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Endothelial cell heterogeneity and microglia
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Pigs are valuable large animal models for biomedical and genetic research, but insights into

the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By lever-

aging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic

map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively

characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing

58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of

heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including

an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular commu-

nication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells

and other cell types through the VEGF, PDGF, TGF-β, and BMP pathways. Regulon analysis of

single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as

an evolutionally conserved regulon in the microglia. Our work describes the landscape of

single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of

endothelial cells and evolutionally conserved regulon in microglia.
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The domestic pig (Sus scrofa domesticus) is an important
large animal for modeling both monogenic and complex
human diseases such as cystic fibrosis1, atherosclerosis2,

Huntington’s diseases3, and diabetes4–6. Additionally, it is
explored and regarded as the most promising source for
xenotransplantation7–9 largely due to the postulation of their high
resemblance to humans in organ size, structure, anatomy,
genetics, and physiological functions10,11. Recently, clinical
transplantation of genetically modified pig kidneys and heart has
successfully been achieved with patients12. Despite all these great
promises and progress, several species-specific cellular and
molecular differences between pigs and humans exist. For example,
pluripotency progression andmetabolic transition were found to be
different using single-cell RNA-sequencing (scRNA-seq)13. To gain
better insights into the biomedical similarity, as well as differences
between pig and human, and to advance the applications of pigs in
biomedical research, a comprehensive and body-wide investigation
of the domestic pig is needed at single-cell level.

High-throughput scRNA-seq technology has greatly expanded
the ability to better understand the cell composition, interactions,
heterogeneity, and functions in highly organized and multi-
cellular mammalian organs under physiological or pathological
conditions14,15. Pioneering work has been completed for most
model animals and humans16–22. Since the completion of the first
porcine reference genome, technological breakthroughs in gene
editing and cloning allow precise manipulation of the pig genome
in living animals23–25 and applications of pigs in biomedical
research have been greatly expanded. Previous scRNA-seq studies
in pigs were restricted to a few tissues or a single organ26–28.
Recently, the pig BodyMap atlas with the conventional bulk RNA-
seq method has been reported29. Using similar bulk RNA-seq based
transcriptome profiling, we have systematically profiled the protein-
coding transcriptome in 98 pig tissues (www.rnaatlas.org)30.

In this study, we report the generation of a single-cell tran-
scriptome atlas of 222,526 cells across twenty tissues of the
domestic pig by using scRNA-seq and single-nuclei RNA-
sequencing (snRNA-seq). The mapping results are available
through the pig single-cell atlas database for comparative analyses
and data exploration (https://dreamapp.biomed.au.dk/pigatlas/).
In total, 58 cell types were identified, which contribute to tissue-
specific and shared functions between the tissues. We identified
tissue-specific cell types, as well as common cell types shared
across different tissues. Commonly shared cell types also exhibit
tissue-specific expression patterns and functions. One such cell
type is vascular endothelial cells (ECs). Further analysis of ECs
probed rare ECs types supporting the notion of endothelial to
mesenchymal transition (EndMT), which we further validated by
scRNA-seq of cultured ECs and induced EndMT by transforming
growth factor-beta 2 (TGF-β2) treatment. These single-cell
transcriptome data allow us to gain insights into the similarities
and differences in biomedical and cellular functions between pigs
and humans. We also performed a pan-species regulon com-
parison analysis covering thirteen different species and identified
MEF2C as the most conserved regulon for microglia evolution
over 300 million years.

Results
Single-cell and single-nuclei RNA sequencing of four pig tis-
sues highly correlates in common cell types. To construct the
first body-wide single-cell transcriptome atlas of pigs, 20 pig
tissues/organs were analyzed using single-cell and/or single-nuclei
sequencing. Nine pig tissues, including visceral and subcutaneous
adipose tissues, spleen, intestine, liver, lung, peripheral blood
mononuclear cells (PBMCs), whole brain, and retina, were ana-
lyzed by single-cell RNA sequencing (scRNA-seq). Fifteen tissues,

including nine brain regions, retina, kidney, heart, spleen, liver,
and lung, were analyzed by single-nuclei RNA sequencing
(snRNA-seq). Among the nine different brain regions, four
regions (area postrema, cerebellum, subfornical organ, and the
vascular organ of lamina terminalis (OVoLT)) were generated by
this study, and the other five brain regions (frontal lobe, hypo-
thalamus, occipital lobe, parietal lobe, and temporal lobe) were
from a study we had previously published using snRNA-seq28.
Both scRNA-seq and snRNA-seq techniques were used for single-
cell transcriptome analysis, which had both technical strengths
and limitations31. The scRNA-seq is performed using freshly
isolated single cells, thus capturing all transcripts in the cells, but
limited by the sample processing procedures. Single-cell suspen-
sions must be prepared from fresh tissues for scRNA-seq. For
snRNA-seq, tissues can be snap-frozen after sampling and used
for nuclei extraction, thus less limited by timing. We selected both
scRNA-seq and snRNA-seq for reasons of practicality and
resource availability. To compare the two methods, four pig tis-
sues (liver, retina, lung, spleen) were analyzed with both scRNA-
seq and snRNA-seq. In total, the pig single-cell transcriptome
atlas includes twenty pig tissues (Fig. 1a). All samples were dis-
sociated into single cells or single-nuclei, followed by high-
throughput scRNA-seq or/and snRNA-seq library generation,
deep sequencing, and data analyses (Fig. 1b). Complete infor-
mation of all batches of samples was summarized in Supple-
mentary Data 1. After filtering low-quality cells
(nFeatures_RNA < 200 or % mitochondria transcripts > 30%) and
doublets (nFeatures_RNA > 5000), high quality single-cell tran-
scriptome data were obtained from 222,526 cells, of which
133,492 and 89,034 were obtained with scRNA-seq and snRNA-
seq, respectively.

We first compared single-cell gene expression profiling of
tissues obtained with scRNA-seq and snRNA-seq. Quality control
(QC) comparison of scRNA-seq and snRNA-seq demonstrated
that scRNA-seq captures more transcripts per cell and obtains
higher percentage of mitochondria- and ribosome genes. In
contrast, snRNA-seq captures a higher percentage of protein-
coding transcripts and transcription factor-encoding gene
transcripts, largely due to the absence of mitochondria and
ribosome RNAs. Despite that, when evaluating cell cycle gene
expression, the scores of S and G2M stages are similar in tissues
analyzed with scRNA-seq and snRNA-seq (Supplementary
Data 2). Next, cells from the spleen, liver, lung, and retina
captured by snRNA-seq and scRNA-seq were clustered and
visualized by t-SNE plots (Supplementary Fig. S1). Cell clusters
were annotated based on the expression of canonical cell-type
markers (Supplementary Fig. S1a–d). The number captured cells
for each cell type in the four shared tissues analyzed by scRNA-
seq and snRNA-seq are highly variable (Supplementary
Fig. S1e–h), which can be explained by sampling and tissue
processing biases, as the scRNA-seq and snRNA-seq experiments
were carried out in two different laboratories. Despite that, our
results showed that common cell types captured by scRNA-seq
and snRNA-seq exhibit similar gene expression profiles and cell-
type-specific markers. Most importantly, correlation analysis
between shared cell types further showed that the transcriptome
of the same cell types identified scRNA-seq and snRNA-seq are
well correlated (Supplementary Fig. S1i–l). Thus, we combined
the scRNA-seq and snRNA-seq data, batch-corrected, and
performed an integrative analysis with Seurat32.

A pig single-cell transcriptome atlas. To identify the cell types
based on their single-cell transcription profile, we first performed
graph-based clustering and visualized all the cells from these
twenty tissues using t-distributed stochastic neighbor embedding
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(t-SNE) at tissue levels (Fig. 1c). On average, the number of
single-cell/nuclei transcriptomes obtained from each tissue ranges
from 1527 cells (subfornical organ) to 32,888 cells (liver),
representing 0.69% and 14.78% of the total cells, respectively
(Fig. 1d). Most cells from each tissue are clustered separately thus

corroborating the general transcriptome regulation of tissue
origin33. We next performed cell-type clustering and annotated
each cluster of cells according to the expression of canonical cell-
type markers for each tissue separately (Supplementary Data 3).
In total, we identified 234 cell clusters corresponding to 58 major
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cell types with significantly enriched markers (Fig. 1e, Supple-
mentary Fig. S2, Supplementary Data 4). The cell types in each
organ were visualized by using t-SNE, which revealed a great
diversity of cell types within each tissue ranging from six cell
types (subfornical organ) to sixteen cell types (lung) per tissue/
organ (Fig. 1f, Supplementary Fig. S2, Supplementary Data 3).
With the transcriptional profiles from these large amounts of
cells, we comprehensively characterized the cell types in all tis-
sues. For example, beige adipocytes (CIDEA+, TBX1+) were only
identified in adipose tissues. Cardiomyocytes (ACTN2+,
MYH7+, FHL2+, and TNNT2) were obtained from the heart.
Enterocytes (CHP2+, FABP1+, and FABP6+) are only detected
in the intestine. Cholangiocytes (MMP7+, SPP1+, and ONE-
CUT1+), hepatic stellate cells (ACAT2+, COL1A1+, RBP1+, and
COLEC11+), hepatocytes (GHR+, HAMP+, HSD11B1+, and
RPP25L+), and Kupffer cells (CD163+and VSIG4+) were iden-
tified in the liver. In the lung, the AT1 (AGER+, AQP5+,
CLIC5+, and SCGB1A1+) and AT2 (SFTPB+, SFTPD+, and
ABCA3+) were identified. Immune cell types such as T cells, B
cells, and macrophages are the major cell types found in PBMC
and the spleen. Additionally, several types of neuron cells and
microglia were identified in brain regions (Fig. 1f, Supplementary
Data 3). Moreover, several cell types commonly shared between
tissues were identified, such as ECs across nineteen different
tissues (except PBMC); microglia mainly across all brain regions
and retina; immune cells such as T cells, B cells, and NK cells
across multiple different tissues (Fig. 1f). These results demon-
strated that the main tissue-specific cell types were identified in
each tissue and some cell types were distributed across tissues. It
is consistent with the understanding that the cells derived from
the three germ layers are widely distributed within the human
body34. To further facilitate the sharing and utility of the resource
generated by this study, we constructed a single-cell tran-
scriptome atlas database (https://dreamapp.biomed.au.dk/
pigatlas/).

Validation of intra-tissue cell heterogeneity in the retina and
kidney. To further explore and validate the intra-tissue cell het-
erogeneity, we selected two tissues, retina and kidney, which have
been largely used as models for ophthalmology and kidney
diseases35–39.

The porcine retina contains several retina-specific cell types, such
as bipolar cells, cone photoreceptor cells, Müller glia, retinal
ganglion cells, and rod photoreceptor cells (Fig. 2a). The main cell
types shared in multiple tissues are microglia and T cells. Bipolar
cells express high levels of TRPM1, PCP2, and GNG13. Cone
photoreceptor cells exhibit a high level of ARR3. Microglia were
indicated by the specific expression of C1QA, C1QB, CSF1R, and
CD68. Müller glia demonstrated a specific expression of RLBP1 and
CA2, and retinal ganglion cells were annotated with high expression
of NEFL, THY1, and NRN1. Rod photoreceptor cells had a high
expression of PDE6A, CNGA1, and SAG (Fig. 2b, Supplementary
Data 3, 4). Gene ontology (GO) analysis further showed that
axonogenesis, axonal/axonal-dendritic transport, negative regulation
of neurogenesis, regulation of neuron projection development, and

negative regulation of neuron differentiation are enriched in bipolar
cells. In addition, pathways such as axonogenesis, gliogenesis, and
negative regulation of neurogenesis, regulation of neuron projection
development are enriched in Müller glia. Retinal ganglion cells share
many enriched pathways with Müller glia. One specific pathway
enriched in retinal ganglion cells (RGC) is neuron recognition,
which is in good agreement with RGC’s function in pattern
recognition and visual processing40,41. For rod photoreceptor cells,
pathways such as photoreceptor cell differentiation, photoreceptor
cell cilium, photoreceptor outer segment, detection of light stimulus,
and phototransduction are enriched (Fig. 2c, Supplementary Data 5).
Subsequently, we validated the canonical cell markers in the retina
cell types by protein staining. Rhodopsin RHO, which is essential for
vision42, was highly expressed in the rod photoreceptor cells.
Arrestin 3 (ARR3), which is a non-visual arrestin and binds
phosphorylated G protein-coupled receptors, was highly expressed
in the cone photoreceptor cells. The G Protein Subunit Gamma 13
(GNG13) was detected strongly expressed in bipolar cells, in line
with the previous findings by scRNA-seq of retina bipolar
neurons43. CRX is a cone-rod homeobox gene expressed in cone-
rod photoreceptor cells. Lastly, CDHR1 and RBP3 were identified in
the photoreceptor cells (Fig. 2d, e).

In the pig kidney, collecting duct cells were characterized by
the specific expression of AQP3, GATA2, and AQP2. Distal
convoluted tubule cells were indicated by the specific expression
of TMEM52B. Proximal tubule cells were demonstrated with the
specific expression of CUBN, LRP2, SLC13A3, and SLC34A1. In
addition, we identified podocytes (NPHS1+, NPHS2+, WT1+,
and CLIC5+) and Loop of Henle cells (SLC12A1+). In addition
to these cells, we identified a few other cell types in the kidney.
Briefly, fibroblasts had a high expression of CALD1, COL6A1, and
DCN1, and the T cells demonstrated enrichment of CD3E, CD3D,
CD2, and CD3G. The ECs showed an increased expression of
PECAM1 and NRP1 (Fig. 2f, g, Supplementary Data 6). We next
performed GO enrichment analysis of the selected cell types. Our
results show that pathways i.e., metal ion, sodium ion
transmembrane transport, cellular drug response were mainly
enriched in collecting duct cells. The positive regulation of
sodium ion transmembrane transport, regulation of transmem-
brane transport, and regulation of membrane potential were
enriched in distal convoluted tubule cells. In addition, the cell-
matrix adhesion, regulation of angiogenesis, ficolin-1-rich granule
lumen, and myofibril were enriched in collecting duct cells, ECs,
and podocytes. Glomerular epithelial cell differentiation, renal
filtration cell differentiation, nephron development, and glomer-
ulus development were specifically enriched in podocytes.
Moreover, our single-cell analysis suggested that loop of Henle
cells plays an important role in potassium ion homeostasis,
potassium ion import, chloride ion homeostasis, and metanephric
nephron tubule development (Fig. 2h, Supplementary Data 6), in
line with its functions in maintaining iron and water
homeostasis44. To validate the canonical markers expressed in
the kidney, we further analyzed them with immunohistochem-
istry. Our results showed that NPHS2, a podocyte-specific
marker, is specifically expressed in podocytes. SLC12A1 was
specifically expressed in the loop of Henle cells, while GATA2,

Fig. 1 A single-cell transcriptome atlas of 20 pig tissues. a Schematic diagram of organs/tissues. Superscripts “c” and “n” represent the tissue analyzed
by scRNA-seq and snRNA-seq respectively. OVoLT, vascular organ of lamina terminalis. b Schematic diagram of cDNA libraries generation and
downstream bioinformatics analyses. The scRNA-seq and snRNA-seq were constructed independently, followed by high-throughput sequencing, and
downstream bioinformatic analyses. c t-SNE visualization of all single cells in the 20 tissues. Cells are color-coded according to the tissue origin. d Pie chart
showing the number of cells and proportion of cells from each tissue after filtering low-quality cells and doublets. e t-SNE visualization of all annotated
major cell types from the 20 tissues. Cells are color-coded according to cell types. f Bar graph and intersect plots showing the presence of the 58 cell types
across the 20 tissues. Source data are provided as a Source Data file. Schematic diagrams in a and b were created with BioRender.com.
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AQP2, and PAX2 were specifically expressed in collecting duct
cells in the porcine kidney (Fig. 2i, j).

Endothelial cell heterogeneity. Single-cell transcriptome analysis
also enables us to probe rare cell types. Endothelial cells (ECs),

which line the vascular systems and play important roles in e.g.
regulating immune responses, regulation of blood fluidity, car-
diovascular homeostasis, maintenance of vascular functions, have
been extensively studied by scRNA-seq in human and
mouse45–49, though little is known about the single-cell tran-
scriptome and heterogeneity of ECs in pigs. We therefore focused
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on the ECs which were captured in 19 tissues in our datasets. To
characterize the heterogeneity of ECs in pig organs, we extracted
ECs from all 19 tissues expressing the canonical EC marker
PECAM1, and excluded epithelial cells (EPCAM+), immune cells
(PTPRC+), fibroblasts (COL1A1+), and pericytes (PDGFRB+)
which frequently co-express PECAM1 (Fig. 3a, Supplementary
Fig. S3a, Supplementary Data 7). In total, we obtained 9520 ECs
from 19 tissues and 56% of all ECs were derived from the adipose
tissues (Supplementary Data 7). This is expected, as we applied a
protocol optimized for enriching ECs from adipose tissues (see
methods). After batch correction, all ECs were separated into
21 subtypes with significantly enriched genes (Fig. 3b, c, Sup-
plementary Fig. S3b, Supplementary Data 8). Although the
number of analyzed ECs from each tissue are largely different, the
distribution of these 21 EC clusters was quite similar between the
tissues (Fig. 3c). We performed gene ontology analysis of these 21
EC clusters based on enriched markers (Supplementary Data 8).
Two EC clusters with distinct functions were highlighted here.
The EC cluster (c12) upregulates defense marker genes (i.e.,
complement: C1QA, C1QB, C1QC; cathepsins: CTSS, CTSD,
CTSB, CTSZ; cystatins: CST3, CSTB (Supplementary Fig. S3c,
Supplementary Data 8)), suggesting that it is an EC phenotype
with immune active features. This observation is consistent the
scavenging and immune-modulating EC phenotype reported
previously50–53. In adult tissues, most ECs are quiescent. We
identified a small EC cluster (c17) significantly up-regulating cell
proliferation genes (CENPF, CENPE, TOP2A, TPX2) (Supple-
mentary Data 8), which we define as proliferating ECs. The
presence of proliferating ECs in the analyzed pig tissues agrees
with the age of the pigs used for this study (Supplementary
Data 1).

As EC heterogeneity can be caused by tissue types and vascular
bed, we therefore focused on the ECs from adipose tissues and
further investigated the EC heterogeneity within tissues. We next
performed cell clustering based on the adipose tissue-derived ECs
and annotated each ECs subtype based on the expression of ECs
markers and pseudotime trajectory analysis. The ECs from
adipose tissues are mainly composed of blood ECs (arterial,
capillary, and vein) and lymphatic ECs (Fig. 3d, e), which also
seems to express higher level of mesenchymal genes (Supple-
mentary Fig. S3a). We also identified three functionally distinct
phenotypes: proliferating EC, immune active EC and an EC
phenotype with co-expression of the mesenchymal cell markers
ACTA2 and TAGLN (Fig. 3d, Supplementary Data 9). Both
immune active and proliferating ECs have been described above
and in previous scRNA-seq studies of mouse and human
ECs45–47. Here we focus on the small fraction of mesenchymal-
like endothelial phenotype. Previous studies have suggested the
existence of such a specific endothelial phenotype, which is
undergoing the processing of endothelial-to-mesenchymal transi-
tion (EndMT)54–57. The number of expressed genes per cell is
similar between EndMT cells and other EC phenotypes
(Supplementary Fig. S3d), confirming that it is a cluster of
transcriptomically distinct EC subtypes which is not caused by
doublets of an EC and a mesenchymal cell. To further validate the
mesenchymal-like EC phenotype, we performed pseudotime

trajectory analysis which demonstrates that the EndMT cells
undergo a dynamic developmental transition from ECs to
mesenchymal cells (Fig. 3f). During the EndMT process,
expression of EndMT inducing genes (TGFB2 and SNAI1) were
high in the early EndMT process, followed by gradually
decreasing expression of EC-specific genes (e.g., PECAM1,
VWF, ICAM1, and CDH5), and the increased expression of
mesenchymal cell-specific genes (e.g., ACTA2, TAGLN, CD44,
VIM, and CNN1) (Fig. 3g, h). Early findings suggested that TGF-
β2 is a key regulator of the EndMT process55,58–61. Our
pseudotime analysis of EndMT cells also suggested that the
expression of the TGF-β signaling pathway (TGFB2) a key
inducing factor driving the EndMT process (Fig. 3h).

To verify some of the markers for EndMT cells at the protein
and histological level, we analyzed the co-expression of ECs
markers (PECAM1 and VWF) and mesenchymal cell markers
(ACTA2 and TAGLN) by antibody-based immunofluorescence
staining. Our results showed that EndMT cells can be clearly
identified in adipose tissues with co-expression of VWF and
TAGLN (Fig. 3i), as well as PECAM1 and ACTA2 (Fig. 3j), in a
small fraction of ECs. Corroborating the scRNA-seq results, only
a very small fraction of the adipose tissue ECs is EndMT. We also
validated another ECs-specific marker FABP4 found by our
single-cell analysis of pig adipose ECs. The fatty acid-binding
protein 4 (FABP4) is a lipid transport protein, which is expressed
in adipocytes and capillary ECs62. To investigate if FABP4 is
expressed in capillary ECs across pig tissues, we analyzed pig
liver, heart, kidney, spleen, duodenum, jejunum, cerebellum, and
brain cortex by immunohistochemistry. The results show that
FABP4 is strongly expressed in capillary ECs of all included pig
tissues (Supplementary Fig. S3e) and is highly expressed in the
subcutaneous adipocytes and the adipose ECs (Fig. 3k). Collec-
tively, our results support the previous model of EndMT (Fig. 3l),
which is involved in important mesenchyme-associated physio-
logical and pathological processes54.

Validation of EndMT in cultured ECs. Cultured ECs are com-
mon models for studying the EndMT process, of which differ-
entiation of ECs into mesenchymal cells can occur spontaneously
or through TGF-β induction63. Previously, we also identified the
EndMT ECs phenotype in cultured human lung tumor ECs46. To
further validate this EndMT ECs phenotype, we isolated and
cultured primary ECs from pig lung and aorta and analyzed them
by scRNA-seq (Fig. 4a). In total, after filtering low-quality cells
and doublets, 5698 and 882 cells were obtained from the cultured
ECs of pig lung and aorta respectively, which were further clus-
tered into 5 clusters (Fig. 4b–f) based on the expression of cell-
type-specific markers (Fig. 4c–e) and cell cycle analysis (Fig. 4f).
In cultured ECs from both pig lung and aorta, we identified three
clusters of proliferating ECs (G1, S and G2M phase) and an
intermediate EC phenotype. Because the ECs isolation protocol is
based on enzymatic perfusion of the blood vessels (see methods),
we also identified a cluster of fibroblasts expressing high levels of
COL1A1 and COL1A2 (Fig. 4b–e). In the cultured aorta ECs, we
identified a cluster of cells that highly express mesenchymal cell

Fig. 2 Validation of cell heterogeneity in retina and kidney. a t-SNE visualization of major cell types in the retina. b Heatmap of marker gene expression in
the cell types captured in the retina. c GO term enrichment analysis on marker genes in the major cell types in the retina. The hypergeometric test was
used for GO term analysis, and p values were adjusted by Benjamini & Hochberg. d t-SNE visualization of the expression of RHO, ARR3, CDHR1, GNG13, CRX,
and RBP3 in the retina. e Representative IHC staining of RHO, ARR3, GNG13, CRX, CDHR1, and RBP3 in pig retina (n= 3). f t-SNE visualization of major cell
types in the kidney. g Heatmap of marker gene expression in major cell types in the kidney. h GO term enrichment analysis on marker genes of major cell
types in the kidney. The hypergeometric test was used for GO term analysis, and p values were adjusted by Benjamini & Hochberg. i t-SNE visualization of
NPHS2, SLC12A1, PAX2, GATA2, and AQP2 expression in the kidney. j Representative IHC staining of NPHS2, SLC12A1, GATA2, AQP2, and PAX2 in pig
kidney (n= 3). Source data are provided as a Source Data file.
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markers (TAGLN and ACTA2) but not fibroblast markers
(COL1A1 and COL1A2), which we defined as EndMT-like cells
(Fig. 4d, e). The cultured lung and aorta ECs used for scRNA-seq
were maintained in normal ECs growth medium. This EndMT-
like cells might be induced by the presence of TGF-β2 in serum or
contaminating mesenchymal cells from the isolation procedure.

To further validate that EndMT can be induced by TGF-β2, we
treated cultured pig aorta endothelial cells (PAECs) with TGF-β2
(2 ng/mL) and measured the expression mesenchymal cell marker
ACTA2 and ECs marker CD31 by fluorescence-conjugated
antibody staining and flow cytometry analysis (Supplementary
Fig. S4a). Increased ACTA2 expression was already detected in

ZEB2

FABP4SNAI1

NOTCH3

a b c

d

j k

l

f

FABP4

Control

PECAM1/ACTA2/DAPI PECAM1/ACTA2/DAPI

PECAM1 ACTA2

VWF/TAGLN/DAPI VWF/TAGLN/DAPI

VWF TAGLN

i

Expression

Tissue
Adipose-S
Adipose-V
Brain
Heart
Intestine
Kidney

Liver
Lung
Retina

Spleen

0

2
3
4

1
tSNE1

tS
N

E2

tSNE1

tS
N

E2

Large artery ECs
Artery ECs EndMT cells Lymphatic ECs

Immune active ECsCapillary-venous ECs
Proliferating cells

1

2
30

5

10

−10 0 10

Lymphatic ECs

Large artery ECs

Artery ECs
Capillary ECs (2)

Immune active ECs
Proliferating ECs

Vein ECs

EndMT cells

e

Capillary ECs (1)

Large vein ECs

Capillary-venous ECs

Capillary ECs (1)

Capillary ECs (2) Vein ECs

Large vein ECs

g h
TGFB2

0.5

1.0

3.0
5.0

0 10 20 30 40

ACTA2

1

10

100

0 10 20 30 40

PECAM1

0.5

1.0

3.0
5.0

0 10 20 30 40
VWF

0 10 20 30 40
0.5

1.0

3.0
5.0

0 10 20 30 40
0.5

1.0

3.0
5.0

1
3

10
30

0 10 20 30 40

TAGLN

0.5

1.0

3.0
5.0

0 10 20 30 40

Adipose tissueAdipose tissue

1

3

10

30

0 10 20 30 40

1

2

−5

0

5

−10 −5 0 5

Adipose tissue

0 10 20 30 40
0.001

0.010

0.100

1.000

0  25  50  75  100

Adipose−S

Adipose−V

Brain

Heart

Intestine

Kidney

Liver

Lung

Retina

Spleen

973

4365

1060

172

109

295

617

1683

149

133

01000200030004000

Proliferating EC

Immune active EC

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31388-z ARTICLE

NATURE COMMUNICATIONS | (2022)13:3620 | https://doi.org/10.1038/s41467-022-31388-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


cultured PAECs 2 days after TGF-β2 treatment (Supplementary
Fig. S4). After culturing PAECs in medium with TGF-β2 for five
days, the expression of ACTA2 was significantly increased in
PAECs by 6 folds compared to untreated controls (Fig. 4g,
P= 1.44E-7, t-test). The CD31 expression was slightly decreased
in the TGF-β2 treated PAECs, but not significant (P= 0.300, t-
test). Our results also showed that TGF-β2 significantly inhibits
the proliferation of ECs (Supplementary Fig. S4b, P= 1.33E−4, t-
test). Consistent with the cultured PAECs, similar TGF-β2
induced EndMT results were also obtained in cultured human
umbilical vein endothelial cells (HUVECs) (Fig. 4h). Together,
our results demonstrated that EndMT is driven by the TGF-β2
signaling pathway and is conversed between pig and human.

Communications between ECs and other cell types. Intercellular
communication between ECs and other parenchymal cells in the
tissue plays a vital role in the structure and function of maintaining
normal tissue growth, development, and homeostasis64. We focused
on the ECs and analyzed the communications between ECs and
other cell types using CellChat, a tool for quantitatively inferring and
analyzing intercellular communications based on the differential
expression of ligand and receptor gene pairs65. For this analysis, we
used single-cell transcriptome data from the liver, kidney, and heart,
which are the threemost studied pig organs in biomedical research66.
We performed a comparison with corresponding scRNA-seq data-
sets of the human liver, kidney, and heart (see methods) to gain a
better understanding of the cell–cell interactions in these three
organs between pig and human. We identified six cell types in the
liver (hepatocytes, ECs, Kupffer cells, B cells, T/NK cells, and ery-
throid cells), six cell types in the kidney (epithelial cells, podocytes,
proximal tubule cells, collecting duct cells, ECs, and distal convoluted
tubule cells), and five cell types in the heart (ECs, fibroblasts, car-
diomyocytes, lymphoid cells, and myeloid cells) isolated from both
pig and human tissues (Supplementary Data 10, 11).

We next investigated signaling interactions based on ligand-
receptor pairs and performed a global communication pattern
recognition analysis to identify the key signal communications
involved in ECs. Our results suggested that ECs use the vascular
endothelial growth factor (VEGF)67, PDGF68, TGF-β69, and
BMP70 signaling pathways as major communicating pathways
with other cell types in the liver, kidney, and heart in both human
and pig. However, single-cell-based cell communication analysis
provided several unique insights regarding tissue-specific and
cell-type-specific communications between ECs and other cell
types. The VEGF signaling is the most studied pathway in ECs
activation, proliferation, and angiogenesis. In the liver and heart,
our results showed that there are similar sender-receiver
communications between ECs and other cell types. In the kidney,
the VEGF signaling pathway is used by most renal cells for
cell–cell communications. Particularly, similar between pigs and
humans, there is a higher level of communication between ECs,

podocytes, and proximal tubule cells through the VEGF pathway
(Fig. 5a, Supplementary Fig. S5a). The analysis suggests that the
VEGF signaling pathway can be used by most renal cells for
intercellular communication. Unlike the VEGF signaling path-
way, ECs only communicate with a few other cell types through
the PDGF pathway. For example, pig ECs communicate with
immune cells (Kupffer-, T-, NK-, and B cells) in the liver, with all
cell types in the heart, and with only podocytes in the kidney.
Human ECs communicate with hepatocytes and Kupffer cells in
the liver, with fibroblasts in the heart, and with podocytes and
proximal tubule cells in the kidney through the PDGF pathway
(Fig. 5b, Supplementary Fig. S5a). Similarly, analysis of TGF-β
and BMP pathways-mediated cell–cell communications show
similar cell-type-specific and tissue-specific preferences, as well as
some divergence between pig and human (Supplementary
Fig. S5b). The presence of TGF-β-based cell–cell communication
between ECs and other tissue types further suggests a potential
cellular mechanism in inducing EndMT in tissues. However, it
should be noted that the inferred cell–cell communications based
on single-cell RNA sequencing could be affected by e.g.,
posttranscription or posttranslational protein modifications,
completeness and biases in the genome annotation between pig
and human. We demonstrated that the pig single-cell RNA atlas
provides a valuable resource for inferring cell–cell communica-
tions within pig tissues or between pig and human tissue.

MEF2C is a conserved regulon in microglia evolution. Single-
cell transcriptomic analysis not only provides good insights into
the cellular heterogeneity and functional diversity of structural
cell types across tissues, but it is a good way to uncover the
similarities and divergences of cell types across species. In this
study, we utilized our single-cell pig atlas to analyze the cross-
tissue ECs heterogeneity and ECs conversion in adipose tissues.
We were also interested in the cross-species cell types, which are
mainly focused on microglia in the brain across 13 species. It
enabled us to better understand cell-type evolutions. The pig
single-cell transcriptome atlas includes nine brain regions
(Fig. 6a). Most cell types in the brain were clustered based on the
regions (Fig. 6b, Supplementary Fig. S6a). We also validated a few
cell types by immunohistochemistry, confirming that scRNA-seq
is a robust method for the classification of different cell types
(Fig. 6c, Supplementary Fig. S6b), including SLC1A6 which is a
marker for Purkinje cells71 expressed in pig cerebellum; CALB2
which is an inhibitory interneuron marker; PAX6 which is a
highly specific marker for granule cells in cerebellum. By protein
staining, we also detected SLC17A7 in the excitatory synapse in
the pig hippocampus. Lastly, protein staining of SST is consistent
with scRNA-seq suggesting that SST is a specific marker for
inhibitory interneurons in the pig cortex (Fig. 6c).

We focused on microglia which is important for brain
homeostasis and involved in several brain disorders i.e.

Fig. 3 Single-cell transcriptome analysis of porcine ECs in pig tissues. a Heatmap of gene expression in the selected PECAM+/EPCAM−/PTPRC−/
COL1A1−/PDGFRB− ECs from 19 tissues. b t-SNE visualization of 21 EC clusters, which are colored according to EC cluster numbers. c Bar graph shows
numbers and percentage of ECs in tissues. ECs were colored according to clusters. d EC subtypes in adipose tissues. Cells are color-coded according
to the subtypes of ECs. e EC subtypes trajectory analysis in adipose tissues (adipose-S and adipose-V) using monocle 2 and cells on the tree are
colored by EC subtypes. f EndMT EC trajectory analysis using monocle 2 and cells on the tree are colored by EndMT states. g Pseudotime trajectory
analysis of marker genes in different states of EndMT cells. h Representative pseudotime trajectory of marker genes (TGFB2, SNAI1, PECAM1,
VWF, ZEB2, ACTA2, TAGLN, NOTCH3, FABP4) in different states of EndMT ECs. i Representative Immunofluorescence staining images of VWF and
TAGLN in adipose tissues. Arrow (red) indicates ECs expressing both VWF and TAGLN. Arrow (green) indicates ECs only expressing VWF (n= 3).
j Representative Immunofluorescence staining images of PECAM1 and ACTA2 in adipose tissue. Arrow (red) indicates ECs expressing both PECAM1
and ACTA2. Arrow (green) indicates ECs only expressing PECAM1 (n= 3). k IHC of FABP4 in ECs and adipose tissues. Arrows (green) indicate ECs.
Arrows (red) indicate adipocytes. Control was stained with an antibody against a gene not expressed in adipose tissues (n= 3). l An integrated model
of EndMT process. Source data are provided as a Source Data file. Schematic diagrams in I were created with BioRender.com.
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Fig. 4 Validation of EndMT ECs in cultured ECs from pig lung and aorta by scRNA-seq. a The flowchart of ECs isolation and culture from pig lung and
aorta. b tSNE visualization of cell-type annotations from cultured lung ECs. c Dot-plot of selected canonical marker genes for cell-type annotations from
cultured lung ECs. d tSNE visualization of cell-type annotations from cultured aorta ECs e Dot-plot of selected canonical marker genes for cell-type
annotations from cultured aorta ECs. f Cell cycle analysis of annotated cell types in cultured lung and aorta ECs. g Expression of ACTA2 and CD31 in
cultured PAEC treated with TGFb2 for five days (n= 3, two-sided t-test). Values are presented as mean±SD. h Expression of ACTA2 and CD31 in cultured
HUVEC treated with TGFb2 for 5 days (n= 3, two-sided t test). Values are presented as mean ± SD. Source data are provided as a Source Data file.
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Fig. 5 Comparison of cell communication and signaling pathway between pig and human. a Comparison of cell–cell communication of VEGF signaling
pathway in liver, heart, and kidney. b Comparison of cell–cell communication of PDGF signaling pathway in liver, heart, and kidney. Source data are
provided as a Source Data file.
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amyotrophic lateral sclerosis72. Microglia are the primary resident
immune cells of the brain, which play a critical role in many
physiological and pathological brain processes. The conserved
and divergent microglia gene program in pan-species provides
important implications for investigating the microglia

evolutionary module in human brain diseases73. To characterize
the conservation and divergence of microglia in pigs, we analyzed
the single-cell microglia datasets from 13 different species
spanning more than 300 million years of evolution. The species
contain bearded dragon lizard, turtle, hedgehog, mink, alpaca,
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sheep, pig, chinchilla, mouse, hamster, blind mole rat, macaque,
and human (Fig. 6d, Supplementary Data 12). The microglia-
specific marker genes C1QB and C1QC were expressed in most
species except for Chinchilla, Hamster, and Hedgehog, while the
markers of CSF1R, APOE, and P2RY12 are covertly expressed in
all 13 species (Fig. 6e), suggesting conservation and divergence in
the expression of microglia markers across species.

Transcription factors (TFs) have been demonstrated as the
important regulators of gene expression and with the ability to
shape different phenotypes of microglia74. We, therefore,
performed single-cell genetic regulatory network (GRNs) infer-
ring and clustering analysis to assess TFs underlying differential
gene expression in microglia across species. In total, 1590
conserved TF-target pairs were identified, which were observed
in at least five of thirteen species. Interestingly, two pairs of TF-
target were conserved in ten different species, which are
MEF2C_P2RY12 and MEF2C_ZFP36L1. The target P2RY12 is a
microglia-specific gene, while the target ZFP36L1 is reported as a
pivotal regulator for microglial fate specification75,76. For
TF_target pairs covering nine species, four pairs of conserved
TF_target were identified including MEF2C_C1QB, MEF2C_-
FAU, MEF2C_RGS10, and MEF2C_SERBP1. The target C1QB is
a microglia-specific marker. The target RGS10 is reported as a key
regulator of proinflammatory cytokine produced in microglia for
neuroprotective factors77. SERBP1 plays an important role in
proinflammatory TLR4 signaling78. However, the FAU gene
encodes a ubiquitin-like protein fused to the ribosomal protein
S30. These results demonstrated that MEF2C is a core TF
regulating multiple key genes related to microglia functions.
Furthermore, the TF-target pairs in eight species share the unique
TF of MEF2C, and most of the conserved TFs in at least five
species also mainly contain MEF2C. These targets of MEF2C
include most microglia and immune-related genes such as
PTPRC, CSFER1, APOE, AIF1, CD14, and CTSS et. These results
demonstrated that MEF2C is a conserved TF in microglia
evolution. It is consistent with the functional TF of MEF2C
reported regulating the fundamental functions of microglia79. The
other importantly conserved TFs were identified for microglia
functions such as SPI1 and IRF8 (Supplementary Data 13).

Subsequently, we separately analyzed the conserved TF-target
pairs shared by five of thirteen different species. For example, in
humans, the top ten of these conserved TFs were shared with four
other random species are ARID1, ATF4, BCLAF1, CCDC88A,
CNBP, CSDE1, EGR1, ELF1, FLI1, and FOS. In the macaque, the
top ten conserved TFs are ELF1, FLI1, IKZF1, IRF8, KLF6, LITAF,
MEF2A, MEF2C, NFE2L2, and SFPQ. In pigs, the top ten
conserved TFs are MEF2C, IRF8, MEF2A, SON, SPl1, ATF4,
ELF1, FLI1, FOS, and HMGB1. However, for reptiles such as
lizards, the top ten conserved TFs are MEF2C, ATF4, IRF8,
MEF2A, MEF2C, ZEB2, SPl1, ATF4, FOS, and HMGB1. These
conserved TFs in each species contain the shared conserved TF-
target pairs and species-specific TF-target pairs (Fig. 6f, Supple-
mentary Data 13). Additionally, the rank top ten conserved TFs
(MEF2C, ZFP36L1, FOS, MEF2A, IRF8, SON, HMGB1, ZEB2,
SPI1, and ATF4) in humans were indicated with the enrichment

of pathways such as adaptive immune response, regulation, or
humoral immune response in the immune system, and the central
nervous system neuron differentiation and development for
neuron-related pathways (Supplementary Fig. S6c). Collectively,
these results indicate that the combinations of multiple TFs
regulate microglia development and maintain the functional
states of microglia. Furthermore, we investigated the expression
level of conserved TFs of MEF2C, SPl1, IRF8, and ZFP36L1 across
species. The results showed these conserved TFs are highly
expressed in microglia in these 13 species (Fig. 6g). Collectively,
we provide a valuable resource of the conserved and divergent
GRNs program for microglia evolution across species, with
important implications for future development of the microglia
functional studies in the brain.

Discussion
Pigs are important large animal models for studying complex
human diseases, as well as promising alternative organ donors for
humans due to their high similarities with humans: physiology,
anatomy, genetics, metabolism, and organ size4. Single-cell
transcriptomic profiles of multiple organs in the mouse and
human body reveals the cellular compositions and heterogeneity
of inter-and intra- organs and offers the opportunity to overall
organ development, physiology, and plasticity22,34,80,81. This
study generated a multiple-organ single-cell transcriptomic atlas
of pigs covering twenty tissues. The landscape profiles of pig
organs depicted the transcriptomic cellular heterogeneity in each
tissue and expand the functions of cross-tissue cell types and rare
cell-type identification. With a focus on endothelial cells, we
identified the subpopulations of cross-tissue ECs, such as blood
ECs, lymphatic ECs, and several subtypes of functionally distinct
ECs. These cell types were also reported in the human single-cell
atlas. We are also able to identify functionally specific ECs, such
as the immune active ECs that express typical ECs markers
(PECAM1+) and immunomodulating genes (CD68+, C1QA+,
C1QB+, and AIF1+). These findings of immune active ECs are in
good agreement with our previous scRNA-seq based ECs tax-
onomy in mouse and human tissues45–47 and the well-study
immune-modulating functions of ECs82–84. In this study, the ECs
were only enriched from adipose tissues through a modified
isolation protocol. The degree of ECs heterogeneity was not
revealed as detailed as the mouse ECs atlas45. To systematically
characterize and compare the ECs heterogeneity across different
tissues and organs by scRNA-seq, future studies are needed to be
performed using enriched the ECs by MACS and/or FACS.

Angiogenesis is matured through ECs and non-ECs to form the
vascular channels. The non-endothelial microcirculation is called
vascular mimicry85. In physiologic and pathological angiogenesis,
macrophages are thought to play a supportive role to promote
vascular mimicry outgrowth through cytokine secretion and
remodeling of the extracellular matrix (ECM)86,87. In tumors,
macrophages are believed to reprogram the pathological angio-
genesis to serve as the major source of angiogenic factors88.
PECAM1 signaling participates in the regulation of leukocyte

Fig. 6 Validation of brain cell types and comparison of microglia regulome across species. a Schematic diagram visualizing the 9 different brain regions
analyzed by this study. b t-SNE visualization of cells in the 9 brain regions. Cells were color-coded according to brain regions. Cell types were shown in
extended Fig. S6. The hypergeometric test was used for GO term analysis, and p values were adjusted by Benjamini & Hochberg. c Representative IHC of
SLC1A6, CALB2, PAX6, SLC17A7, and SST by antibody staining in the cortex or cerebellum. Arrows indicate corresponding cell types (n= 3).
d Phylogenetic tree based on the NCBI taxonomy of animals used in this study (generated via http://www.timetree.org//). e Violin plots visualizing the
expression of canonical microglia markers in the 13 species. f Conserved genetic regulatory networks in microglia within each indicated species. Light blue
nodes represent regulators and green nodes represent corresponding target genes. g Feature plots visualizing the clustering of microglia single-cell
transcriptome and expression of four TFs among the 13 species. Source data are provided as a Source Data file. Species icons in d, f were created with
BioRender.com.
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detachment, T cell activation, and angiogenesis89. Therefore, the
high expression of macrophage marker genes and PECAM1+ cell
population may play an important role in vascular mimicry
during angiogenesis. EndMT ECs were identified in the pig adi-
pose tissues and cultured ECs with co-expression of ECs markers
of PECAM1 and VWF, and the mesenchymal cell markers of
ACTA2 and TAGLN. In particular, the EndMT cells underwent
the dynamic transition stages with the decreased expression of the
ECs markers PECAM1 and VWF while the expression of the
mesenchymal cell markers ACTA2 and TAGLN increased. This
phenotype is consistent with the stages of EndMT: (1). EndMT is
initiated by autocrine and/or paracrine inflammatory signals such
as TGF-β2, which was also validated by our TGF-β2 induction
experiment of cultured PAECs and HUVECs, or response to
vascular injury; (2). Transitioning ECs acquire a migratory phe-
notype, invade under the vascular basement membrane, and
begin to express mesenchymal markers, such as ACTA2; (3). Cells
that have undergone EndMT have lost their endothelial pheno-
type. These EndMT-derived cells contribute to the local
mesenchymal lineage population and are likely to produce var-
ious growth factors, such as TGF-β290. EndMT is an important
developmental process, participating in tumor formation, inva-
sion, and metastasis, and has been extensively participating in
several diseases by causing morphology changes and pathological
processes. The mesenchymal cells derived from EndMT might be
differentiated into various mesenchymal cell types for tissue
engineering and subsequent transplantation into the patient91.

The most potent pathway of VEGF played the core role in the
intercellular interactions between ECs and tissue-specific cell
types, suggesting active interactions and communications
between ECs and other cell types in organs92. Angiogenesis
occurs in both physiologic and pathological conditions and
interplays with other cell types93,94. In adult tissues, most ECs are
quiescent, but these ECs are metabolically active and actively
involved in the regulation of several important cellular processes
such as immune modulations95. In addition, the growth of
pathological angiogenesis in human diseases such as cancers
highlights that the targeting this process should help to reduce
both morbidity and mortality from carcinomas96. Hence, anti-
angiogenic therapy is a novel approach for the treatment of
cancers, diabetic retinopathy, and other angiogenesis-dependent
diseases97.

Pigs are an excellent model for studying genetic and somatic
evolution23. In this study, we demonstrated that the evolution of
microglia, a cell type that exhibits increasing interest and is
important in neurological disorders98. Approximately 1500 reg-
ulatory sequence-specific DNA-binding factors (transcription
factors, TFs) are encoded in the human genome, which is upre-
gulated in a tissue-specific and cell-type-specific manner. Changes
in gene expression between species could be due to changes in the
TFs and/or changes in the instructions within the regulatory
regions of specific genes. TF expression patterns and binding
activities could advance the understanding of how tissue specifi-
city and conserved regulatory functions across species99–101.
Here, we investigated the genetic regulatory networks of microglia
across thirteen different species, spanning more than 300 million
years of evolution. The conserved TFs across different species
demonstrated the regulatory mechanism of target genes for the
fundamental functions of microglia. In particular, the conserved
TFs of MEF2C were detected in ten species, and its regulatory
genes are important for microglia functions in the brain such as
P2RY12, ZFP36L1, RGS10, and SERBP1. These transcriptional
regulatory genes play an important role in microglia biology, such
as microglia fate specification, a key regulator of proinflammatory
cytokine produced in microglia, suggesting that microglia per-
form overall similar functions during species evolution73.

We also highlight a few limitations of the current study. First,
tissues used by this study are taken from animals of adult ages.
Thus, the development and age effects on gene expression and
cell-type compositions in tissues cannot be addressed by the data
generated by this study. When conducting the comparison of cell-
type-specific gene expression between pig and human, effects of
ages, gender, and physiological conditions cannot be addressed by
this study. Second, the scRNA-seq and snRNA-seq experiments
were conducted by two laboratories, using two different sets of
tissues, and with technologies provided by two companies. Thus,
the difference in the number of cell types and fraction of each cell
type captured by the two methods could be caused by the many
steps during sample processing. Since the aim of this study was
not focused on comparing the scRNA-seq and snRNA-seq
technologies, we carried out comprehensive batch correction
and normalization to use both scRNA-seq and snRNA-seq
datasets to construct the first pig single-cell transcriptome atlas.
Most importantly, the transcriptome of sample cell types cap-
tured by scRNA-seq and snRNA-seq is highly correlated, sug-
gesting that both methods can capture the transcriptome of cells
with high fidelity. Since the number and composition of cell types
could be affected by the single-cell transcriptomics analysis
methods (scRNA-seq and snRNA-seq), comparison of cell-type
abundance and composition between tissues or conditions should
be carried out using datasets generated with the same method to
avoid method-induced biases. Lastly, we provide the first insight
into EC heterogeneity in pig tissues. To fully characterize the EC
heterogeneity and identify functionally distinct EC phenotypes in
pig organs, an EC-focused single-cell transcriptome analysis
should be carried in future study.

In summary, we constructed the first single-cell transcriptomic
atlas of pig organs (https://dreamapp.biomed.au.dk/pigatlas/). We
identified the tissue-specific cell types and cross-tissue cell types
such as ECs, immune cells, and microglia. Moreover, some rare
cell types were identified in our data, such as EndMT ECs, sug-
gesting the rare cell types could be identified by single-cell tech-
niques. The regulatory mechanism analysis of microglia across
species provides insights into the conserved TFs regulatory
module for microglia evolution. Together, our study offers an
important resource for a better understanding of pig biology,
xenotransplantation, evolution, development, and regenerative
medicine research.

Methods
Ethical statement. The study was approved by the Institutional Review Board on
the Ethics Committee of BGI (Approval letter reference number BGI-NO.BGI-
IRB18135-T1). All experimental procedures were conducted following the national
and institutional guidelines of using the experimental animals for research. All the
applicable institutional and national guidelines for the care and welfare of animals
have been strictly followed for the tissue sampling procedures.

Tissue dissociation and sample preparation for scRNA-seq library generation.
Porcine tissues for scRNA-seq library generation were collected from a local
slaughterhouse (Sus scrofa domesticus, three-way hybrid of Landrace, Large White
and Duroc, age 6 months, Hårby Slagteren IvS). The fresh tissues were collected,
immediately placed on ice, and processed within 30 min. Each tissue was dis-
sociated and digested independently. To ensure efficient digestion and cell viability,
after tissue dissociation (as described for each organ below), cell suspensions were
filtered by cell strainers after debris removal and red blood cell lysis. The cell
viability (Hoechst 33342 (Invitrogen, Cat#H3570) and Propidium Iodide (Thermo
Fisher Scientific, Cat#P3566)) from each tissue were evaluated by flow cytometry
(FC) analysis on a NovoCyte Quanteon analyzer (Acea bioscience, Inc, US) pro-
vided by the FACS Core Facility, AU.

Liver. The fresh liver was collected and sampled with five different anatomical
regions: left lateral lobe (LLL), left medial lobe (LML), right medial lobe (RML),
right lateral lobe (RLL), and quadrate lobe (QL). For each region, 1 g tubes were
punched and washed twice with cold PBS. The samples were mixed and carefully
dissected into small pieces, and then transferred into a 50 mL tube with 20 mL
digestion medium containing 0.5 mg/mL collagenase type II (Gibco,
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Cat#17101015), 1.25 mg/mL protease (Sigma, Cat#P5147-100MG), 7.5 μg/mL
DNase I (Sigma-Aldrich, Cat#D4527-10KU) in cold HBSS. The tissue digestion
was performed at 37 °C for 15 min with gently shaking once every 5 min. The
reaction was stopped in 20 mL cold MACS buffer containing 0.25% BSA (Sigma-
Aldrich, Cat#10735096001), 2 mM EDTA, in PBS, and then filtered with 100 μm
cell strainer (Sigma-Aldrich, Cat#CLS431752-50EA), and the cells were stained for
the FC analysis.

Spleen. The fresh spleen was collected and sampled with 1 g pieces for both ana-
tomical sides including the parietal and visceral side and washed twice in cold PBS.
The samples were mixed and carefully dissected into small pieces and transferred
into a 50 mL tube with 10 mL digestion buffer containing 20 mg/mL collagenase IV
(Gibco, Cat#17104019), 1 U/mL Dispase II (Gibco, Cat#17105041), 7.5 μg/mL
DNase I in 10 mL HBSS. The tissue digestion was performed at 37 °C for 15 min
with gently shaking once every 5 min. The reaction was stopped in 20 mL cold
MACS buffer containing 0.25% BSA, 2 mM EDTA, in PBS, and filtered with 100
μm and 40 μm cell strainer, and the cells were stained for the FC analysis.

Retina. The porcine eyes were collected and dissected by surgical scissors, and the
retina was transferred to cold HBSS by using forceps. Subsequently, the retina was
dissected into small pieces and put in 10 mL digestion buffer with 2 mg/mL col-
lagenase I (Gibco, Cat#17018029), 3.75 μg/mL DNase I into 10 mL HBSS. The
tissue was digested at 37 °C for 20 min with gently shaking once every 2 min. The
digestion reaction was stopped in 20 mL MACS buffer with 0.25% BSA, 2 mM
EDTA in PBS and filtered with 40 μm cell strainer, and the cells were stained for
the FC analysis.

Brain. The fresh porcine brain was collected including 7 different regions: neo-
cortex, cerebellar cortex, caudate nucleus, thalamus, hippocampus, hypothalamus,
and pons with 0.5 g pieces for each region. The samples from different regions were
mixed and dissected into small pieces. The digestion was performed at 37 °C for
30 mins in 20 mL digestion buffer containing 10 mg/mL collagenase IV, 15 μg/mL
DNase I, followed by gently shaking once every 5 min. Subsequently, the digestion
reaction was stopped by using MACS buffer and filtered with a 40 μm cell strainer.
After centrifuge and resuspension, the cells were stained for the FC analysis.

Lung. Seven different regions: left apical lobe, left middle lobe, left main lobe, right
apical lobe, right middle lobe, accessory lobe, and right main lobe were collected
from the fresh porcine lung. From each region, a 0.5 g piece was collected and
washed twice in cold HBSS. The samples were dissected into small pieces and put
into 50 mL Falcon tube with 20 mL digestion medium containing 1 mg/mL col-
lagenase type II, 2.5 mg/mL collagenase type IV, 7.5 μg/mL DNase I. The samples
were digested at 37 °C for 30 min with gently shaking once every 5 min and
stopped digestion in MACS buffer. The samples were diluted into cold HBSS and
then filtered with 100 μm and 40 μm cell strainers respectively. Subsequently, the
debris was removed, and the cells were stained for the FC analysis.

Visceral adipose tissue and subcutaneous adipose tissue. For each of the adipose
tissue depot, 10 g of each tissue was weighed and placed in the 25 mL digestion
media containing: FBS-free KnockOut™ DMEM medium (Gibco, Cat#10829018)
supplemented with 1% (v/v) Penicillin/Streptomycin (Thermo Fisher Scientific,
Cat#15140122), 2 × Antibiotic-Antimycotics (Thermo Fisher Scientific, Gibco
#1524-062), 1 mM Sodium Pyruvate (Thermo Fisher Scientific, Cat#11360070),
MEM Non-Essential Amino Acids Solution (MEM-NEAA) (Thermo Fisher Sci-
entific, Cat#11140035), 2 mM L-Glutamine (Thermo Fisher Scientific, Gibco
#25030-024), 0.2% collagenase type I, 0.25 U/mL Dispase II and 7.5 μg/mL DNase
I. Samples were incubated at 37 °C in a water bath for at least 45 min, shaken and
mixed by pipetting every 5 min. At the end of the incubation time, a PBS-based
wash buffer containing 0.5% BSA, 2 mM EDTA in PBS was added and the cell
suspension was filtered through a 100 μm cell strainer, and centrifuged at 300 g for
7 min. The washing step was repeated 2 times more and the cell suspension was
always re-filtered through 100 μm cell strainer and transferred to a new canonical
tube to remove the access of undigested clumps and fat.

Intestine. The fresh intestine was collected and washed twice in cold PBS. 3 g of
intestine pieces were picked and dissected into small pieces. The digestion reaction
was at 30 min with gently shaking once every 5 min in 20 mL digestion medium
containing 5 mg/mL collagenase type I, 2.5 mg/mL collagenase type IV, 15 μg/mL
DNase I. After digestion, the tissues were diluted into cold HBSS and then filtered
with 100 μm and 40 μm cell strainers respectively. The debris was removed, and the
cells were stained for FC analysis.

PBMC. The approaches for porcine PBMC isolation were based on the human
PBMC isolation protocol in our previous study102. In brief, 10 mL of pig blood
sample in a citrated vial was gently inverting to mix well. The PBMC were isolated
followed by density gradient centrifugation with Ficoll®-Paque Premium medium
(Cytiva, Cat#17-5442-02). The cells were resuspended after red blood cells lysis and
stained for the FC analysis.

Cultured ECs isolation from pig lung. One leaf of pig lung was used for perfusion
with PBS from the big vessel on top. After perfusion, the lung was squeezed and
extracted the PBS. Fifteem milliliters of the digestion buffer containing 0.1% col-
lagenase II, 0.25% collagenase IV, 75 μL DNAse I in KnockOutTM DMEM medium
was injected into the sealed pig lung. The opening site was closed by sealing clip
and left in the bag into a water bath at 37 °C for 30 min. Next, the lung was taken
out and the digestion buffer has flowed away. Twenty milliliters of PBS was used to
wash the lung thrice, and the medium was collected for filtering with 100 μm cell
strainer afterward. The medium was transferred into 10 mL Falcon tube and
centrifuged at 300 × g for 5 min. The cells were washed with 10 mL PBS and
centrifuged for culturing into 5 mL PAEC medium (DMEM with 10% fetal calf
serum, 1 × MEM-NEAA, 1 mM sodium pyruvate, 1 × glutamax, 1 × penicillin/
streptomycin) in CO2 incubator.

Cultured ECs isolation from pig aorta. The aorta near to lung was separated and
washed with PBS. Five milliliters of digestion buffer was injected into the sealed
aorta and left the aorta into a water bath at 37 °C for 30 min. Next, the aorta was
taken out, and the digestion buffer was flowed out. The medium was transferred
into a 15 mL Falcon tube and centrifuged at 300 × g for 5 min. The collected cells
were washed with 5 mL PBS and centrifuged for culturing within 5 mL PAEC
medium.

Single-cell library construction and sequencing. Library generation: Single-cell
RNA-sequencing (scRNA-seq) libraries were prepared following the manu-
facturer’s instructions of GemCode Single Cell 3′ Gel Bead and Library kit (v3
Chemistry) from 10× Genomics, Inc. (Pleasanton, CA). Briefly, scRNA-seq library
was generated by the cells from the different tissues: lung, liver, intestine, spleen,
adipose, brain, and retina. After library construction, the library conversion was
performed using the MGIEasy Universal DNA Library Preparation reagent kit
(BGI, Shenzhen, China) for compatibility, followed by sequencing on a DNBSEQ-
T7 platform (MGI).

Sample collection for nucleus extraction and snRNA-seq. The approaches for
sample collection and nuclei extraction for snRNA-seq libraries generation in this
study were followed in our previous study28. Briefly, the tissues used in this study:
heart, kidney, spleen, liver, lung, retina, and brain regions (area_postrema, cere-
bellum, subfornical organ, and OVoLT) were carefully dissected from the healthy
domestic pigs (Sus scrofa domesticus, three-way hybrid of Landrace, Large White
and Duroc, age 3 months) with strict compliance to the ethical guidelines. The
collected tissues were washed with cold PBS, and immediately frozen in liquid
nitrogen and stored in a −80 °C freezer before use. For the nuclei extraction
process, the tissues were thawed and cut into small pieces, then transferred into a
homogenization buffer containing 20 mM Tris pH 8.0, 500 mM sucrose, 0.1% NP-
40, 0.2 U/mL RNase inhibitor, 1% BSA, and 0.1 mM DTT. The tissue pieces were
grinded for 15 times with tight pestles and filtered with 40 µm strainer. The
samples were centrifuged at 500 × g for 10 min at 4 °C to carefully discard the
supernatant. The pellets (nuclei) were resuspended in PBS containing 1% BSA and
20 U/µL RNase Inhibitor for later snRNA-seq library construction (MGI).

Single-nuclei library construction and sequencing. The mRNA capture was
operated on a DNBelab C4 device (MGI). cDNA amplification and libraries con-
struction were generated using the MGI DNBelab C series reagent kit (MGI)
following the manufacturer’s instructions. All the libraries were sequenced on the
DNBSEQ-T7 platform.

Pre-processing and quality control of scRNA-seq and snRNA-seq data. Cell
Ranger 3.0.2 (10x Genomics) was used to process the raw sequencing data of
scRNA-seq. The sequencing data from snRNA-seq was filtered, and the gene
expression matrix was obtained using DNBelab C Series scRNA analysis software
(MGI). The reference genome was downloaded from the Ensemble assembly:
Sscrofa11.1. Cells were only retained if the number of detected genes were greater
than 200 and less than 5000 and the percentage of detected mitochondrial tran-
scripts from MT genes (ATP6, ATP8, COX1, COX2, COX3, CYTB, ND2, ND3,
ND4, ND4L, ND5, ND6) was less than 30%. The Pig ND1 gene was not included in
MT-based filtering due to high sequence variant in pigs.

Identification of cell clusters. After filtering, unsupervised clustering was per-
formed using Seurat v332. Datasets from different sequencing libraries underwent
normalizing and scaling. Variable genes were determined using Seurat’s “Find-
VariableGenes” function with default parameters (selection.method= “vst”, nfea-
tures = 2000). Clusters were identified via the “FindClusters” function (0.8 <
resolution < 1.5) implemented in Seurat using principal components with a P value
< 0.01 and subsequently visualized using the “RunTSNE” and “RunUMAP”
functions (reduction= “pca”).
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Identification of differentially expressed genes (DEGs) across clusters.
“FindAllMarkers” function implemented in Seurat v3 was used to identify DEGs
across clusters with the options “min.pct = 0.25, logfc.threshold = 0.25”. Multiple
test correction for P value was performed using the Bonferroni method, and 0.05
was set as a threshold to define significance. Furthermore, cell-type identities were
assigned using canonical cell-type markers.

Gene ontology (GO) enrichment analysis. Gene Ontology (GO) analysis was
using in the clusterProfiler 4.0 package103. The GO terms of selected genes were
enriched in the database “org.Hs.eg.db” using “enrichGO” function because of the
lack of study in pigs. Benjamini–Hochberg (BH) method was used for the multiple
test adjustment.

Integration of multiple datasets from different sequencing platforms. Datasets
derived from the 10X (scRNA-seq) and the DNBelab C4 (snRNA-seq) platforms
were integrated using the Seurat R package (version 3.2.2) after cell filtering. In
detailed, data was log1p-normalized with the SCT normalizeData method using the
“SCTransform” function, and subsequently scaled by the Pearson Residuals with a
scale factor of 10,000 as default using the “ScaleData” function. The top 3000 highly
variable features were selected using the “SelectIntegrationFeatures” function, fol-
lowed by finding the integration anchors using the “FindIntegrationAnchors”
function, performing the integration of the data using the “IntegrateData” function.
Following integration, principal component analysis was performed using the
“RunPCA” function with default parameters, then both t-SNE (t-Distributed Sto-
chastic Neighbor Embedding) and UMAP (Uniform Manifold Approximation and
Projection) dimensionality reduction methods were conducted based on the top 20
principal components (PCs) using the “RunTSNE” and “RunUMAP” functions,
respectively. Moreover, unsupervised clusters were identified by setting the top 20
PCs and a clustering resolution of 1.0 using “FindNeighbors” and “FindClusters”
functions. The Pearson correlation coefficients of cell types were calculated using
the average expression of top 3000 highly variable features and visualized using
pheatmap R package (1.0.12).

Pseudotime trajectory analysis. PECAM1+ PTPRC-EPCAM-COL1A1-PDGFRB-
HBBlow ECs was used to subset the ECs from adipose tissues. Then, the “Inte-
grateData” function with cca methods in Seurat package were used to correct the
batch effect of ECs in adipose-V and adipose-S. The integrated ECs of both
adipose-V and adipose-S were clustered by “FindClusters” with resolution 1.0. Each
cluster was annotated based on canonical subtype markers and cluster specific
DEGs. Both all ECs and EndMT subtype were used to perform the subsequent
pseudotime trajectory analysis. Monocle 2104 package was used to discover the cell
state transitions ECs. Genes expressed in less than 10 cells were filtered out. DEGs
were computed by function “differentialGeneTest” in monocle2. Genes with qvalue
less than 0.01 were regarded as DEGs and sorted by qvalue using “setOrder-
ingFilter” function. The pseudotime trajectory was constructed by “DDRTree”
algorithm with default parameters. The dynamical expression changes of selected
marker genes by pseudotime were visualized by “plot_genes_in_pseudotime” and
“plot_pseudotime_heatmap” function.

Cross-species comparison of intercellular communications between pig and
human. Intercellular communication analysis was conducted using CellChat
(v0.0.1) R package with default parameters65. Pig and human liver, kidney, and
heart datasets were analyzed separately. The human liver105, kidney106, and
heart107 datasets were collected from previous reports. Intercellular communica-
tions analysis was performed based on cell types shared by the separate liver,
kidney, and heart between pig and human. Cell–cell communication network was
visualized using the “netVisual_aggregate” function, centrality score was computed
and visualized using the “netAnalysis_signalingRole_network” function, relative
contribution of each ligand-receptor pair was visualized using the “netAnaly-
sis_contribution” function.

TF-target interaction inference. TFs gene list was downloaded from the
animalTFDB3.0108. Only genes expressed in more than 5% of corresponding cell
types were subjected to GENIE3109 (v1.8.0) to infer putative regulatory circuits
from expression data using tree-based ensemble methods. TF-target pairs with
weight value more than 0.01 were retained for primary regulatory network con-
struction. The total frequency of each TF-target pair present in 13 species was
counted to evaluate its conservation level. TF-target pairs present in at least
5 species were considered as ‘conserved regulomes’. Conserved regulomes were
visualized using the igraph110 (v1.2.6) R package.

Construction of the PCA database. The PCA database was generated with
ShinyCell111 with default settings and modified to include the introduction and
user guide pages.

Tissue processing. All peripheral pig tissues were stored in 70% ethanol at 4 °C.
The pig brain tissues were stored in PBS buffer at 4 °C and changed into 70%
ethanol one week prior to paraffin embedding. We first dehydrated the tissues with

absolute alcohol (VWR chemicals) and xylene (Histolab). Next, paraffin (Histolab)
immersion was performed using an automated Tissue Processing Center TPC 15
Duo (MEDITE) machine. After manual embedding into separate paraffin tissue
blocks, one representative section (4um) was taken from each tissue block using a
microtome (Microm HM 355 S, Thermo Fisher Scientific). A microm STS Section-
Transfer-System (waterfall) was used for section transfer into a warm water bath
(38 °C) stretching before placed on SuperFrost PlusTM slides (VWR). All slides
were dried at room temperature for 24 h followed by 50 °C overnight (LAMB
Windsor Incubator E18.31, Histolab).

Immunohistochemical staining. Antibodies produced within the HPA project (see
Supplementary Data 14 for antibody information) with high reliability (based on
human antibody validation112,113), and over 80% sequence homology to pig
orthologs was used for immunostaining. All antibodies are published on the HPA
portal (www.proteinatlas.org) with more details about antibody reliability and
tissue distribution in humans Formalin-fixed paraffin-embedded (FFPE) pig tis-
sues, previously validated and prepared30, was utilized for validating that scRNA-
seq is a robust method for the classification of different cell types. The staining
protocol follows our previous study by Karlsson et al, as briefly described below.
Full size tissue sections as well as sections from tissue micro array (TMA) were
represented by 1 mm punches moved from the donor block to an empty recipient
paraffin block. Deparaffinization and rehydration were performed by Autostainer
XL (ST5010, Leica biosystems) followed by heat-induced epitope retrieval in pH6.1
citrate buffer (DAKO, diluted 1:10 with deionized water) and pressure boiler
(decloaking chamber, Biocare Medical). Autostainer 480 (ThermoFisher Scientific)
was used for automated IHC staining with UltraVision™ Quanto Detection System
HRP DAB-kit from Thermo Fisher Scientific including Ultra V Block, HRP
Polymer, Primary Antibody Enhancer, DAB Quanto Substrate, DAB Quanto
Chromogen, and primary antibodies were diluted in Antibody Diluent OP Quanto.
After a 5 min block (Ultra V Block), primary antibodies were incubated for 30 min,
followed by the secondary HRP Polymer (ThermoFisher Scientific) and the final
step of 5 min DAB Quanto incubation. All steps were separated by double wash
(Tris Buffer and Tween 20). Slides were placed in water and moved to the Auto-
stainer XL (ST5010, Leica biosystems) for counterstaining (hematoxyline), dehy-
dration, and cover glass mounting. Image digitalization was performed with
Scanscope AT2 (Aperio) using a 20× objective.

Immunofluorescence staining. Two slides with adipose tissue samples were
dewaxed using Histoclear. One slide of adipose tissue was then incubated with
ACTA2 monoclonal mouse antibody (1:100 dilution) and PECAM1 polyclonal
rabbit antibody (1:50 dilution) overnight at 4 °C. The other slide was incubated
with VWF monoclonal mouse antibody (1:7,000 dilution) and TAGLN polyclonal
rabbit antibody (1:100 dilution). The slides were then washed in TBS-Tween and
blocked with TNB buffer. To visualize the proteins, an HRP-conjugated swine anti-
rabbit antibody (diluted 1:200 in TNB buffer) was added and the slides were
incubated at room temperature for 30 min. The slides were washed and then
incubated with TSA-FITC substrate for 15 min in the dark. After this step, the
slides were placed in 0.1% NaN3 in PBS to inactivate the secondary antibody. They
were then incubated in the dark with an HRP-conjugated donkey anti-mouse
antibody (diluted 1:200 in TNB buffer), and after washing incubated with a TSA-
Cy3.5 substrate.

TGF-β2 treatment-induced EndMT. Primary pig aortic endothelial cells (PAECs)
were cultured in Dulbecco’s modified Eagles’s medium (DMEM) with 4.5 g/L D-
glucose, L-Glutamine, and pyruvate (Gibco, #41966052), supplemented with 10%
fetal bovine serum (FBS) (Sigma, #F7524), 1× non-essentials AA (MERCK,
#M7145), and 1× penicillin/streptomycin. The PAECs were cultured on 0.1%
gelatin (MERCK, #D8537) coated culturing flasks (Nunc, #156499) in a 5% CO2

humidified incubator at 37 °C.
Primary human umbilical vein endothelial cells (HUVECs) were cultured on

0.1% gelatin-coated culturing flasks in M199 medium (Gibco, #22350-029)
supplemented with 2mM L-Glutamine (Gibco, #35050-061), Endothelial Cell
Growth Supplement (ECGS)/ Heparin (PromoCell, #C-30120), and 20% FBS, in a
5% CO2 humidified incubator at 37 °C. The M199 medium with supplements was
replaced three times per week. HUVECs were passaged every 14 days by washing
the cells twice with PBS, trypsinized, and centrifuged at 250 × g for 5 min.

For TGF-β2 treatment, 100,000 PAECs/well were seeded in 12-well plates
(Thermo Scientific, #150628) supplement with 2 ng/mL TGF-β2(Merck, T2815) in
triplicates. Control cells were cultured in normal PAECs medium without TGF-β2.
On day 2, the PAECs were trypsinized and seeded (100,000 PAECs/well) in 12-well
plates followed by changing the medium on day 4. For HUVECs, which grow much
slower compared to PAECs, cells were cultured in control (0 ng/mL, TGF-β2) and
TGF-β2 medium (2 ng/mL) for 5 days without passaging. All cells were harvested
for analysis of ACTA2 and CD31 expression by flow cytometry 5 days after TGF-
β2 treatment.

Flow cytometry analysis of ACTA2 and CD31 expression. Cells (PAECs and
HUVECs) were washed in PBS twice, dissociated with trypsin (Gibco, #25300054),
and centrifuged at 400 g for 4 min. The cell pellets were washed with PBS+ 5% FBS
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twice and resuspended in 240 µL PBS+ 5% FBS. PAECs were stained with ACTA2
(AF488 Human Alpha-Smooth muscle actin, R&D, Cat#IC1420G, 1:100 dilution),
CD31 (Porcine CD31/PECAM1 AF700, R&D, #FAB33871N-100UG, 1:100 dilu-
tion), and CD45 (BV421 Mouse Anti-Human CD45, BD Bioscience, #563879,
1:100 dilution). HUVECs were stained with CD31 (FITC Mouse Anti-Human
CD31 (BD Bioscience, #555445), 1:100 dilution) and ACTA2 (AF488 Human
alpha-Smooth muscle actin, R&D, Cat#IC1420G, 1:100 dilution) separately. Cells
were incubated on ice in the dark for 30 min. Before FC analysis, the stained cells
were washed twice with pre-cooled PBS+ 5% FBS. At the final wash, the cells were
resuspended in 200 µL PBS+ 5% FBS. Prior to this study, we compared the pig and
human ACTA2 amino acid sequences, which are identical. Antibody validation of
anti-ACTA2 was also validated by staining human mesenchymal stem cells. Flow
cytometry was performed with the NovoCyte Quanteon analyzer (Acea bioscience,
Inc, US) provided by the FACS Core Facility, Aarhus University.

Statistics and reproducibility. Statistical significance of differential expression
gene was performed with multiple test correction for P value (Bonferroni).
Benjamini–Hochberg (BH) method was used for the multiple test adjustment for
the gene ontology enrichment analysis. Unpaired, two-sided t-test was used for
comparison of CD31 and ACTA2 expression in the induced EndMT experiments
in cultured ECs. A P value less than 0.05 was considered statistically significant.
Unless stated elsewhere, all immunohistochemistry, immunofluorescence staining
and FACS experiments was performed with at least three experimental replicates.
No statistical method was used to predetermine sample size. No data were excluded
from the analyses. Filtering criteria for the low-quality cells and potential doublets
are provided in the method above and the source code. Randomization is not
related to this study. The investigators were not blinded to allocation during the
experiments and the outcome assessment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The single-cell and single-nuclei RNA-sequencing data generated in this study have been
deposited in the CNGB Sequence Archive (CNSA) of China National GeneBank
DataBase (CNGBdb) under accession code “CNP0002165”. The single-cell and single-
nuclei RNA-sequencing data generated in this study have also been deposited in the gene
expression omnibus database (GEO) under accession codes “GSE196055” and
“GSE193975 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi]”. All matrix data can be
downloaded from the PCA database (https://dreamapp.biomed.au.dk/pigatlas/). All other
relevant data supporting the key findings of this study are available within the article and
its Supplementary Information files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
All codes for processing of the single-cell RNA-sequencing data have been deposited to
GitHub114 and available through this URL: https://github.com/Dingpw/PigAtlas.
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