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Preeclampsia (PE) is an often fatal pathology characterized by hypertension and proteinuria

at the 20th week of gestation that affects 5–10% of the pregnancies. The problem is

particularly important in developing countries in where the incidence of hypertensive

disorders of pregnancy is higher and maternal mortality rates are 20 times higher than

those reported in developed countries. Risk factors for the development of PE include

obesity, insulin resistance and hyperlipidemia that stimulate inflammatory cytokine release

and oxidative stress leading to endothelial dysfunction (ED). However, how all these

clinical manifestations concur to develop PE is still not very well understood. The related

poor trophoblast invasion and uteroplacental artery remodeling described in PE, increases

reactive oxygen species (ROS), hypoxia and ED. Here we aim to review current literature

from research showing the interplay between oxidative stress, ED and PE to the outcomes

of current clinical trials aiming to prevent PE with antioxidant supplementation.
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PREECLAMPSIA: A DISORDER OF GLOBAL IMPACT

Preeclampsia (PE) is a dangerous complication of pregnancy clin-
ically detected on the second half of gestation. PE is a disorder
that affects 5–10% of pregnancies and is characterized by hyper-
tension (Walker, 2000; North et al., 2011) and proteinuria at the
20th week of gestation (Redman and Sargent, 2005). According
to the World Health Organization (WHO), 20% of the 15 mil-
lion preterm births reported each year are related to PE (Kinney
et al., 2012; Liu et al., 2012). This situation is particularly impor-
tant in developing countries where the incidence of hypertensive
disorders of pregnancy is higher and maternal mortality rates
and preterm births are 20 times higher than those reported in
developed countries (Walker, 2000; Lain and Roberts, 2002).

Classical conditions and risk factors such as nulliparity, mater-
nal age, insulin resistance, deficient nutrients intake such as
calcium or antioxidant vitamins, subclinical infections, metabolic
syndrome, genetic predisposition or immune factors partici-
pate independently or in association to increase the risk to
develop PE (Eskenazi et al., 1991; López-Jaramillo et al., 2005).
Nowadays, even in low and middle income countries, unhealthy
lifestyles along with the accessibility to low-cost high caloric
and fat containing meals contribute to metabolic dysregula-
tion and maternal obesity (Monteiro et al., 2004). While in
developed countries changes in lifestyles and diets were incor-
porated gradually for decades, in low and middle income
countries, these changes were drastic and fast (≤10 years).
Beyond the classical conditions for the development of PE,

now, more specific risk factors such as anti-angiogenic factors
release, maternal malnutrition and epigenetics, are hot topics of
research.

Poor maternal health and nutrition predispose women to preg-
nancy difficulties like PE and gestational diabetes (Roberts et al.,
2003). Maternal health and nutrition is very important because
they have a direct impact on the placental environment, fetal
development and child’s overall health later in life (Barker and
Osmond, 1986). Utero fetal programming (Barker hypothesis)
due to poor health and malnutrition during pregnancy may affect
organ development and growth. Current evidence have estab-
lished that disorders like hypertension, metabolic syndrome, type
2 diabetes, vascular disease and predisposition to develop PE are
a result of fetal reprogramming due to poor health and malnu-
trition during pregnancy (Godfrey et al., 1996; Desai and Hales,
1997; López-Jaramillo and López-López, 2010). Certainly, the
manifestation of these disorders in later stages in life is trig-
gered by sedentary lifestyles and environmental risk factors. This
is particularly important in order to understand the etiology of
PE in undeveloped countries in where changes in lifestyles and
environmental factors could be rapid and drastic.

Interestingly, the “diversity” of conditions that may trigger
PE, are population, race and country dependent (Sibai et al.,
1997; López-Jaramillo et al., 2005). While in developed coun-
tries the prevalent factors that accompany the development of
PE are associated with obesity, insulin resistance and hyperlipi-
demia, in developing countries ethnicity, poor nutritional habits,
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and subclinical infections along with other socioeconomical fac-
tors are usually associated with the development of the disease.
Even the outcomes of clinical trials to prevent PE are region
and population dependent. This is very important because it
demonstrates that since PE genesis may have distinct regional or
population specific causes and risk factors, the strategies to pre-
vent PE should be specific as well (López-Jaramillo et al., 2005;
Liu et al., 2012). However, most of these factors are associated
with impaired endothelial function and abnormal placentation
that are key events in the development of PE. Despite all this,
the etiology and pathophysiological mechanisms of PE are still
unknown.

PATHOPHYSIOLOGY OF PREECLAMPSIA: ENDOTHELIAL

DYSFUNCTION

Normal pregnancy course include variations in hemodynamics,
like heart rate and cardiac output (Duvekot et al., 1993) in which
placenta allows the exchange of nutrients and waste disposal
between mother and fetus (Myatt, 2010). This maternal-fetal
interface is developed during the first trimester of gestation. Then,
extravillous throphoblasts from placenta conquer the maternal
decidua. During this stage, the maternal spiral arteries from the
decidua go through a process of remodeling in where they are
upgraded from low-capacity high-resistance into high-capacity
low-resistance vessels. This is also accompanied by the substitu-
tion of arterial smooth muscle and elastic tissue with fibrinoid
material. PE in turn is characterized by an impaired invasion of
fetal trophoblasts. This causes a reduced remodeling of the mater-
nal spiral arteries eventually leading to a decrease in blood flow
to the placenta. This affects the fetus and placental oxygen and
nutritional status. In order to compensate the blood flow defi-
ciency, the mother develops hypertension to increase the blood
flow, usually at the end of the second or third trimester of ges-
tation. Interestingly, problems associated with the disorder cease
after delivery, suggesting that PE is a problem that originates from
the placenta (Redman, 1991).

Pregnancy physiology requires proper placental oxygenation.
However, ROS, derived from these high fluxes of oxygen, are
implicated and required for replication, proliferation and cell
maturation, embryo development and pregnancy maintenance
(Mutinati et al., 2013). Moreover, increase in oxygen concen-
trations results in the appearance of markers of oxidative stress
(Redman and Sargent, 2005; Yang et al., 2012).

It is widely accepted that PE originate from placenta and
specifically from trophoblast cells. These cells, that are placental
native (Redman and Sargent, 2005), are the reunion of two sub-
types: syncytiotrophoblasts, that are responsible for the formation
of a primary external layer in direct contact with maternal blood,
and cytotrophoblasts, that conform the inner layer, and differen-
tiate and invade the maternal endometrial stroma (Hunkapiller
and Fisher, 2008). Poor placental perfusion due to irregularities
in the process of placentation and trophoblast invasion during the
development of placenta, have been associated with hypertension
in early stages of pregnancy (Karthikeyan and Lip, 2011). These
abnormalities in the perfusion of placenta, can lead to changes
in this fetal-derived organ, that can activate or repress normal
functions of endothelial cells (Roberts et al., 1991).

In normal conditions, remodeling of maternal spiral arteries
is necessary to access maternal blood supply (Lyall et al., 2013).
Nevertheless, impair remodeling of arteries and poor devel-
opment of placenta caused by shallow trophoblastic invasion
(Verlohren et al., 2010), are associated with the establishment of
preeclampsia and generalized maternal endothelial and vascular
dysfunction (Redman and Sargent, 2003; Myatt and Webster,
2009; Saito and Nakashima, 2014). The reduced placental
perfusion seen under this circumstances, creates changes in the
placental environment, in where ROS, and the activation of
endothelial cells through different mechanisms, results in ED.
Due of defective trophoblast invasion, intermittency of arterial
blood flow occurs, resulting in periods of ischemia/reperfusion,
creating a hypoxic environment which favors oxidative stress,
consequent oxidative damage and inflammation (Myatt and
Webster, 2009) (Figure 1).

One of the mechanisms of ED involves release of the sFlt-1
(soluble fms-like tyrosine kinase or sVEGFR1), which is a
circulating anti-angiogenic protein and an endogenous inhibitor
of vascular endothelial growth factor (VEGF), that works by
enhancing the ED already established by oxidative stress, ROS
and damage (Sato et al., 2000; Luttun et al., 2002; Maynard et al.,
2003; López-Novoa, 2007; Widmer et al., 2007; Zhou et al., 2011;
Murphy et al., 2013) (Figure 2). VEGF is key in the process of
growth of new blood vessels and in the overall maintenance and
endothelial cell health. Levels of sFlt-1 are known to be increased
in PE, and this increase precedes disorder manifestation. High
levels of this VEGF inhibitor, causes a disruption on VEGF by
sticking to endothelial cell Flt-1 receptor, found on membrane.
sFlt-1 is a truncated form of the Flt1 receptor. sFlt-1 when
secreted, antagonizes VEGF and placental growth factor (PlGF),
enhancing ED. Several studies have shown that VEGF and PlGF
are downregulated in PE by sFlt-1 (Sato et al., 2000; Luttun et al.,
2002; Maynard et al., 2003; López-Novoa, 2007; Widmer et al.,
2007; Murphy et al., 2013).

Studies in cells (HUVECs), supplemented with serum from
preeclamptic and normotensive women, have shown that in ones
treated with serum from the PE group, due to increased levels
of sFlt-1, tube-like structure formation is impaired. However,
ones treated with normotensive serum formed normal regular
tube-like structures. In contrast, the effect of sFlt-1 inhibition of
tube-like structures was rescued by exogenous VEGF and PlGF
supplementation to the preeclamptic serum. Additionally, the
same group performed an in vivo experiment with pregnant rats
that were injected with sFlt-1. The results from these experiment
correlate with the findings shown in cells in where the treated
group developed PE-like symptoms, significant hypertension and
heavy albuminuria and downregulation of PlGF (Maynard et al.,
2003).

Despite all these recent findings the genesis of ED in PE still an
enigma (Nagamatsu et al., 2004; Widmer et al., 2007). However,
recently, another interesting study explored the effects of hypoxia
on the regulation of VEGF, PlGF, and sFlt-1, in isolated cytotro-
phoblasts, HUVECs and villous fibroblasts. Results demonstrated
that hypoxic conditions induced expression of sFlt-1 in cytotro-
phoblasts but not in HUVECs and villous fibroblasts. These
demonstrate that under hypoxic conditions cytotrophoblasts
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FIGURE 1 | Mechanisms of endothelial dysfunction in preeclampsia.

Poor trophoblast invasion in PE causes impaired spiral artery remodeling

following by placental ischemia/reperfusion and inflammation. Within the

trophoblast cell, oxidative stress from unbalanced free radical formation is

formed from different sources like XO, eNOS uncoupling, NADPH

oxidase, and mitochondria. Ultimately, the reunion of all these events

lead to peroxynitrite formation, lipid peroxidation, protein modification,

MMP activation and DNA damage, contributing to endothelial dysfunction.

are responsible for orchestrating the downregulation of VEGF,
PlGF, and the upregulation of sFlt-1. Certainly, these results
provide clarification on the discussion on the perturbations of
the remodeling of maternal spiral arteries that occur in PE.
Nevertheless, how all these events occur and concur to induce the
following events: (1) a defective trophoblast invasion that may
result in an intermittency of arterial blood flow, (2) periods of
ischemia/reperfusion, (3) the creation of a hypoxic environment
which favors oxidative stress, (4) consequent oxidative damage,
(5) an inflammatory response, and finally (6) the release of sFlt-
1 and the downregulation of VEFG and PlGF; are questions still
open for further research.

OXIDATIVE STRESS AND PREECLAMPSIA

ROS, like nitric oxide (·NO), superoxide (O·−
2 ), hydrogen

peroxide (H2O2), hydroxyl radical (·OH), and peroxynitrite
(ONOO−), are signaling molecules that regulate many functions
in human physiology (Kalyanaraman, 2013). ROS signaling is
directly controlled by antioxidant host defenses that scavenge the

actions of these species. During normal gestation, ROS generation
are known to be increased and necessary for proper physiol-
ogy (Yang et al., 2012). However, a whole different story occurs
when the balance between our antioxidant host defenses and
the pro-oxidant species is broken, like in PE. The process in
where the relative pro-oxidant species called ROS are much higher
than the antioxidant army defenses, is called oxidative stress
(Myatt and Cui, 2004; Lappas et al., 2010; Matsubara et al., 2010;
Kalyanaraman, 2013).

As in any vascular disease, PE is characterized by a resulting
inflammatory response after ischemia and reperfusion (Redman,
1991; Webster et al., 2008; Poston et al., 2011). In PE, placen-
tal reperfusion injury converges into a damaging inflammatory
response that is responsible for inflammation and oxidative dam-
age orchestrated by oxidative stress. Immediately after placental
reperfusion injury, reestablished blood flow releases cytokines
and other inflammatory factors like tumor necrosis factor-alpha
(TNF-α), interleukin (IL)-6, and IL-10, C-reactive protein (CRP),
and damaging levels of ROS like superoxide, in response to these
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FIGURE 2 | Role of anti-angiogenic factor sFlt-1 in preeclampsia. (A)

Flt-1 (light blue) and Flk-1 (yellow), are VEGF receptor tyrosine kinases

that regulate the process of angiogenesis and vasculogenesis, among

other events in cells in PE. Soluble form of VEGF receptor 1, sFlt-1

under normal conditions regulates VEGF levels, angiogenesis and

vasculogenesis. (B) Under hypoxic conditions, Flt-1 is cleaved

producing sFlt-1 in high concentrations. sFlt-1 then competes with

Flt-1 for binding of VEGF-A and PlGF causing an impairment in the

angiogenesis process by decreasing the bioavailability of VEGF-A and

PlGF to Flt-1 and Flk-1.

events. Increased ROS may eventually trigger a redox signaling
process to induce cell apoptosis. Scientific evidence suggest that
reduced perfusion due to aberrant placentation and shallow tro-
phoblast invasion, triggers a condition of placental oxidative
stress (Yiyenoǧlu et al., 2013) leading to intravascular inflamma-
tory response and endothelial dysfunction. Taken together, these
situations are probably involved in the etiopathogenesis of PE.

Oxidative stress causes post-translational covalent modifica-
tion of protein (Roberts et al., 2009; Myatt, 2010) and DNA,
and damage in protein and lipid structure and function (Jones
et al., 2013). The existence of ROS during normal gestation is
a fact (Yang et al., 2012), indicating that an impairment of the
natural antioxidant defense mechanism is probably implied in
PE (Karacay et al., 2010). Consistent with these facts, elevated
concentrations of thioredoxin-1, a redox-sensitive protein that
regulates biological functions, is associated to high oxidative stress
conditions in pregnant women (Nakatsukasa et al., 2013). Other
oxidative markers such as malondialdehyde, a marker of lipid
peroxidation and prostaglandin F in serum from women with
10—14 gestation weeks, were found to be increased in preeclamp-
tic women. This correlates with the gradual oxidative damage of
the placenta, even before the onset of clinical symptoms (Genc
et al., 2011).

ROLE OF ·NO AND NITRIC OXIDE SYNTHASE (NOS)

Not all free radicals cause disturbances in the organism
(Kalyanaraman, 2013) and ·NO is an example (Palmer et al., 1988;
Moncada et al., 1991; Moncada and Higgs, 1993). ·NO is a potent

vasodilator, that causes relaxation of smooth muscle (Seligman
et al., 1994). It mediates endothelial function by regulating vas-
cular tone, platelet aggregation, leukocyte adhesion and smooth
muscle cells development (Qian and Fulton, 2013). It is syn-
thetized by the NOS family of enzymes, which consist in three
isoforms: nNOS or neuronal isoform, iNOS, the inducible and
eNOS endothelial NOS (Qian and Fulton, 2013) from the reduc-
tion of L-arginine to L-citruline (Palmer et al., 1988; Moncada
et al., 1991; Moncada and Higgs, 1993). In placenta, eNOS expres-
sion is associated with cytotrophoblast to syncytotrophoblast
differentiation (Eis et al., 1995).

The role of ·NO in PE has not been established as in other
vascular systems. Results obtained from studies detecting ·NO
levels in maternal plasma, serum or urine from women with
PE have been controversial and variable. As resumed in Table 1,
results coming from different groups have reported different ·NO
levels (as NO−

3 /NO−
2 usually via Griess reaction or chemilumi-

nescence) from different sources like plasma, serum or urine.
As shown in Table 1, at this point there is no consensus on the
expected ·NO levels in PE. The detected levels vary from study
to study and tissue/fluid of determination. In the sample of stud-
ies we assessed, usually most sampling was performed either in
serum or plasma and detection method of choice was the Greiss
method with the exception of three studies which used a Siever’s
Nitric Oxide Analyzer or GC-MS. As a general trend, most studies
showed that ·NO levels were significantly lower in preeclamptic
than normotensive women (Seligman et al., 1994; Baker et al.,
1995; Davidge et al., 1996; Nobunaga et al., 1996; Pathak et al.,
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Table 1 | ·NO concentration results from different studies in PE.

Reference Method Tissue/Fluid ·NO levels Country

Preeclamptic N Normotensive N p

Seligman et al., 1994 Griess Serum 4.65 ± 0.85 µmol/L 26 3.46 ± 1.43 µmol/L 26 0.02 US

Baker et al., 1995 Griess B88 cells 97.3 ± 9.6 nmol/mg 10 71.9 ± 4.3 nmol/mg 10 <0.05 US

Lyall et al., 1995 Griess Serum 29.5 ± 1.06 µmol/L 32 29.8 ± 1.07 µmol/L 36 NS UK

Davidge et al., 1996 Griess PlasmaUrine 32.7 ± 3.1 µmol/L

0.37 ± 0.06 µmol

NO−

2 /mg creatinine

14

14

25.8 ± 2.4 µmol/L

0.69 ± 0.11 µmol

NO−

2 /mg creatinine

20

20

NS

<0.05

US

Nobunaga et al., 1996 Griess Plasma 45.6 ± 2.3 µmol/L 23 30.3 ± 1.0 µmol/L 323 <0.01 Japan

Pathak et al., 1999 Griess Serum 11.82 ± 1.16 µmol/L 50 5.08 ± 0.47 µmol/L 50 <0.01 India

Choi et al., 2002 Griess Serum 43.1 ± 12.7 µM 52 249.7 ± 51.3 µM 80 <0.05 Korea

Aydin et al., 2004 Griess mod. Plasma 48.11 ± 3.77 µmol/L 35 63.14 ± 7.08 µmol/L 34 <0.001 Turkey

Diejomaoh et al., 2004 Griess mod. Serum 19.189 ± 16.805 µmol/L 34 19.157 ± 13.407 µmol/L 39 NS Kuwait

Sandrim et al., 2010 Sievers NOA Plasma 102 ± 7.1 nmol/L 47 214.8 ± 26.1 nmol/L 47 <0.05 Brazil

Ehsanipoor et al., 2013 Griess Plasma 36.5 µM 12 58.1 µM 13 <0.0001 US

Conrad et al., 1999 Griess Plasma 35 ± 2 µM 15 34 ± 2 µM 22 NS US

Nishikawa et al., 2000 Griess Serum 43.23 ± 3.55 µM 17 23.63 ± 1.87 µM 16 NS Japan

Shaamash et al., 2000 Griess Serum 28.3 ± 2.6 µmol/L 31 20.5 ± 6.7 µmol/L 32 <0.001 Egypt

Vural, 2002 Griess Plasma 88.83 ± 5.67 µmol/L 19 62.63 ± 9.52 µmol/L 20 <0.001 Turkey

Teran et al., 2006 Sievers NOA Plasma 15.8 ±1.1 µM 30 23.4 ± 1.9 µM 60 <0.01 Ecuador

Mao et al., 2010 GC-MS Plasma 23.42 ± 2.86 µmol/L 60 28.83 ± 2.44 µmol/L 30 <0.01 China

1999; Nishikawa et al., 2000; Shaamash et al., 2000; Vural, 2002)
with a few exceptions in where levels were not significantly differ-
ent (Lyall et al., 1995; Conrad et al., 1999; Diejomaoh et al., 2004).
Studies from Ecuador, Brazil and China, have shown that ·NO
levels were significantly lower in preeclamptic than normotensive
women (Teran et al., 2006; Mao et al., 2010; Sandrim et al., 2010).
This latter studies were performed using more sensitive and selec-
tive techniques like a Siever’s Nitric Oxide Analyzer or GC-MS.
However, most studies have correlated their results with blood
pressure determinations.

Other newer studies have followed the same trend and have
tried to find further explanations by correlating their results with
cell or tissue studies from placenta or umbilical cord. Recently,
a study performed on a Mexican cohort, have shown that the
plasma levels of ·NO, measuring the levels of NO−

3 /NO−
2 , were

found to be higher in PE women than normotensive (Gonzalez-
Garrido Chem et al., 2013). In comparison, a recent study per-
formed in a Brazilian cohort measuring plasma ·NO using the
Greiss reagent, have shown that ·NO levels are lower in PE women
(Pimentel et al., 2013). In contrast, in the same Mexican cohort,
·NO levels were found to be lower in endothelial cells obtained
from preeclamptic umbilical cords in comparison to normal preg-
nancies. Therefore, a small study performed in placenta using
Electron Paramagnetic Resonance (EPR) evidenced a reduction of
·NO concentration in PE placentas of almost half of the concen-
tration when compared to normal placentas. However, in vitro,
expression of inducible NOS (iNOS) mRNA was increased in cells
treated with serum from preeclamptic women (Matsubara et al.,
2010). On another study, the expression (Davidge et al., 1995)
as well as the activity of nitric oxide synthase was significantly
increased in endothelial cells exposed to preeclamptic plasma
(Baker et al., 1995). As evidenced, ·NO levels in PE women are still

controversial and several reports have shown in different cohorts
that in comparison with normotensive women, levels are either
the same, higher or lower than the PE group (López-Jaramillo
et al., 2008).

On the other hand, low levels of substrate L-arginine and high
levels of the endogenous eNOS inhibitor asymmetric dimethy-
larginine (ADMA) might interfere with eNOS activity during
preeclampsia. Significantly lower levels of L-arginine have been
shown in preeclamptic women, while plasma levels of ADMA
were no significantly different between normal and preeclamp-
tic women in various studies (Maas et al., 2004; Kim et al., 2006;
Khalil et al., 2013). However, in a Greek cohort the plasma ADMA
levels in PE women were found to be higher (Savvidis et al., 2011).
Again, in contrast, in a Brazilian cohort, plasma ADMA levels
were found to be also higher in PE women and plasma ·NO levels
were found to be lower in comparison with normotensive women
(Sandrim et al., 2010).

Additionally, eNOS uncoupling have also been shown as a
source of superoxide formation and it is related to reduced
·NO production (Vasquez-Vivar et al., 2003; Yzydorczyk et al.,
2013) when eNOS cofactor, tetrahydrobiopterin (BH4) is low
(Karbach et al., 2014) or when post-translational changes regulate
eNOS function (Qian and Fulton, 2013). It has been demon-
strated that various inflammation modulators like TNF-α and
CRP are increased in plasma (Teran et al., 2001; Garcia et al., 2007;
Sorokin et al., 2010) and placenta from PE women (Hung et al.,
2008). TNF-α downregulates eNOS and mitochondrial biogene-
sis leading to mitochondrial dysfunction (MD) and elevated ROS
(Valerio et al., 2006). Conversely, CRP indirectly downregulates
BH4 production, leading to eNOS uncoupling and peroxynitrite
formation (Singh et al., 2007; Jialal et al., 2009). However, the
role of BH4, eNOS and ·NO production is still not very well
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understood in PE. BH4 promotes eNOS dimerization and activ-
ity. In a rat model of pregnancy-induced hypertension it has
been demonstrated that supplementation with BH4 as sepiapterin
increased ·NO levels, and reduced O·−

2 and ONOO− production
(Mitchell et al., 2007). Nevertheless, in placenta, the story is dif-
ferent. eNOS activity and levels have been measured in placenta
from PE and normotensive women by different accepted methods
(Conrad and Davis, 1995; Kukor et al., 2000; Kim et al., 2006).
Nonetheless, as with other determinations, the results are contra-
dictory, from been lower or higher in some cohorts and the same
in others.

ROLE OF SUPEROXIDE (O·−

2 ): XANTHINE OXIDASE, NADPH

OXIDASE, AND MITOCHONDRIA

O·−
2 is a free radical of great biological importance. It is pro-

duced by the one electron reduction of oxygen. In cells it is one
of the secret weapons used by the immune system army to kill
invading pathogens. The main quencher of O·−

2 is antioxidant
superoxide dismutase (SOD) that coverts it to H2O2 and water.
H2O2is immediately neutralized by catalase (CAT). However, O·−

2
is also produced by several pathological conditions including PE.
After ischemia, reperfusion causes oxidative damage mainly by
the conversion of xanthine dehydrogenase (XD) to xanthine oxi-
dase (XO). In parallel, in ischemic tissues, hypoxanthine (HX) is
formed as breakdown product of ATP metabolism. XO converts
xanthine or HX to uric acid and oxygen to O·−

2 and H2O2. In
placenta, the situation is even more complicated because during
pregnancy, iron is transferred from the mother to the fetus across
the placenta. Iron is trafficked across the placenta from dietary or
endogenous maternal sources to meet fetal demands (Cao et al.,
2013). In contrast with enterocytes, placenta must restrict iron
uptake into the syncytiotrophoblast by storing extra iron within
tissue until parturition or exporting excess intracellular iron back
into maternal circulation. Iron and other metals catalyze the pro-
duction of a more damaging potent pro-oxidant species called
hydroxyl radical (·OH) via the Fenton reaction (Many et al., 1996,
2000; Webster et al., 2008; Kalyanaraman, 2013).

In PE, superoxide generation by XO has been shown in placen-
tal reperfusion injury (Many et al., 2000). Since, PE is character-
ized by hyperuricemia, XO is presumably source of uncontrolled
ROS production (Many et al., 1996) when the concentration of its
oxidase form is increased. Studies have shown in cytotrophoblast
cells from preeclamptic women that the activity of xanthine oxi-
dase is increased compared to control cells (Many et al., 2000;
Yildirim et al., 2004; Bainbridge et al., 2009; Mills et al., 2009).

Another source of O·−
2 formation are NADPH oxidases.

NADPH oxidase is a membrane-bound enzyme complex that cat-
alyzes the one-electron reduction of oxygen to O·−

2 via NADPH
(Babior, 2004). It has been demonstrated that NADPH oxi-
dase isoform NOX1 is overexpressed in syncytiotrophoblast of
preeclamptic placentas (Cui et al., 2006). In an in vitro model,
it has been shown that HUVEC cells treated with serum from
preeclamptic women increased expression of NADPH oxidase
subunit gp91 (phox), leading to high amounts of O·−

2 produc-
tion (Matsubara et al., 2010). In addition, NOX2 overexpression
have been evidenced in cultured primary cultured HUVECs from
normal and preeclamptic pregnancies (Choi et al., 2013). In PE,

NADPH activation is triggered by angiotensin II (Ang II) signal-
ing that leads to inflammation. Ang II stimulates NADPH oxidase
through the AT1 receptor AT1-AA by causing the placenta to pro-
duce ROS, activate nuclear factor kappa B (NF-κB) and trigger
inflammation (Dechend et al., 2003). Several other reports have
concur that in PE women NADPH oxidase activity is increased
(Matsubara and Sato, 2001; Lee et al., 2003; Myatt and Cui, 2004;
Raijmakers et al., 2004; Cui et al., 2006) and thus an important
source of O·−

2 formation.
Mitochondrion is a very important organelle because is

responsible for the production of ATP through respiration and
regulating cell metabolism. Mitochondrial activity is essential in
pregnancy because it sustains the metabolic activity of the pla-
centa throughout these period (Mandò et al., 2014). As in many
other scenarios, under pathological conditions, mitochondria is
another source of O·−

2 formation contributing to placental dam-
age (Torbergsen et al., 1989; Colleoni et al., 2013; Maranzana
et al., 2013; Mayeur et al., 2013; Pimentel et al., 2013; Mandò et al.,
2014). After reperfusion injury, re-oxygenation induces tissue
and mitochondrial damage. As in other vascular diseases, mito-
chondrial dysfunction is also evidenced in PE (Torbergsen et al.,
1989). Some sources of O·−

2 formation in mitochondria under
pathological conditions include complexes I and II of the mito-
chondrial transport chain (Myatt, 2010; Maranzana et al., 2013).
Nevertheless, changes in preeclamptic placenta proteome, related
to the respiratory chain and ROS generation may explain the
importance of mitochondria in the development of preeclamp-
sia (Shi et al., 2013). Thus, mitochondrial function is disturbed
in hypoxic placentas (Colleoni et al., 2013). It has been shown
that changes in oxygen consumption rate (OCR) measured by
a Seahorse Flux Analyzer indicate mitochondrial dysfunction in
trophoblasts isolated from preeclamptic placentas in comparison
with normotensive ones (Maloyan et al., 2012; Muralimanoharan
et al., 2012).

Beyond its role as a source of oxidative stress, mitochondria
is known to be affected by exposure to suboptimal environ-
mental conditions as in PE. Placental metabolism is maintained
throughout gestation by increasing mitochondrial biogenesis and
activity (Mandò et al., 2014). Mitochondrial dysfunction dis-
rupts fundamental processes important for embryo development
and, in turn, it has a direct effect on fetal and placental growth
and function. Mitochondrial dysfunction has been shown to be
a key factor for fetal programming in situations of placental
insufficiency like PE (Mandò et al., 2014). In mouse models,
it has been demonstrated that mitochondrial dysfunction dis-
turbs fetal and placental growth and development (Wakefield
et al., 2011; Mayeur et al., 2013). Conversely, in rat models, it
has been demonstrated that poor gestational nutrition induces
mitochondrial dysfunction that in turn is implicated partially
in fetal growth restriction (Mayeur et al., 2013; Pimentel et al.,
2013).

ROLE OF PEROXYNITRITE (ONOO−)

Although O·−
2 anion exert major tissue damage in placenta, its

reaction with ·NO to produce ONOO−, a strong pro-oxidant
agent, has gained importance in many vascular diseases like
PE. ONOO− is produced in vivo by the reaction of ·NO and
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O·−
2 (Radi, 2004; Kalyanaraman, 2013). Since ·NO in biological

systems is in relatively high concentrations, under pathologi-
cal conditions it may compete with SOD for O·−

2 . The reac-
tion of ·NO and O·−

2 to produce ONOO− is fast (k = 6.7 ×

109 mol−1 s−1) (Bartesaghi et al., 2006, 2008, 2010). Despite
being a pro-oxidant species, ONOO− reacts slowly and selec-
tively in biological systems. It mainly reacts with protein tyrosine
residues to produce 3-nitrotyrosines (Beckman and Koppenol,
1996; Radi, 2004). Protein nitration can be damaging by caus-
ing post-translational modifications with pathological outcomes
(Webster et al., 2008). Not surprisingly, increased 3-nitrotyrosine
residues have been detected in virtually every vascular diseases
including PE.

Additionally, ONOO− can also cause DNA damage and
lipid structure alteration (Radi, 2004; Webster et al., 2008;
Bartesaghi et al., 2010). In PE, 3-nitrotyrosine residues have been
observed in normal and complicated pregnancies, predominantly,
in endothelium, surrounding smooth muscle and villous stroma
(Webster et al., 2006a). One of the key targets of ONOO− in PE is
p38 MAPK (p38 mitogen-activated protein kinase), that has been
shown to be significantly nitrated in placentas from preeclamp-
tic women compared to normotensive controls (Webster et al.,
2006a,b; Myatt, 2010). Activation of the p38 MAPK pathway play
an important role in the release of pro-inflammatory cytokines
and the induction of enzymes such as COX-2 which controls
connective tissue remodeling in pathological conditions, iNOS
expression, induction of VCAM-1 and, other adherent proteins
along with other inflammatory related molecules (Zarubin and
Han, 2005). Nitration of p38 MAPK in PE pregnancies causes a
65% drop on its specific catalytic activity in comparison with nor-
motensive pregnancies (Webster et al., 2006a). The effect of nitra-
tion of p38 MAPK in PE is currently under further investigation
(Webster et al., 2006a).

PLACENTAL AND MATERNAL ANTIOXIDANT DEFENSES

IN PE

Antioxidants act as physiological protective agents to prevent
oxidative damage caused by high amounts of ROS (Lappas et al.,
2010). As with other oxidative stress metabolites, levels of antiox-
idant enzymes and compounds, such as catalase, superoxide
dismutase (SOD) and vitamin E have been found to be vari-
able in PE studies compared to normal pregnancies (Bilodeau,
2014). For example, in a study performed in India, SOD activ-
ity, measured in placental tissue and serum from preeclamptic
women was found to be 1.4 times higher than in control samples,
while glutathione levels remained unchanged (Das et al., 2012).
However, other studies have reported that both SOD (Tortladze
et al., 2013; Bilodeau, 2014) and catalase activity are decreased
in women with PE (Skoczylas-Pietrzyk et al., 1998). One report,
on a relatively large cohort from Spain reported lower SOD
and higher catalase activities in blood samples of women with
PE. In another study from India, lower plasma levels of glu-
tathione where found in preeclamptic women (Kharb et al., 2000;
Tortladze et al., 2013). Interestingly, n-acetylcysteine, a precursor
of glutathione, has been reported to improve uteroplacental blood
flow in ex-vivo models of preeclampsia (Bisseling et al., 2004), but
in contrast, oral n-acetylcysteine administration have not shown

a significant beneficial results in preventing the development of
severe preeclampsia (Roes et al., 2006).

In order to improve the understanding in maternal, fetal and
neonatal health, in 1986, the Eunice Kennedy Shriver National
Institute of Child Health and Human Development from the
National Institutes of Health created the Maternal-Fetal Medicine
Units Network (MFUM Network, https://mfmu.bsc.gwu.edu).
For over 20 years, the MFUM Network have contributed in the
area evidence-based medicine in perinatology by unveiling novel
and useful therapies in maternal-fetal medicine, including PE.
This network completed an important study aimed to evaluate
the effect of antioxidant supplementation for the prevention of
PE. The study, called Combined Antioxidants and Preeclampsia
Prediction Studies (CAPPS), had the objective of determining
whether vitamin C and E could reduce the frequency of preg-
nancy related hypertension. Results from this study showed that
the supplementation with vitamin C and E in a low-risk cohort
of women demonstrated no significant differences in maternal or
newborn complications related to hypertension during pregnancy
(Roberts et al., 2010; Weissgerber et al., 2013). On another clinical
trial, studying the effects of omega-3 long-chain polyunsaturated
fatty acid supplementation to reduce preterm birth, showed no
beneficial effects (Harper et al., 2010). Aligned with this findings,
the Cochrane Collaboration initiative have concluded on its latest
review on antioxidants for preventing PE that evidence from tri-
als reviewed does not support the use of vitamin C and E during
pregnancy for the prevention of preeclampsia and other outcomes
(Rumbold et al., 2008; Salles et al., 2012).

On the other hand, supplementation with calcium have been
demonstrate to play a crucial role for maintaining the production
of ·NO and preventing PE (López-Jaramillo, 1996; Chen et al.,
2013). The Cochrane Collaboration initiative reviewed data from
14 studies (more than 15,000 women) and concluded that cal-
cium supplementation caused a significant reduction in the risk
of PE and that this effect was clearly greater in women with low
calcium diets (Hofmeyr et al., 2014). This latter result is particu-
larly important in undeveloped countries in where low calcium
diets due to poor nutrition is a reality (López-Jaramillo, 1996;
López-Jaramillo et al., 2005, 2008) and calcium supplementation
might be a low cost alternative for PE prevention.

CONCLUSIONS

Preeclampsia is a pathology characterized by hypertension and
proteinuria at the 20th week of gestation that affects 5–10%
of the pregnancies. Risk factors for the development of PE
includes obesity, insulin resistance and hyperlipidemia that stim-
ulate inflammatory cytokine release and oxidative stress leading
to ED. At the molecular level, poor trophoblast invasion and
uteroplacental artery remodeling described in PE, increases reac-
tive oxygen species (ROS), hypoxia and ED. Despite all research
efforts performed so far, still the etiology of the disease is not
known.

Clearly in PE, oxidative stress plays a key role in the develop-
ment of endothelial dysfunction. However, PE is a very compli-
cated disease that arouses from placental issues that later affect
the mother and baby. As we have evidenced, the role of the
production of ROS/RNS in PE is still controversial. Particularly,
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after decades of study there is still no consensus on whether the
·NO or ADMA levels are high or low during disease development.
In maternal plasma and serum, ·NO levels in some important
studies have been found to be higher in preeclamptic than in nor-
motensive women. However, studies performed with cutting edge
technologies for ·NO detection have shown the opposite. Studies
performed in placental cells and tissues and umbilical cord cells
and blood, have shown that at the placental/fetal stage, ·NO lev-
els are lower in PE. However, more research is needed in order to
establish the role of ·NO in PE.

Nevertheless, superoxide generation in PE from XO or
NADPH oxidase has been very well established. Not surprising,
most studies have reported higher levels of 3-nitrotyrosine in
tissue and fluids from preeclamptic women. Mitochondrial activ-
ity is essential in pregnancy because it sustains the metabolic
activity of the placenta. In PE, mitochondrial function is known
to be disturbed in hypoxic placentas and isolated trophoblasts.
This results were expected as mitochondria is known to be
affected by exposure to suboptimal environmental conditions
as in PE.

Unfortunately, early delivery and patient careful monitoring
is still the only way to prevent the fatal effects of the disease. Oral
supplementation with antioxidants like vitamin C and E and even
n-acetylcysteine have been proven to be a failure on the preven-
tion of the disease. However, so far, clinical trials have shown that
calcium supplementation causes a significant reduction in the risk
of PE and that this effect was clearly greater in women with low
calcium diets.
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