial dysfunction that then could progress to complete

and irreversible loss of EC functionality and contribute to entire vascular dysfunction.

Proatherogenic stimuli such as diabetes, dyslipidemia, and oxidative stress could initiate

endothelial dysfunction and in turn vascular dysfunction and lead to the development

of atherosclerotic arterial disease, a background for multiple cardiovascular disorders

including coronary artery disease, acute coronary syndrome, stroke, and thrombosis.

Intercellular junctions between ECs mediate the barrier function. Proinflammatory stimuli

destabilize the junctions causing the disruption of the endothelial barrier and increased

junctional permeability. This facilitates transendothelial migration of immune cells to the

arterial intima and induction of vascular inflammation. Proatherogenic stimuli attack

endothelial microtubule function that is regulated by acetylation of tubulin, an essential

microtubular constituent. Chemical modification of tubulin caused by cardiometabolic

risk factors and oxidative stress leads to reorganization of endothelial microtubules.

These changes destabilize vascular integrity and increase permeability, which finally

results in increasing cardiovascular risk.

Keywords: endothelium, endothelial barrier, cell-to-cell junctions, endothelial intercellular junctions,

cardiovascular disease

INTRODUCTION

Generally, the endothelium could be defined as a cellular monolayer separating all tissues
from the bloodflow (Minami and Aird, 2005; Curry and Adamson, 2010; Chistiakov et al.,
2015). In 1950’s–60’s, implementation of electron microscopy provided rich data about the
utlrathin structure of the endothelium. Endothelial cells (ECs) were shown to have some specific
cytological characteristics such as presence of Weibel-Palade bodies (Weibel and Palade, 1964).
ECs are typically characterized by the presence of large amounts of vesicles and caveolae along
the luminal surface, which are capable to move from the luminal to basal surface of ECs,
thus providing transendothelial transport of biologically active substances (Figure 1). However,
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ECs are not uniformly organized. For ECs, a significant
phenotypic heterogeneity was shown depending on the location
and a vessel type (Repin et al., 1984; Pries and Kuebler, 2006; Dyer
and Patterson, 2010; Tse and Stan, 2010). In the vascular system,
vascular beds display unique morphological characteristics and

FIGURE 1 | The formation of vesicles (50–90nm in diameter) and

caveolae along the luminal surface of endothelial cells (A–C). In the

cytoplasm, vesicles often aggregate and fuse, forming vesicular structures of

larger sizes (A,B). Some plasmalemmal vesicles can fuse with cell membrane

in the area of EC intercellular contacts (C). Transmission electron microscopy

(TEM). Scale bars = 100 nm (A–C). Images are adapted from Bobryshev

(1983).

FIGURE 2 | Endothelial function in the norm. Arterial endothelial cells are involved in the maintenance of vascular homeostasis by providing balanced release of

vasodilatating/vascoconscticting factors and prothrombotic/antithrombotic substances that inhibits the endothelial adhesion of leukocytes and thus, prevents the

initiation of vascular inflammation.

functionality, and this contributes to phenotypic endothelial
variability (Aird, 2007; Sukriti et al., 2014).

The endothelium is responsible for different functions
including control of vascular tone and permeability, regulation
of vascular inflammation, prevention of thrombosis, and
maintenance of vessel integrity (Aird, 2007; Chavez et al.,
2011; Figure 2). The vascular integrity and permeability barrier
function is crucially supported by intercellular junctions between
ECs (Vestweber, 2012). There are two major subtypes of
intercellular junctions such as tight junctions (TJ, or zona
occludens) and adherens junctions (AJ, or zona adherens;
Bazzoni and Dejana, 2004; Hirase and Node, 2012) that could
be seen in ECs. Typically, TJ are localized at the apical area
of the intercellular cleft. TJ are responsible for barrier function
involved in the control of the permeability of solutes between
adjacent neighboring cells (Runkle and Mu, 2013). Another TJ
property is regulating the lateral protein diffusion within the
plasma membrane (vanMeer et al., 1986). In venules, endothelial
TJ are present irregularly and randomly due to the lack of
intensive bloodflow. In ECs of arterioles, TJ are better organized
but are tighter than in arteries. In large arteries, ECs exhibit well-
structured TJ system because they are exposed to highly pulsatile
bloodflow (Aird, 2007).

In physiological conditions, the barrier function of arterial
endothelium is properly regulated and vascular permeability
is limited. In vascular pathology such as atherosclerosis,
proinflammatory signals activate ECs inducing expression
of adhesion molecules and destabilizing the endothelial
barrier. This attracts leukocytes including T lymphocytes and
monocytes/macrophages and enhances their attachment to
the endothelium. Then, leukocytes penetrate the endothelial
layer (Figure 3) and infiltrate the arterial intima. In the
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FIGURE 3 | Penetration of a blood cell through the endothelium into

the arterial intima. Scanning electron microscopy (SEM). Scale bar = 5µm.

Image is adapted from Bobryshev (1983).

intima, lymphocytes, and monocytes/macrophages initiate
proatherogenic inflammation.

Indeed, in atherosclerotic vessels, the barrier function of ECs
is weakened while vascular permeability is significantly increased
due to pathological structural changes in intercellular junctions
between ECs and loss of the proper regulation of the barrier
function. In this review, we will consider structural organization
and functional properties of endothelial intercellular junctions in
the norm and their alterations in cardiovascular pathology.

MAIN PROTEIN STRUCTURAL
COMPONENTS OF ENDOTHELIAL
INTERCELLULAR JUNCTIONS

Between ECs, intercellular junctions are formed by multiprotein
complexes containing transmembrane proteins and cytosol
proteins that connect membrane proteins to the intracellular
cytoskeleton (Figure 4; Hirase and Node, 2012; Dejana and
Orsenigo, 2013). In TJ, membrane-associated proteins are
represented by claudins, occludins, and junction adhesion
molecules (JAMs; Ebnet, 2008).

Claudins are low molecular proteins (20–27 kDa) that are
essential for TJ formation. Claudin is a tetraspan protein that
is connected with a cytoskeleton through tight junction proteins
(TJP1-4) of which TJP1, TJP2, and TJP3 are the most important
for conducting signal transduction in intercellular junctions
(Furuse et al., 1998; Morita et al., 1999a,b). Human ECs express
claudin-1,−3,−5,−12, and−15 (Morita et al., 1999a,b; Kiuchi-
Saishin et al., 2002; Witt et al., 2003; Bélanger et al., 2007).
In cultivated human ECs, knockdown of claudin-1 leads to
increased TJ permeability (Asaka et al., 2011). In brain ECs,
which form the blood-brain barrier, claudin-5 is involved in size-
selective barrier function (Nitta et al., 2003). Indeed, claudin-1
and claudin-5 play a central role in the regulation of endothelial
TJ permeability.

Human occludin has a 65-kDa mass, and represents a
tetraspan integral TJ protein that is a major component of
the junctional complex together with claudins. Rather than
being important in TJ assembly, occludin is crucial in TJ
stability and barrier function (Cummins, 2012). TJP1 is mainly
involved in mediating interaction between the COOH-terminus
of occludin and cytoskeletal actin (Li et al., 2005). The NH2-
terminus domain of occludin is involved in TJ sealing and barrier
functions. The extracellular loops contribute to the control of
paracellular permeability, with the second extracellular loop,
which is responsible for location of occludin at the TJ (Feldman
et al., 2005). TJs of ECs also contain JAMs that have a single
transmembrane domain and two Ig-like domains located in the
extracellular part (Martìn-Padura et al., 1998; Hirase and Node,
2012).

Compared to TJ comprising three membrane-associated
proteins, AJ have the only a single membrane protein, VE-
cadherin (Vascular Endothelial, VE). VE-cadherin has a single
transmembrane domain and interacts with another molecule
of VE-cadherin expressed on the cell surface of adjacent
EC. VE-cadherin is critically involved in the generation of
intercellular EC contacts, which are required for angiogenesis and
maintaining vessel integrity and barrier function (Dejana et al.,
2009; Giannotta et al., 2013; Gavard, 2014).

ENDOTHELIAL BARRIER IS INVOLVED IN
THE REGULATION OF VESSEL LEAKAGE

Vascular ECs enveloping the vascular lumen represent a border
between the blood and extravascular tissues. However, the
endothelial barrier is permeable for various molecules and
even cells. Ions and soluble solutes could move across ECs in
a paracellular manner via gaps and transcellular mechanisms
(Mehta et al., 2014). Leukocytes transmigrate across the
endothelial layer most likely between the cells (Tsukita et al.,
2001; Vestweber, 2012; Vestweber et al., 2014). In physiological
and pathological conditions, transendothelial trafficking of
leukocytes is needed to support immune response, angiogenesis,
vascular remodeling, and tissue repair.

Vascular permeability is dynamically regulated in order to
keep the tissue homeostasis. Depending on the needs of the
organism, the permeability can be increased or reduced through
the various regulatory mechanisms and stimuli that influence
the strength of EC junctional contacts. Interactions between the
structural components of endothelial junctions play a crucial role
for supporting a proper barrier function. In endothelial junctions,
the membrane density of integral junctional proteins is regulated
by vesicular transport proteins via internalization and recycling
mechanisms (Hirase and Node, 2012).

ADP-ribosylation factor 6 (ARF6) belongs to the family of
small GTPases that are key regulators of vesicular transport in
eukaryotic cells (D’Souza-Schorey and Chavrier, 2006). ARF6 is
activated by Pleckstrin and Sec7 domain-containing (PSD), a
guanine nucleotide exchange factor (Sakagami, 2008). Activated
ARF6 in turn contributes to AJ assembly through the control of
E-cadherin internalization in early endosomes (Padovani et al.,
2014).
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FIGURE 4 | Scheme of a protein structure of endothelial intercellular junctions (EIJs). EIJs consist of tight junctions (TJ) and adherens junctions (AJ) and join

two adjacent endothelial cells (Hirase and Node, 2012; Dejana and Orsenigo, 2013). In TJ, membrane proteins are represented by occludin, claudins, and junctional

adhesion molecules (JAM). Tight junction proteins (TJP1, TJP2, and TJP3) are cytosolic TJ proteins involved in linking TJ membrane proteins to the cytoskeletal actin.

Cingulin is another cytoplasmic TJ protein, which is able to interact with TJPs, occludin, and actin and therefore to link membrane TJ proteins with the cytoskeleton. In

AJ, a membrane protein component is represented by vascular-endothelial (VE)-cadherin. p120, β-catenin, and plakoglobin/γ-catenin bind to the C-terminal domain

of VE-cadherin. β-catenin interacts with α-catenin that with help of plakoglobin/γ-catenin contributes to the signal transduction from VE-cadherin to the cytoskeleton.

α-actinins and vinculain are microfilamentous components that mediate VE-cadherin-dependent mechanotransduction to the cytoskeleton.

The Rab-small GTPases are involved in the control of
TJ-dependent permeability and vesicular transfer of integral
junctional proteins. Rab3b and Rab13 are colocolized in TJs and
involved to TJ assembly (Weber et al., 1994). Rab13 contributes
to mediating the permanent endocytosis of occludin to the
plasmalemma of cells (Morimoto et al., 2005). Additionally,
Rab13 is implicated in the transfer of claudin-1-containing
vesicles from the cytoplasm to intercellular junctions and
regulates TJ assembly through protein kinase A (PKA)-mediated
signaling mechanism (Köhler et al., 2004; Hirase and Node,
2012). In ECs, Rab5a is responsible for control of claudin-1
localization, a key characteristic of TJ permeability (Asaka et al.,
2011). Therefore, Rab GTPase-dependent transfer and location
of junctional proteins are involved in regulating the barrier
functionality.

Exposure of the vascular endothelium to stressful conditions
such as hypoxia and oxidative stress could influence the
endothelial permeability. Ischemia and oxidative stress are
increased in atherosclerotic vessels and promote endothelial

dysfunction through multiple mechanisms including impaired
barrier function. In ECs exposed to hypoxia-reoxygenation,
relocation of the VE-cadherin-catenin complex led to weakened
barrier function. Increase in endothelial permeability was
suppressed by endothelial nitric oxide (NO) synthase (eNOS)
overproduction in cultured ECs (Ozaki et al., 2002). In EC
cultures, treatment with hydrogen peroxide stimulated loss of
occludin and cadherin in intercellular junctions suggesting for
destabilizing role of reactive oxygen species (ROS)-mediated
signaling and oxidative stress on vascular integrity (Kevil et al.,
2000).

Extracellular proteases could also regulate vascular
permeability. By cleavage of VE-cadherin, thrombin, a blood
coagulation pathway inducer, could disturb the endothelial
integrity (Rabiet et al., 1996). In VE-cadherin, thrombin
cleaves ectodomain followed by further proteolysis with the
involvement of γ-secretase and a disintegrin and metalloprotease
(ADAM)-10 (Schulz et al., 2008). This mechanism facilitates
T cell transmigration through the endothelium (Schulz et al.,
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2008). ADAM15 mediates transendothelial migration of
neutrophils and monocytes via the activation of Src/ERK1/2
signaling. However, this metalloproteinase does not digest
VE-cadherin or induces its degradation (Sun et al., 2010). In
Apolipoprotein E (ApoE)-deficient mice, genetic ablation of
ADAM15 resulted in reduction of plaque area by 52% and
lesion macrophage infiltration by 69% (Sun et al., 2012). In
proinflammatory conditions, activation and accumulation of
matrix metalloproteinases in endothelial cell-cell contacts was
detected suggesting for their likely involvement to the ablation of
the barrier and facilitating leukocyte migration to arterial intima.
This pathway could be implicated in the endothelial dysfunction
and atherogenesis (Sun et al., 2012).

In human and mouse atherosclerotic lesions, expression of
JAM-A is increased (Babinska et al., 2007). In ECs, up-regulation
of JAM-A is induced by proinflammatory cytokines (Azari et al.,
2011). Up-regulation of JAMs increases adhesion properties
of ECs. The extracellular portion of JAMs have a membrane
distal VH- and a membrane proximal C2-type Ig-like domain
capable to bind immune cells (Bradfield et al., 2007). In ApoE-
deficient mice, JAM-A inhibition led to reduced neointimal
lesion formation and decreased infiltration of the arterial
intima media by monocytes (Zernecke et al., 2006). Similarly,
in ApoE-deficient mice, inactivation of JAM-C with antibody
resulted in significant reduction of neointimal hyperplasia and
leukocyte recruitment (Shagdarsuren et al., 2007). In contrast,
up-regulation of JAM expression in EC attracted immune cells
and facilitated invasion of arterial intima by leukocytes (Garrido-
Urbani et al., 2014) thereby indicating the proatherogenic role of
JAMs.

PHOSPHORYLATION/
DEPHOSPHORYLATION AND
UBIQIUTINATION AS MECHANISMS OF
REGULATION OF VASCULAR INTEGRITY

Posttranslational modification of junctional proteins is
important for proper functioning of the endothelial barrier.
Phosphorylation/dephosporylation regulates adhesiveness
of VE-cadherin and its interaction with catenins and other
cytosolic proteins that link VE-cadherin with actin-based
cytoskeleton. A variety of signaling molecules such receptor
tyrosine kinases, Src family of tyrosine kinases, and protein
tyrosine phosphatases could be observed in AJs (McLachlan
and Yap, 2011). E-cadherin was shown to be important for the
activation of C-terminal Src kinase (c-Src)-dependent signaling
in cell-cell contacts (McLachlan and Yap, 2007; McLachlan et al.,
2007). Receptor type-protein tyrosine phosphatase-α (RPTPα)
activity is needed to activate E-cadherin-dependent tyrosine-
protein kinase CSK (Src) signaling at junctions (McLachlan
and Yap, 2011). c-Src activates Src, which in turn recruits
phosphatidylinositol-3-kinase (PI3K) to E-cadherin contacts
and induces PI3K-dependent signaling cascade (Pang et al.,
2005b). PI3K-mediated signaling is one of the major intracellular
pathways that regulates many cell functions including cell
growth, survival, and intracellular trafficking. On the other

hand, RPTPα/Src/Rap1 mechanism is involved in the reciprocal
stimulation of E-cadherin-dependent function in junctions
by recruiting myosin IIB, a cytoskeletal protein, to the zonula
adherens and supporting contractile tension and junctional
integrity (Gomez et al., 2015).

Vascular endothelial protein tyrosine phosphatase (VE-PTP)
enhances AJ assembly via dephosphorylation of VE-cadherin
(Nawroth et al., 2002). Down-regulation of VE-PTP or its
dissociation from VE-cadherin increases vascular permeability.
Binding lymphocytes and neutrophils induces VE-PTP
dissociation from VE-cadherin and promotes transendothelial
migration (Broermann et al., 2011). Besides leukocytes, vascular
endothelial growth factor (VEGF) also stimulates VE-PTP
dissociation and increases vascular leakage (Nottebaum et al.,
2008).

Phosphorylation/dephosphorylation of junctional proteins is
involved in the control of TJ permeability (Staddon, 2001).
Lysophosphatidic acid released by activated platelets or histamine
induces serine/threonine phosphorylation of occludin resulting
in increase of TJ permeability dependent or independent
from RhoA/Rho kinase, respectively (Hirase et al., 2001). In
hypercholesterolemia, elevated levels of low density lipoprotein
(LDL) could weaken the endothelial barrier function by
activating Rho while statins decrease permeability by suppressing
Rho (van Nieuw Amerongen et al., 2000). These data suggest that
RhoA/Rho kinase is a crucial mediator of the endothelial barrier
function.

Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell
division control protein 42 homolog (Cdc42), both are members
of the Rho family of small GTPases, are also implicated in
the control of endothelial permeability through regulation of
assembly of the actin cytoskeleton (Wojciak-Stothard et al., 2001;
Broman et al., 2006). Since Rho is located downstreamCdc42 and
Rac1, both Rho-dependent and Rho-independent mechanisms
could be implicated in the control of permeability (Hirase and
Node, 2012; Huveneers et al., 2015).

Through activating PI3K/Akt pathway, insulin stimulates
Rac1, which in turn enhances the barrier function by increasing
assembly of the actin-based cytoskeleton through the direct
phosphorylation of cortactin, a regulator of interactions between
AJ components (Gündüz et al., 2010). Rac1 could stabilize the
barrier through the recruitment of the family of p21-activated
kinases (PAK), which then activate LIM kinase 1 (LIMK1).
PAK cooperate with LIMK1 in LIMK1-mediated inactivation
of cofilin, an actin-binding protein that disassembles actin
filaments (Dan et al., 2001). Finally, Rac1 can cooperate with
Cdc42 in the negative regulation of Ras GTPase-activating-like
protein (IQGAP1), which induces dissociation of actin filaments
from the catenin-cadherin complex via activation of β-catenin
(Kuroda et al., 1999). β-catenin in turn prevents association
of α-catenin with VE-cadherin junctions (Shapiro and Weis,
2009). Insulin-induced PI3K/Akt-dependent enhancement of the
endothelial barrier could also be achieved by Akt-dependent
activation of endothelial nitric oxide (NO) synthase (eNOS;
Dossumbekova et al., 2008). In diabetes, which is established
as a strong independent cardiovascular risk factor, insulin-
dependent signaling in ECs is down-regulated due to insulin
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resistance. Indeed, defects in insulin signaling contribute
to diabetes-associated endothelial dysfunction and increased
vascular permeability.

The protein ubiqiutination associated with proteasome-
mediated protein degradation is crucial for the control of protein
modification and turnover. cAMP stimulates expression of Itch,
a member of E3 ligase family (Lui and Lee, 2005), which is
implicated in occludin ubiqiutination followed by TJ disruption
(Traweger et al., 2002). VEGF increases occludin ubiqiutination
and promotes TJ fragmentation and interruption of the
endothelial barrier (Murakami et al., 2009; Behl and Kotwani,
2015). The ubiquitin-proteasome system (UPS) is involved in
the modification and degradation of claudins. The E3 ubiquitin
ligase ligand of Numb-protein X1 p80 (LNX1p80) contributes
for removal of claudins from TJ (Takahashi et al., 2009).
Claudin-5 is modified by UPS-mediated polyubiquitination on
lysine 199 followed by proteasome degradation (Mandel et al.,
2012). Hypoxia or hypoxia-induced ATP deprivation caused AJ
uncoupling and a striking loss of E-cadherin mediated by a
proteasome (Bush et al., 2000). Indeed, angiogenic signaling
and hypoxia could regulate the vascular permeability with the
involvement of UPS.

EFFECTS OF MECHANOTRANSDUCTION
ON ENDOTHELIAL JUNCTIONS AND
CYTOSKELETON

Hemodynamic forces influence the endothelial function
especially in arteries where the mechanical stress is significant.
Mechanical forces can be transformed to biochemical signals
through the mechanisms defined as mechanotransduction
(Chatterjee et al., 2015). In blood vessels, endothelial
cell-cell contacts and their integrity is the primary target
for the mechanotransduction-dependent challenge. In
pathology such as muscular dystrophy and cancer, the link
between the intercellular junctions and actin cytoskeleton
is frequently disrupted or impaired causing the loss of a
proper mechanotransduction signal (Jaalouk and Lammerding,
2009).

ECs can sense the type of flow and respond with subsequent
changes in cytoskeletal tension and assembly/disassembly of
untercellular contacts. For example, laminar flow elevates the
tension of the actin cytoskeleton and increases the strength of
endothelial cell-cell interactions. The laminar flow (either cyclic
strain or steady shear stress) induces Rho GTPase-dependent
placement of actin fibers along the flow direction and assembly of
junctions (Tzima, 2006). In contrast, perturbed flow disintegrates
actin cytoskeleton organization and leads to the AJ disassembly
(Ting et al., 2012).

In TJ and AJ, occludin and VE-cadherin respectively were
suggested as potential mechanotransducers that sense the
bloodflow and contribute to the conversion of mechanical forces
to the intracellular signaling (Hahn and Schwartz, 2009). Shear
stress effects on EC junctions are not limited by reorganization
of the junctional structure and influences on cell-cell contact
properties. Hemodynamic forces can regulate expression of

junctional proteins. In TJ, low shear stress was shown to down-
regulate occludin expression at mRNA and protein level (Conklin
et al., 2002, 2007), promote occludin phosphorylation state and
decrease vascular integrity (DeMaio et al., 2001). Transient
increase in occludin phosphorylation was observed in cultured
human umbilical vein endothelial cells (HUVECs) exposed to
steady shear stress along with increased hydraulic conductivity
(Pang et al., 2005a). By contrast, cyclic strain such as a pulsatile
bloodflow (i.e., flow that changes over time in a repetitive
manner) was found to increase protein expression of both
occludin and TJP1 and occludin mRNA expression. The cyclic
strain also stimulated association between occludin and TJP1 and
promoted localization of both TJ proteins to the cell-cell contacts
thereby increasing the endothelial barrier function (Collins et al.,
2006; Colgan et al., 2007).

In endothelial AJ, the VE-cadherin-catenin complex plays
a central role in mechanotrasnduction. The cytosolic domain
of VE-cadherin interacts with β-catenin or γ-catenin that then
recruits α-catenin. α-catenin mediates linking VE-cadherin to
actin filaments and play a key role in AJ assembly. Without
α-catenin, AJ are disrupted due to the inability of actin to
anchor to the VE-cadherin-catenin complex (Gulino-Debrac,
2013). Interestingly, Schulte et al. (2011) developed mice with
the VE-cadherin-α-catenin fusion protein that replaced normal
VE-cadherin. Thesemice had extremely stable endothelial AJ that
were resistant to leakage-inducing effects of VEGF and histamine
and prevented transendothelial migration of leukocytes to
inflamed sites. This observation hence indicates that the VE-
cadherin-α-catenin hybrid protein associates with cytoskeletal
actin with a greater strength compared with wild-type VE-
cadherin.

α-Catenin contains three vinculin homology (VH) domains
(VH1-3) that are capable to interact with various actin-binding
proteins (Maiden and Hardin, 2011). For example, the VH1
domain binds β-catenin while VH3 binds F-actin, TJP-1, and
Eplin (Gulino-Debrac, 2013). At high tension, myosin II-actin-
mediated stretch can alter α-catenin conformation exposing the
vinculin-binding site at the VH2 domain. The cryptic vinculin-
binding site is hidden at low tension, and high tension-induced
binding of vinculin to α-catenin is required to strengthen the
cytoskeletal anchorage to AJ (Shewan et al., 2005).

When force generated by actomyosin machinery was
abolished by a myosin II inhibitor, vinculin dissociates from
α-catenin and relocates to the focal adhesion plaques, which are
located at the ventral surface of ECs and connect the endothelium
with the extracellular matrix (ECM; Chervin-Pétinot et al., 2012).
Indeed, this finding indicates that association/dissociation of
vinculin with α-catenin is regulated by mechanical forces.

While vinculin disappears from AJ upon decreased
mechanical stress, Eprin, another actin-binding protein,
remains to be associated with α-catenin (Chervin-Pétinot et al.,
2012). Eprin belongs to the family of LIM domain-containing
proteins and contains a single LIM domain that is essential for
protein-protein interactions (Zheng and Zhao, 2007). In the
Eprin molecule, the LIM domain resides between two actin-
binding domains thereby providing an option for cross-linking
binding of actin filaments to eprin and their stabilization (Maul
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et al., 2003). Since Eprin concomitantly interacts with the
VE-cadherin-α-catenin complex and F-actin, this protein is
involved in endothelial mechanotransduction (Chervin-Pétinot
et al., 2012).

Vinculin contains three domains (head, neck, and tail). In
inactive state, the vinculin head domain binds to the tail domain
(Ziegler et al., 2006). When actomyosin-mediated stretch induces
conformational changes in α-catenin and unmasks the high-
affinity vinculin-binding site at the VH2 domain of α-catenin,
this disrupts the head-tail interaction and promotes vinculin
binding to the opened site (Ishiyama et al., 2013). The neck
and tail domains of α-catenin-bound vinculin become accessible
for actin filaments (Janssen et al., 2006). Thus, vinculin-
dependent recruitment of additional F-actin fibers strengthens
the endothelial integrity in response to higher hemodynamic
forces.

In ECs, VE-cadherin was shown to conduct shear stress-
induced mechanotransduction from AJ to TJ in order to stabilize
the endothelial barrier in response to increasedmechanical forces
(Walsh et al., 2011). T-cell lymphoma invasion and metastasis-
inducing protein 1 (TIAM1) mediates signal transmission from
AJ to TJ through activation of Rac1 followed by decrease in
tyrosine phosphorylation of occludin and increase in TJ assembly
(Singleton et al., 2005).

In the endothelium, mechanical stress leads to the activation
of multiple signaling protein kinases including Src, v-akt murine
thymoma viral oncogene homolog (Akt), extracellular signal-
regulated kinase (Erk), Jnk (c-jun N-terminal kinase), and
VEGF receptor 2 (VEGFR2; Davies, 1997). The AJ-associated
mechanosensory complex comprising VE-cadherin, VEGFR2,
and CD31 is primarily responsible for mechanotransduction of
shear stress-induced signaling through the cytoskeleton. In EC
lines deficient for either CD31 or VEGFR2, no activation of
integrins and placement of actin fibers along the flow direction
were observed (Tzima et al., 2005). In the mechanosensory
complex, VE-cadherin serves as an adaptor that transmits shear
stress-induced stimuli to VEGFR2 that in turn activates PI3K
(Conway et al., 2013). β-Catenin seems to be involved in
mediating assembly between VEGFR2 and VE-cadherin since
β-catenin-deficient ECs loss the ability to initiate shear stress-
dependent integrin activation (Chervin-Pétinot et al., 2012).

In atheroprone arterial sites, disturbed blood flow (low shear
stress or perturbed flow) could induce local proinflammatory
activation of ECs through CD31-dependent activation of the
mechanosensory complex that leads to induction of nuclear
factor-κB (NF-κB), a transcription factor that directs expression
of many proinflammatory genes (Harrison et al., 2013). In
areas of low shear stress, inflamed endothelium attracted
leukocytes increasing their recruitment. In ApoE-deficient
mice lacking CD31, increased lesion burden was observed
in areas of laminar flow while reduced plaque formation
occurred in areas of disturbed flow (Harrison et al., 2013).
In a murine model of atherosclerosis, endothelial CD31
was up-regulated in the atheroprone regions with disturbed
flow inducing local inflammation and atheroma progression
(Goel et al., 2008; Harry et al., 2008). These observations
indicate that disturbed hemodynamic forces in atherosusceptible

arterial regions could increase risk of preferential plaque
formation through stimulation of local vascular inflammation,
destabilization of the barrier function, increased leukocyte
recruitment and transmigration. Up-regulated endothelial CD31,
an important mechanosensor, plays a key role in mediating shear
stress-dependent proatherogenic effects.

ENDOTHELIAL TUBULE COULD BE
POTENTIALLY TARGETED IN VESSEL
FAILURE

Vasoactive compounds and mechanical stress (mechanical
stretch and shear stress) activate the endothelium.
Imbalance between vasoactive substances toward increase in
vasoconstrictors and decrease of vasodilators as well as chronic
disturbances in hemodynamic forces caused by hypertension,
dyslipidemia or diabetes lead to the endothelial dysfunction and
increases cardiovascular risk. In ECs, microtubules are one of
main cytoskeletal constituents. They are responsible for a variety
of functions that are involved in preserving endothelial integrity
(Lee and Gotlieb, 2003).

In ECs, microtubules contribute to maintaining cell shape,
adhesion, migration, mitosis, and intracellular transport. EC
migration is necessary for formation of new vessels and vascular
repair. Microtubules are long, hollow cylinders made up of
polymerized α- and β-tubulin dimers. Microtubules are dynamic
structures due to their ability to assembly and disassembly
(Mitchison and Kirschner, 1984). Tubulin is subjected to
multiple posttranslational modifications. Thesemodifications are
critically contribute to maintaining mucrotubule dynamics and
associated functions. In quiescent cells, α-tubulin is acetylated
on lysine 40, a hallmark of stable microtubules, In migrating
cells, lysine 40 of α-tubulin is deacetylated (Lim et al.,
1989). Hyperacetylation of microtubules results in increased
microtubular stability and limited cell mobility (Tran et al., 2007).
Indeed, the level of tubulin acetylation reflects dynamic changes
in microtubule function in response to extracellular signals.

Arterial endothelium is exposed to mechanical stress
caused by the bloodflow. Excessive and disturbed mechanical
forces could predispose to atherosclerosis. In ECs, mechanical
stretch promotes ROS production and contributes to the
reorganization of integrins and cytoskeleton (Pandithage et al.,
2008). Hemodynamics including shear stress and cyclic stretch
is implicated in the modulation of the renin-angiotensin system.
Cyclic stretch stimulates production of angiotensin II, a powerful
peptide vasoconstrictor, by ECs (Delli Gatti et al., 2008). In the
circulation, elevated levels of angiotensin II are associated with
related to higher cardiovascular risk (Schmieder, 2007).

Cyclic stretch and angiotensin II were found to be involved
in microtubule reorganization since both induce deacetylation
of tubulin in ECs. Deacetetylase sirtuin 2 (SIRT2) mediates
angiotensin II-dependent microtubule deorganization resulted
in increased EC motility (Hashimoto-Komatsu et al., 2011).
Furthermore, cyclic stretch could enhance destabilizing
influence of angiotensin II on the endothelial integrity. Since
angiotensin II type 1 receptor inhibitors prevent angiotensin
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II-mediated microtubular reorganization, vascular failure
initiated by angiotensin II at least in part could arise from
the endothelial dysfunction associated with microtubule
restructuring (Hashimoto-Komatsu et al., 2011). In ECs,
molecular mechanisms of tubulin acetylation/deacetylation
are not precisely understood and need further investigations.
Histone deacetylase 6 (HDAC6) and SIRT2 are truly responsible
for the control of microtubule assembly/disassembly through
deacetylation of tubulin (Zhang et al., 2003; Hashimoto-Komatsu
et al., 2011). β-adrenergic receptor kinase (BAPK) expressed in
ECs and fibroblasts is a recently found activator of HDAC6 that
induces increased cell mobility (Hirase andNode, 2012). Elevated
levels of epinephrine are known to contribute to hypertension
and endothelial dysfunction through the mechanisms involved
enhanced vasoconstriction. Indeed, finding a link between
BAPK/HDAC6 may help in discovering new pathways by which
enhanced sympathetic activity may induce the endothelial
dysfunction.

CONCLUDING REMARKS

Endothelial dysfunction, a first step of vascular disease,
affects other vascular cells such as vascular smooth muscle
cells (VSMCs) and immune cells that could finally result
in vascular failure. Disruption of endothelial intercellular

contacts impairs the proper function of the endothelial
barrier, disturbs endothelial integrity, and increases vascular
permeability. This promotes vascular failure and supports
pathogenesis of vascular disease including atherosclerosis.
Posttranslational modifications of junctional proteins including
phosphorylation/dephosphorylation could determine stability
of intercellular junctions between ECs and are crucially
involved in the regulation of vascular permeability. Indeed,
kinases and phosphatases specific for phosphorylation and
dephosphorylation of junctional proteins could represent critical
players in the control of endothelial permeability (Staddon, 2001;
McLachlan and Yap, 2007; Hirase and Node, 2012). Chronic
cardiometabolic and mechanical stress lead to reorganization
and functional changes in the cytoskeleton of ECs. Changes
in biochemical properties of EC microtubules are involved in
endothelial dysfunction that might be followed by vascular
failure. Indeed, more precise investigation of the processes that
lead to the endothelial dysfunction could be beneficial in the
identification of novel therapeutic targets in cardiovascular-
related failure.
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