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Abstract

Cardiovascular disease is a major complication of diabetes mellitus, and improved strategies for

prevention and treatment are needed. Endothelial dysfunction contributes to the pathogenesis and

clinical expression of atherosclerosis in diabetes mellitus. This article reviews the evidence linking

endothelial dysfunction to human diabetes mellitus and experimental studies that investigated the

responsible mechanisms. We then discuss the implications of these studies for current management

and for new approaches for the prevention and treatment of cardiovascular disease in patients with

diabetes mellitus.
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Type 2 diabetes mellitus is a growing public health problem [1] and a major cause of

cardiovascular disease in the United States [2]. Type 2 diabetes is associated with systemic

insulin resistance, which promotes hyperglycemia and dyslipidemia [3], and it has been

proposed that these metabolic abnormalities account for increased cardiovascular risk.

Endothelial dysfunction contributes to the pathogenesis and clinical expression of

atherosclerosis and has been linked to Type 2 diabetes mellitus and insulin resistance in

experimental and clinical studies [4]. This article will review the concept of endothelial

dysfunction and the evidence linking it to human diabetes mellitus. We will then review
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mechanisms of endothelial dysfunction in diabetes mellitus and the implications of this work

for the management of patients with diabetes mellitus.

1 What is endothelial dysfunction?

Once thought to be simply a passive lining for blood vessels, it is now recognized that the

vascular endothelium is a key determinant of vascular health. Broadly speaking, the term

“endothelial dysfunction” refers to an impairment of the ability of the endothelium to properly

maintain vascular homeostasis [5]. Although the term is often used in reference to a loss of

bioavailable nitric oxide (NO), endothelial dysfunction also reflects increased production of

vasoconstrictors and disturbed regulation of inflammation, thrombosis, and cell growth in the

vascular wall [5,6]. Numerous studies have linked endothelial dysfunction and resultant

atherosclerosis with insulin resistant states such as obesity and diabetes [7–10].

The endothelium plays a key role in the regulation of arterial tone and blood flow. In this regard,

the endothelium orchestrates the production of vasodilator molecules such as NO, prostacyclin,

and endothelium-derived hyperpolarizing factor (EDHF), and vasoconstrictors, including

endothelin-1 (ET-1) and angiotensin II [5]. Stimuli for production of endothelium-dependent

vasodilators include physiologically relevant factors such as acetylcholine, thrombin,

serotonin, angiotensin II, and alpha adrenergic agonists. In general, these factors also promote

vasoconstriction via direct effects on vascular smooth muscle. Endothelium-derived NO and

other vasodilators oppose such vasoconstrictor effects, and thus act in a homeostatic fashion

to maintain normal arterial patency and compliance despite local production of

vasoconstrictors. When the endothelium is dysfunctional, the vasoconstrictor effects are

unopposed and arterial tone is increased. In addition, pathological states are associated with

increased endothelial production of endothelin-1 and other endothelium-derived

vasoconstrictors that may further promote vasospasm and increase arterial stiffness.

Another key stimulus for endothelial production of NO is increased shear stress, which is the

frictional force at the endothelial surface produced by flowing blood [11]. Shear stress relates

directly to arterial flow and inversely to the third power of the arterial diameter, and thus for

a given level of flow, a small change in diameter has a large effect on local shear stress. In

healthy conduit arteries, an increase in arterial flow stimulates “flow-mediated dilation”. The

resultant increase in lumen diameter acts in a homeostatic manner to limit the increase in shear

stress that results from increased flow. This response can be measured in humans using non-

invasive methods, including ultrasound imaging of the brachial artery diameter during reactive

hyperemia [12]. Flow-mediated dilation has emerged as an important indicator of endothelial

function in clinical studies of diabetes mellitus and vascular disease [5,12].

In addition to responding to acute changes in flow by stimulating vasodilation, the endothelium

also is responsible for chronic changes in arterial structure and lumen dimension that are

produced by chronic changes in blood flow [13,14]. Like flow-mediated dilation, flow-induced

remodeling is stimulated by changes in shear stress. The remodeling response to flow involves

a complex interplay between vasodilator factors, local inflammation, and factors that modify

the intercellular matrix [13,15–17]. Impaired remodeling has been observed in animal models

of diabetes [18] and may, in part, explain why atherosclerosis tends to produce diffusely

narrowed and small caliber arteries in patients with diabetes [13].

Another important function of the endothelium is the regulation of tone in smaller resistance

vessels that control blood flow and maintain the balance between blood supply and tissue

demand. This complex process depends in large part on the production of non-endothelium-

dependent vasodilators, such as adenosine, that dilate resistance vessels and increase tissue

blood flow in response to increased oxygen demand [19,20]. However, endothelium-derived

NO also contributes to ischemia-mediated vasodilation and the hyperemic response to exercise
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[20]. By this mechanism, endothelial dysfunction may impair the regulation of blood flow and

contribute to impaired exercise capacity in certain pathological states, including heart failure

and peripheral arterial disease.

The importance of inflammation for the pathogenesis of atherosclerosis is well recognized

[21]. Under physiological conditions, NO prevents leukocyte adhesion and maintains the

endothelium in a quiescent, anti-inflammatory state [5]. In the presence of risk factors, the

endothelium can be activated to express adhesion molecules, such as vascular cell adhesion

molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), which are required

for the adhesion of leukocytes to the endothelial surface [22]. The activated endothelium also

expresses chemotactic factors, such as monocyte chemoattractant protein-1, and other

proinflammatory cytokines, like macrophage colony-stimulating factor, and tumor necrosis

factor-beta (TNF-β) [22]. Endothelial expression of these factors contributes to the

development of inflammation within the arterial wall and promotes atherogenesis [23].

In addition to regulating vessel wall inflammation, the vascular endothelium produces a host

of other molecules that affect blood fluidity and thrombosis [5,24,25]. Endothelial production

of pro-thrombotic molecules such as plasminogen activator inhibitor-1 (PAI-1), thromboxane,

tissue factor, and von Willibrand’s factor (vWF), is balanced by the production of

antithrombotic molecules such as NO, heparans, prostacyclin, tissue plasminogen activator,

and thrombomodulin. Risk factors, including diabetes mellitus, are associated with a shift in

this balance toward a pro-thrombotic, anti-fibrinolytic state.

Thus, the dysfunctional endothelium contributes to the pathogenesis of atherosclerotic vascular

disease by promoting inflammation, thrombosis, arterial stiffness, and impaired regulation of

arterial tone and flow. Several lines of evidence support the relevance of endothelial

dysfunction to human disease, and most of these studies have focused on endothelium-

dependent vasodilation as a surrogate measure of endothelial health. First, endothelium-

dependent dilation is impaired in patients with documented coronary artery disease [26,27]

and in patients with classical and with more recently-recognized risk factors [28,29]. Indeed,

such abnormalities are detectable very early in the course of the disease before measurable

lesions or clinical symptoms [30]. Second, lifestyle changes and drugs proven to reduce

cardiovascular risk have been shown to reverse endothelial dysfunction, including exercise,

smoking cessation, weight loss, cholesterol-lowering drugs, and angiotensin converting

enzyme inhibitors [5]. Finally, endothelial dysfunction in the coronary or peripheral

circulations predicts increased risk for cardiovascular events in patients with risk factors and

in patients with established atherosclerosis [5,31–38]. Overall, it is clear that endothelial

dysfunction relates to the pathogenesis of cardiovascular disease. Since diabetes mellitus is a

major cardiovascular disease risk factor, it is not surprising that clinical studies have confirmed

a relationship between diabetes mellitus and endothelial dysfunction.

2 Endothelial dysfunction is present in human diabetes mellitus

A large body of evidence links endothelial dysfunction to human diabetes mellitus. As has

been reported for other cardiovascular risk factors, cross-sectional studies show reduced

endothelium-dependent vasodilation in coronary and peripheral arteries of patients with Type

1 [39,40] and Type 2 diabetes mellitus [41–44]. Endothelial dysfunction is also observed in

conditions associated with Type 2 diabetes including obesity [29,45,46], sedentary lifestyle,

and the metabolic syndrome [47–49]. In addition to impaired vasodilator function, diabetes is

also associated with increased circulating levels of endothelium-derived adhesion molecules

and plasminogen activator inhibitor-1 [50–52], reflecting a pro-inflammatory and pro-

thrombotic endothelial phenotype (Table 1).
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Insulin resistance is the defining mechanism of Type 2 diabetes mellitus, and several studies

have examined the relationship between insulin resistance and endothelial dysfunction. In this

regard, degree of insulin sensitivity, as determined by euglycemic clamp, correlates with

increases in skin blood flow induced by acetylcholine in obese women [53] and with brachial

artery flow-mediated dilation in non-diabetic subjects [54,55]. A higher insulin response during

oral glucose tolerance test, is likewise associated with endothelial dysfunction in the coronary

[56,57] and forearm circulations [58,59]. Higher plasma insulin levels correlate inversely with

brachial artery flow-mediated dilation [60]. Finally, homeostasis model assessment-insulin

resistance (HOMA-IR) correlates inversely with the leg blood flow response to methacholine

in non-diabetic subjects with varying levels of body mass index [47] and with skin blood flow

responses to acetylcholine in diabetic compared to non-diabetic subjects [61]. In Framingham

Heart Study participants, brachial artery flow-mediated dilation correlated inversely with

HOMA-IR, although this relation was lost after adjusting for factors associated with the

metabolic syndrome [48].

Interestingly, endothelial dysfunction may precede the development of diabetes mellitus. In

this regard, healthy non-diabetic subjects who have a first degree relative with Type 2 diabetes

mellitus display impaired endothelium-dependent vasodilation as well as increased plasma

markers of endothelial cell activation [54,61,62]. Blood markers of endothelial activation and

systemic inflammation are also elevated in non-diabetic offspring with evidence of insulin

resistance by glucose tolerance test [62]. In addition to these cross-sectional studies,

prospective studies have shown that blood markers of endothelial activation predict incident

Type 2 diabetes mellitus after adjusting for other risk factors, including body mass index, level

of physical activity, lipids, family history of diabetes mellitus, and glucose tolerance [52,63].

Similarly, impaired flow-mediated dilation [64] and polymorphisms of endothelial NO

synthase (eNOS) are multivariable predictors of incident Type 2 diabetes mellitus [65]. The

occurrence of endothelial dysfunction prior to the development of Type 2 diabetes mellitus

suggests that there are common pathophysiological mechanisms and raises that possibility of

a causal link between insulin resistance and endothelial dysfunction.

Additional clinical evidence for a link between endothelial dysfunction and insulin resistance

is provided by intervention studies that demonstrate improved endothelial function following

treatments that improve insulin sensitivity. For example, rosiglitazone [66] and troglitazone

[67] improve endothelial function in forearm microvessels of patients with Type 2 diabetes

mellitus. Metformin improves endothelium-dependent dilation in patients with Type 2 diabetes

mellitus [68] and in patients with the metabolic syndrome [69]. Pioglitazone improves

endothelial function in non-diabetic patients with hypertension or hypercholesterolemia with

or without insulin resistance at baseline [70], and rosiglitazone improves flow-mediated

dilation and decreases markers of inflammation in completely healthy subjects without obesity,

risk factors, or family history of diabetes [71]. Less specific interventions associated with

improved insulin sensitivity and or decreased risk of diabetes mellitus also improve endothelial

function including weight loss, exercise, and inhibitors of the renin-angiotensin system [45,

46,72,73].

Overall, it is clear that human diabetes mellitus is associated with abnormalities of endothelial

function in humans, which may explain, in part, increased risk for cardiovascular disease in

diabetic patients. An improved understanding of the mechanisms of endothelial dysfunction

in this setting could provide new approaches for patient management.
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3 Mechanisms of endothelial dysfunction in diabetes mellitus and insulin

resistance

3.1 Altered cell signaling in endothelial cells

One important mechanism of endothelial dysfunction in diabetes mellitus is alteration of the

signaling pathways that lead to eNOS activation in the endothelium, a process that has been

extensively studied. Briefly, NO production in endothelial cells depends on the enzymatic

conversion of Larginine to NO and citrulline by eNOS. The enzyme is constitutively expressed

in endothelial cells and is localized to caveolae, which are specialized invaginations of the

plasma membrane that are rich in specific lipids and proteins, including caveolin-1 [74]. eNOS

has a low level of basal activity because of its association with caveolin-1, but it can be activated

within seconds following stimulation of endothelial cells with receptor-dependent agonists

such as acetylcholine and serotonin that increase intracellular calcium and promote calcium/

calmodulin-dependent-displacement of caveolin-1 and activation of the enzyme [75].

Activation of eNOS is further enhanced by other protein-protein interactions, including

association with heat shock protein 90 [76]. Alternatively, eNOS can be activated by

bradykinin, estrogen, and shear stress via activation of the phosphoinositide-3 kinase (PI3

kinase)/Akt system. Akt phosphorylates eNOS at serine 1177, which directly increases activity

and also enhances the response to other activators [77–80]. Once produced, eNOS-derived NO

diffuses locally in the arterial wall and activates guanylyl cyclase in vascular smooth muscle

cells, platelets, and endothelial cells to induce its biological effects [81].

Relevant to endothelial dysfunction in diabetes, it is interesting that insulin itself is an important

stimulus for eNOS activation (Fig. 1). Binding of insulin to its receptor on endothelial cells

leads to phosphorylation of insulin receptor substrate-1 (IRS-1) and subsequent

phosphorylation and activation of eNOS via PI3 kinase/Akt [8,82]. Support for this mechanism

is derived from studies showing that insulin-stimulated NO production is blocked by inhibitors

of PI3 kinase or Akt [77,83]. In addition, mutations in IRS-1 decrease insulin-stimulated eNOS

phosphorylation and eNOS gene expression in cultured endothelial cells [84]. Furthermore,

mice with endothelial specific knockout of the insulin receptor display decreased eNOS

expression and impaired endothelial vasodilator function [85–87]. Animal models of insulin

resistance, including the obese Zucker rat display defects in the PI3 kinase/Akt system and

impaired NO bioavailability [88].

Insulin activates other cellular signaling pathways in addition to PI3 kinase/Akt. For example,

insulin activates the mitogen-activated protein kinases (MAPK) via the small GTPase Ras

[89]. The Ras/MAPK insulin-signaling pathway generally leads to cellular growth and

proliferation. In endothelial cells, activation of this pathway has been linked to the expression

of endothelin-1, which is a potent vasoconstrictor and mitogen, and to the expression of pro-

inflammatory adhesion molecules such as ICAM-1 [90]. In the setting of diabetes and insulin

resistance, insulin-mediated activation of eNOS via PI3 kinase/Akt is inhibited, while the

adverse effects of insulin remain unopposed, which may promote vascular disease [90,91].

Flow and other physiological stimuli activate eNOS via PI3 kinase/Akt, and thus, an

impairment of this signaling mechanism in diabetes may have broad implications for vascular

dysfunction. Furthermore, study of flow-mediated dilation may have particular relevance in

studies of the mechanisms of vascular disease in human diabetes mellitus.

Human studies support the relevance of these mechanisms. In healthy humans, insulin infusion

stimulates vasodilation and increases blood flow in peripheral tissues, and this effect is blunted

in patients with diabetes mellitus and insulin resistance [92,93]. In insulin clamp experiments,

the time course and magnitude of insulin-mediated vasodilation appear to be closely linked to

the rate of glucose uptake in the limb [94–96]. These findings suggest that the actions of insulin
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in tissues and the vasculature are tightly coupled and that an impaired ability to dilate in

response to insulin may contribute to impaired glucose metabolism [96].

Additional human studies further support the relevance of altered insulin signaling to

endothelial dysfunction. Akt phosphorylation and eNOS expression are impaired in arterial

tissue collected from diabetic patients at the time of coronary bypass surgery [97]. As observed

in experimental systems, insulin infusion increases circulating levels of endothelin-1 in

humans, a response that may be increased in the setting of insulin resistance [98]. Thus,

selective impairment of PI3 kinase/Akt signaling characterizes human insulin resistance and

may contribute to endothelial dysfunction and vascular disease in Type 2 diabetes mellitus

[90].

Diabetes mellitus alters a number of other mechanisms related to eNOS activation. For

example, diabetes and obesity are associated with increased expression of caveolin-1 in the

endothelium in experimental animals [99,100] and in adipose tissue of diabetic patients

[101]. This effect is associated with impaired activation of eNOS and impaired vasodilator

function. Diabetes also impairs the interaction between eNOS and heat shock protein 90, which

also impairs NO production [102]. Finally, diabetes mellitus is associated with increased levels

of endogenous inhibitors of eNOS, such as asymmetric dimethyl arginine (ADMA) [103].

Thus, diabetes has multiple effects on the cell signaling and enzyme activity that result in an

impaired ability to produce NO in response to physiological stimuli.

3.2 Increased oxidative stress

Increased oxidative stress in the vasculature is another important mechanism of endothelial

dysfunction in diabetes mellitus and associated conditions. Exposure of arterial tissue to

increased glucose or free fatty acid concentrations induces superoxide production and impairs

NO bioavailability in the vascular wall, while antioxidant treatment acts to restore endothelial

function under these conditions[104,105]. Increased oxidative stress has the potential to impair

NO bioavailability in several ways [106,107]. First, superoxide anion may react with NO to

form peroxynitrite and eliminate the biological activity of NO. Peroxynitrite is a highly reactive

oxidant that may alter the function of a variety of cellular enzymes [108]. In particular,

peroxynitrite can alter the catalytic activity of eNOS in endothelial cells and guanylyl cyclase

in vascular smooth muscle cells. As a result, peroxynitrite reduces both the production of NO

and the responsiveness of target tissues to NO [109,110]. Increased production of reactive

oxygen species may also influence the redox status of critical eNOS co-factors, including

tetrahydrobiopterin. Loss of tetrahydrobiopterin uncouples eNOS and promotes production of

superoxide, rather than NO [111]. Reactive oxygen species may increase lipid peroxidation

products that interfere with receptor dependent activation of eNOS, inactivate NO, and

decrease the responsiveness of target tissues [112,113].

A number of enzymatic sources of superoxide in the diabetic vasculature have been identified.

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) is a membrane-

associated multi-subunit complex that generates superoxide anion and is involved in the

oxidative burst in inflammatory cells and normal cell signaling in endothelial cells [106]. Under

pathological conditions, including diabetes mellitus, NADPH oxidase activity and superoxide

production is increased [114,115]. Increased free fatty acid concentration activates NADPH

oxidase and promotes activation of the pro-inflammatory transcription factor NFκB [116].

NADPH oxidase expression is also upregulated by angiotensin II [117], and it is interesting

that angiotensin converting enzymes inhibitors have favorable vascular effects in diabetes

[118,119].

Uncoupled eNOS is another important source of oxidative stress in the diabetic vasculature.

Under physiological conditions, eNOS exists as a dimer and produces NO, however, the
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enzyme reduces oxygen to superoxide anion when there is decreased availability of the cofactor

tetrahydrobiopterin [120]. Diabetes is associated with eNOS uncoupling and decreased

tetrahydrobiopterin levels. Since tetrahydrobiopterin is readily oxidized, a vicious cycle is

established whereby oxidative stress leads to eNOS uncoupling and increased production of

superoxide anion, which in turn may reduce the availability of tetrahydrobiopterin and promote

further oxidative stress. Consistent with this mechanism, tetrahydrobiopterin supplementation

improves NO production and endothelial function in experimental models [121,122] and in

human subjects with Type 2 diabetes mellitus [123]. A number of other sources of reactive

oxygen species have been identified. For example, hyperglycemia and diabetes are associated

with increased production of superoxide anion by the aldose reductase system and, as discussed

below, components of the mitochondrial electron transport chain [124].

Studies in humans support the importance of increased oxidative stress as a mechanism of

endothelial dysfunction in diabetes mellitus and insulin resistance. For example, circulating

markers of oxidative stress, including F2 isoprostanes and antibodies against oxidized low

density lipoprotein, are increased in humans with diabetes, obesity, and insulin resistance

[125,126]. Clinical studies have shown improved endothelial function with antioxidant

treatment. In this regard, infusion of ascorbic acid in concentrations sufficiently high to

scavenge superoxide anion, improves endothelial function in the forearm of patients with

diabetes mellitus [42]. Alpha tocopherol treatment improved endothelial function in the

coronary arteries of patients with Type 1 diabetes mellitus, although there was no benefit in

Type 2 diabetes [127].

Although oxidative stress is clearly a contributing mechanism and antioxidants may improve

endothelial function in certain situations, clinical trials have failed to show a benefit of alpha

tocopherol therapy on outcomes in large-scale clinical trials [128,129]. These findings may

have important implications for prevention and management of vascular disease in diabetes

mellitus. A strategy designed to inhibit enzymatic sources of reactive oxygen species is likely

to provide greater benefit than treatment with scavengers of reactive oxygen species such as

ascorbic acid, alpha tocopherol, and other antioxidant compounds. In support of this concept,

angiotensin converting enzyme inhibitors and angiotensin receptor blockers limit angiotensin

II-induced expression of NADPH oxidase and decrease superoxide anion production in the

endothelium [130]. These drugs have been shown to improve endothelial function and reduce

cardiovascular risk in patients with diabetes mellitus [131].

3.3 Pro-inflammatory activation of the endothelium

Atherosclerosis is recognized to be an inflammatory disease [21,22] and the vascular

endothelium is both affected by and contributes to the inflammatory process [132]. Endothelial

cells can be “activated” by pro-inflammatory factors, including tumor necrosis factor-alpha

(TNF-α) and C-reactive protein to promote an atherogenic phenotype [132,133]. The activated

endothelium expresses adhesion molecules and other factors that accelerate the inflammatory

process. An important consequence of endothelial activation is decreased expression of eNOS

and loss of NO bioactivity. In this regard, inflammatory mediators including TNF-α decrease

expression of eNOS in cultured endothelial cells [134]. In humans, acute inflammatory states,

such as infusion of low-dose lipo-polysaccharide or vaccination have been shown to impair

endothelium-dependent vasodilation [135,136]. On the basis of such studies, investigators

argue that a broad alteration of endothelial function, including loss of NO under pro-

inflammatory conditions, might be a critical mechanism that links systemic inflammation to

atherosclerosis [137].

Diabetes is associated with a systemic inflammatory state that may impair endothelial function

and contribute to atherosclerosis [138]. In experimental systems, increased concentrations of

glucose or free fatty acids activate the endothelium [116,139,140]. Patients with diabetes
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mellitus or obesity have increased circulating levels of inflammatory markers, including C-

reactive protein, TNF-α, interleukin-6, and intercellular adhesion molecule-1 [50,141–143].

Furthermore, increased levels of inflammatory markers predict cardiovascular risk in diabetic

patients [144]. Interestingly, increased levels of circulating inflammatory markers also relate

to the incidence of new diabetes [52,145–147].

The transcription factor NFκB is a key regulator of endothelial activation and, interestingly,

has also been linked to the pathogenesis of insulin resistance [148,149]. NFκB is activated by

free fatty acids, inflammatory cytokines, and the receptor for advanced glycation end products

(RAGE) [8,150–152]. NFκB activation involves phosphorylation and subsequent degradation

of the inhibitory subunit IκB by IκB kinase (IKK-β), which allows translocation of the

regulatory subunits p50 and p65 to the nucleus, where they promote expression of inflammatory

genes. In skeletal muscle, TNF-α or over expression of IKK-β produces insulin resistance

[153]. Conversely, genetic suppression or pharmacological inhibition of IKK-β with salicylates

prevents insulin resistance [148,154]. Studies in cultured endothelial cells and experimental

animals support links between activation of NFκB, development of an inflammatory

phenotype, insulin resistance, and impaired bioactivity of NO [155,156].

Several recent human studies support the clinical relevance of these mechanisms. Treatment

of obese human subjects with salsalate improved insulin sensitivity and reduced circulating

markers of inflammation [157]. Increased expression of p65 and decreased abundance of IκB,

reflecting activation of NFκB has been observed in endothelial cells isolated from older and

obese individuals, and these findings relate to impaired endothelium-dependent vasodilation

[158,159]. Salsalate treatment of obese human subjects reduced NFκB activation in freshly

isolated endothelial cells [160]. This effect was associated with improved insulin sensitivity

and endothelium-dependent vasodilation [160]. Such studies raise the interesting possibility

that treatment of diabetics with salsalate or other anti-inflammatory drugs might improve

glucose control and reduce the risk for vascular disease. Clinical trials are currently underway

to address these possibilities (TINSAL-CVD and TINSAL-T2D).

3.4 Activation of protein kinase C

Activation of protein kinase C beta (PKCβ) may explain the links between inflammation,

endothelial dysfunction, and insulin resistance in diabetes mellitus [161,162]. The PKC’s are

a family of serine/threonine kinases that act at the plasma membrane in the regulation of signal

transduction in a wide variety of cell types. PKCβ is an important isoform in endothelial cells

and is activated by diacylglycerol under conditions of increased glucose and fatty acid

concentrations [163,164]. Interestingly, accumulation of diacylglycerol in this setting has been

attributed to impaired mitochondrial substrate utilization [165]. PKCβ inhibits PI3 kinase and

Akt, thereby reducing eNOS phosphorylation [166,167]. PKCβ also activates NFκB [168,

169]. Inhibiting PKCβ improves NO bioavailability and reduces inflammatory activation of

the endothelium in experimental models [170–174]. In humans, treatment with a PKCβ
inhibitor prevented the development of endothelial dysfunction following glucose infusion in

the forearm of healthy volunteers [175] and improved brachial artery flow-mediated dilation

in patients with diabetes mellitus [176].

3.5 Mitochondrial dysfunction

Recent studies have shed light on abnormalities of mitochondrial function as a proximate

mechanism of increased oxidative stress and PKC activation in the diabetic vasculature.

Although well-recognized for their role in the production of adenosine-triphosphate (ATP),

mitochondria have many other cellular functions including a role in cell signaling via

production of reactive oxygen species [177–179]. While most of the oxygen consumed by

mitochondria relates to ATP generation, 1–2% is converted to superoxide anion under

Tabit et al. Page 8

Rev Endocr Metab Disord. Author manuscript; available in PMC 2010 June 9.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



physiological conditions [180]. Mitochondrial-derived reactive oxygen species affect cell

growth, differentiation, and programmed cell death [177,179,181–185]. Relevant to diabetes

and insulin resistance, mitochondrial-derived reactive oxygen species play a role in the

activation of AMP kinase a central regular of cellular energy status[185,186]. Interestingly,

mitochondrial-derived hydrogen peroxide contributes to endothelium-dependent dilation in

response to shear stress in specific vascular beds [187]. While physiological levels of

mitochondria-derived reactive oxygen species function in normal signaling, increased levels

have pathological effects in diabetes [124]. In support of this concept, mitochondria-directed

antioxidants, including lipoic acid, reduce radical production, improve insulin sensitivity,

increase Akt activation, and improve NO-mediated vasodilation [188–191].

There is growing recognition of the importance of mitochondrial biogenesis and dynamics for

energetics and reactive oxygen species production in diabetes (Fig. 2) [192–194]. Formation

of new mitochondria (biogenesis) is regulated by peroxisomal proliferator activator receptor

gamma coactivator-1alpha (PGC-1α) and nuclear respiratory factor-1 (NRF-1). Interestingly,

this process depends on eNOS and bioavailable NO [195–198]. Mitochondria have a life span

lasting hours to days, and as part of their life cycle, undergo cycles of fusion to form complex

networks and fission to form smaller individual mitochondria. The balance between these

processes is referred to as mitochondrial dynamics [192,199]. Fusion may be beneficial and

allow for distribution of metabolites and DNA throughout the network. Toward the end of the

life cycle, dysfunctional daughter mitochondrial produced by fission undergo autophagy

eliminating them from the cell. For this reason, fission is an adaptive process that sequesters

and targets damaged mitochondrial components for elimination [200]. Under pathological

conditions, however, there is a shift toward fission and inhibition of autophagy leading to the

loss of mitochondrial networks and accumulation of dysfunctional mitochondria in the cell.

These dysfunctional mitochondria have increased production of reactive oxygen species and

impaired production of ATP [192,200–202].

Diabetes and insulin resistance are strongly linked to abnormalities of mitochondrial function

[203–205]. Decreased fatty acid oxidation by mitochondria and/or decreased mitochondrial

mass may lead to increased diacylglycerol concentrations and activation of PKC, which, as

described above, blocks insulin signaling and activates NFκB [148,203]. Increased glucose

concentrations increase mitochondrial membrane potential and radical production [124,206].

Mitochondrial-derived reactive oxygen species may damage mitochondrial DNA (mtDNA),

which lacks protective histones, leading to impaired expression of oxidative phosphorylation

enzymes and decreased substrate utilization [204]. Mitochondrial uncoupling proteins (UCP’s)

act to prevent membrane hyperpolarization and limit superoxide production [182], and over-

expression of uncoupling proteins in skeletal muscle prevents the development of diet-induced

obesity and diabetes [207]. Diabetic conditions impair mitochondrial biogenesis,

mitochondrial fusion, and autophagy, leading to cells with decreased mitochondrial mass and

predominance of fragmented and dysfunctional mitochondria [205,208]. Finally, interventions

that promote mitochondrial biogenesis, such as resveratrol and other activators of the histone

deacetylase SIRT1, have been shown to improve insulin sensitivity [209].

Clinical studies have demonstrated impaired mitochondrial function in patients with diabetes.

For example, diabetics [210] and offspring of diabetic patients have decreased oxidative

phosphorylation [211] and decreased expression of oxidative phosphorylation genes in skeletal

muscle [212,213]. Skeletal muscle from patients with diabetes is characterized by smaller

mitochondria, decreased mitochondrial mass, and decreased expression of genes related to

mitochondrial biogenesis [204,212,214–216]. Anti-diabetic changes in lifestyle, including

exercise and calorie restriction lead to an increase in mitochondrial biogenesis [204,217].

Recent preliminary work demonstrated links between endothelial dysfunction and impaired

mitochondrial biogenesis and increased mitochondrial superoxide production in arterioles
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isolated from patients with diabetes mellitus versus healthy controls [218]. Thus, experimental

studies have firmly established connections between mitochondrial dysfunction and diabetes,

and these mechanisms appear to contribute to endothelial dysfunction in human diabetes

mellitus.

4 Clinical implications

Type 2 diabetes mellitus is a major risk factor for cardiovascular disease. This condition is

associated with insulin resistance and related metabolic abnormalities, including

hyperglycemia, hypertension, visceral adiposity, and dyslipidemia with low HDL and elevated

triglycerides and free fatty acids [3,219,220]. Current efforts to reduce cardiovascular disease

focus on risk factor reduction, but diabetics continue to have increased risk despite aggressive

interventions [220–222]. Along these lines, intensive glucose control has disappointing effects

on the incidence of cardiovascular events [223–226]. In addition, promising therapies to

improve insulin sensitivity and glucose control have unexpectedly been associated with

increased cardiovascular risk [227–229]. Thus, there is a need for new approaches to the

prevention and management of cardiovascular risk in diabetes.

As we have reviewed, a key mechanism of diabetic vascular disease is the development of

endothelial dysfunction, which is characterized by a loss of NO and development of a pro-

inflammatory vascular phenotype that promotes atherosclerosis and cardiovascular events.

Recent experimental work has shed light on the mechanisms of endothelial dysfunction, which

include impaired cell signaling required for activation of eNOS, increased oxidative stress,

activation of pro-inflammatory signaling mechanisms, and activation of PKCβ. A proximate

mechanism that may unify many aspects of endothelial dysfunction is mitochondrial

dysfunction.

To date, these insights have only partially been translated into useful management strategies.

Studies of endothelial function in diabetes support several important recommendations about

patient management (Table 2). In spite of the prominent role played by oxidative stress in

diabetes and atherosclerosis, antioxidant therapy had no benefit in large randomized trials

[128,129,230]. Therapy directed against enzymatic sources of superoxide anion appears to

have greater utility for the prevention of vascular disease. In addition to favorable effects on

the renal vasculature, decreased superoxide production by NADPH oxidase may explain the

observed benefits of angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor

blockers (ARB’s) against cardiovascular disease. This mechanism may provide further

rationale for the preferential use of these drugs rather than other hypertensive agents in the

management of hypertension in diabetic patients. Improved endothelial function, reduced

radical production, and inhibition of pro-inflammatory mechanisms may also explain the well-

established benefits of statin therapy in diabetes.

The reviewed studies of the mechanisms of endothelial dysfunction in diabetes may point to

new management strategies for the prevention of cardiovascular disease in diabetes. Anti-

inflammatory drugs and PKCβ inhibitors appear to hold great promise and clinical studies are

in progress, but these strategies have not yet been established as safe and effective. Recent

work on mitochondrial dysfunction suggests possible new directions for therapy. Drugs that

have favorable effects on excess mitochondrial superoxide production, biogenesis, dynamics,

and/or autophagy might prove effective given the importance of these mechanisms for diabetes-

associated inflammation, endothelial dysfunction, and insulin resistance. Resveratrol or more

potent activators of SIRT1 have potential in this regard.

Finally, the reviewed work supports the concept that monitoring endothelial function might

prove useful for management decisions in the care of patients with diabetes. Testing endothelial

function might help with selecting types and intensity of therapy. Similarly, serial examination
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of endothelial function might be useful for monitoring the effectiveness of risk reduction

interventions. Well-established invasive and non-invasive methods for measuring endothelial

function have proven useful in the research setting. However, translation of this work to the

clinic will require the development of standardized methods for measuring endothelial function

in individual patients that can be applied to the day-to-day care of patients with diabetes mellitus

or other risk factors for cardiovascular disease.
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Fig. 1.

Displayed is the signaling pathway associated with insulin-mediated activation of endothelial

nitric oxide synthase (eNOS). Binding of insulin to the insulin receptor leads to the

phosphorylation of the insulin receptor substrate (IRS) and activation of phosphoinositide-3

kinase (PI3K) and Akt. Akt, in turn, phosphorylates eNOS. In the setting of diabetes mellitus

activation of PKCβ leads to the activation of NFκB, blocks insulin signaling and reduces

synthesis of nitric oxide (NO)
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Fig. 2.

The mitochondrial life cycle and dynamics in diabetes mellitus: 1. Mitochondrial biogenesis

is reduced; 2. the balance between fission and fusion is disturbed leading to increased fission,

decreased fusion, and loss of normal mitochondrial networks; 3. autophagy normally removes

damaged and senescent mitochondria, but diabetes impairs autophagy leading to the

accumulation of dysfunctional mitochondria. 4. The net effect is a predominance of

fragmented, dysfunctional mitochondria that produce increased amounts of reactive oxygen

species (ROS) and decreased amounts of adenosine triphosphate (ATP). Impaired

mitochondrial energetics also leads to increased levels of diacylglycerol that may activate

PKCβ and impair nitric oxide production as shown in Fig. 1
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Table 1

Manifestations of endothelial dysfunction in diabetes mellitus

Impaired vasodilation/increased vasoconstriction—decreased NO,
increased endothelin-1

Increased arterial stiffness

Impaired arterial remodeling

Endothelial activation – adhesion molecule and cytokine expression

Increased PAI-1 and other pro-thrombotic factors

Increased atherogenesis
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Table 2

Implications for management from studies of endothelial function in diabetes

No benefit from traditional antioxidants (vitamin E and vitamin C)

ACE inhibitors and ARB’s preferred

Statin therapy beneficial

Intensive glucose control/Insulin sensitizers should be beneficial

Merit further clinical study:

 PKCβ inhibitors

 NFκB inhibitors

 Mitochondrial directed therapy—inhibit fission, augment fusion
    and autophagy

 Practical methods to monitor endothelial function
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