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Abstract

Westudied whether a novel vasoconstrictor peptide, endothe-
lin-i (ET-I), is synthesized by and released from human carci-
noma cell lines, and whether ET-1 stimulates proliferation of
these tumor cells. ET-1-like immunoreactivity was released
from both HeLa and HEp-2 cells as a function of time. Re-
verse-phase HPLCof the conditioned media from HeLa cells
revealed a major peak coeluting with standard ET-1. Northern
blot analysis demonstrated the expression of mRNAfor ET-1
precursor in both tumor cell lines. Both cell lines contained a

single class of specific binding sites for ET-1. ET-1 dose-de-
pendently induced increases in cytosolic free Ca2" concentra-
tion in fura-2-loaded tumor cells, whose effect was completely
abolished by chelating extracellular Ca2" or by Ca2"-channel
blocker. ET-1 stimulated proliferation of the quiescent cell
lines in a dose-dependent manner, whose effect was inhibited by
Ca2-channel blocker. Polyclonal antibody for ET-1 inhibited
proliferation of these cell lines, whereas nonimmune serum had
no effect. These results demonstrate that ET-1 is synthesized
by and released from human epithelial carcinoma cell lines, and
that exogenous and endogenous ET-1 stimulates proliferation
of the cells possibly through Ca2" influx, suggesting its role as

an autocrine/paracrine growth factor for certain tumor cells.
(J. Clin. Invest. 1991. 87:1867-1871.) Key words: radioimmu-
noassay * receptor - cystolic free Ca2" concentration * cell prolif-
eration * Northern blot analysis

Introduction

Endothelin- l (ET- 1),' originally characterized from the super-

natant of cultured porcine endothelial cells, is a potent vaso-

constrictor/pressor peptide (1). Subsequent cDNAdcloning of
human genomic library revealed three isopeptides, termed ET-
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1. Abbreviations used in this paper: [Ca32+J, cytosolic free Ca2" concen-

tration; ET-1, endothelin-l; LI, like immunoreactivity.

1, ET-2, and ET-3 (1, 2). Specific receptors for ET- 1 are distrib-
uted not only in cardiovascular system, but also in a wide vari-
ety of tissues (3), suggesting its diverse physiological functions.
Recently, it has been reported that ET- 1 stimulates prolifera-
tion of rat vascular smooth muscle cells (4), fibroblasts (5), and
glomerular mesangial cells (6), and the expression of protoon-
cogenes (c-myc, c-fos) in these cells, suggesting its potential role
as a growth factor. At present, no information is yet available
whether ET- 1 is produced by carcinoma cells and acts by them-
selves. In the present study, we demonstrate that two epithelial
carcinoma cell lines derived from human cervix (HeLa) and
larynx (HEp-2) express mRNAfor ET- 1 precursor, and release
ET- 1 into medium, and further show that both tumor cells
possess specific ET- 1 receptors through which ET- 1 stimulates
cell proliferation possibly via influx of extracellular Ca2+.

Methods

Cell culture. HeLa cells (American Type Culture Collection, Rockville,
MD) were cultured in MEMsupplemented with 2 mMglutamine and
10% fetal bovine serum (FBS), and HEp-2 cells (ATCC) in Eagle's
MEMwith Earle's balanced salt solution and 10% FBS at 370C in a
95% room air-5% CO2 humidified incubator. Medium was changed
every 2-3 d. After reaching confluency, cells were replaced with a
serum-free MEMfor 2 d. The conditioned media were pooled and
stored at -40'C until processed for extraction. Cell number was mea-
sured by Coulter Counter Model ZM(Coulter Electronics, Inc., Hia-
leah, FL).

Extraction of ET-1. For chromatographic analysis, the pooled con-
ditioned media (100 ml) were acidified with 0.1% trifluoroacetic acid
(TFA), and the supernatant applied to Spe C8 cartridge (J. T. Baker
Chemical Co., Phillipsburg, NJ) and eluted with 2 ml 60% acetonitrile/
0.1% TFA, as reported previously (7). The eluates were evaporated to
dryness and subjected to reverse-phase HPLC. The recovery of syn-
thetic ET-l during the extraction procedure was 77%.

Radioimmunoassay (RIA). ET-1-like immunoreactivity (LI) was
determined by specific RIA for ET- I as reported (7). The antibody used
in the present RIA mainly recognizes the COOH-terminal Trp2' resi-
due of ET-1, and cross-reacts fully with ET-2 and ET-3, but not with
big ET-1, or other polypeptide hormones. The final dilution of anti-
serum was 1:150,000. The bound ligands were separated from the free
ones by the double antibody method. The sensitivity of ET- I RIA was
1.0 fmol/tube, and the 50% intercept was 14 fmol/tube. The intra- and
interassay variations were 3.2 and 8.6%, respectively.

Reverse-phase HPLC. The extract of the conditioned media from
HeLa cells was loaded on a column (0.45 X 25 cm, 5 Am, Cl8, Nucleo-
sil, Macherey-Nagel, Duren, FRG) eluted with a linear gradient (15-
60%) of acetonitrile in 0.09% TFA for 60 min at a flow rate of 1 ml/
min. After evaporation, each eluate was subjected to ET-1 RIA. The
recovery of standard ET- I was 96%.
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Northern blot analysis. Total RNAfrom confluent cells was ex-
tracted with LiCl-urea and subjected to poly(A)+ RNAselection.
Poly(A)+ RNA(10 qg) was fractionated in a formaldehyde/ 1.l% aga-
rose gel electrophoresis and transferred to a GeneScreen Plus mem-
brane (DuPont Co., Wilmington, DE). The probe was 3' noncoding
exon from cloned human preproET- I gene (1), labeled with [32P]dCTP
(sp act, 3,000 Ci/mmol; Amersham International, Amersham, UK) by
the random-primed labeling method, and was incubated at 420C for 16
h with membranes in hybridization buffer containing 1 MNaCl/50%
(vol/vol) formamide/1% SDS/250 ,g/ml of salmon sperm DNA. The
membranes were washed with 0.3 MNaCl/30 mMsodium citrate/1%
SDSat 60'C, and autoradiographed on a Kodak XAR-l film with an
intensifying screen at -80'C for 8-16 h (8).

Binding experiments. Binding experiments were performed essen-
tially in the same manner as previously described (9). Confluent cells
(106 cells) were washed twice with HBSScontaining 0.1% BSA, and
incubated at 370C for 2 h with 1.3 x 10-II M1251-ET-l (sp act, 2,000
Ci/mmol; Amersham International) in the absence and presence of
various concentrations of unlabeled ET- 1 (Peptide Institute, Osaka,
Japan). The cells were then washed twice with ice-cold HBSS, solubi-
lized with 1 N NaOHat 370C, and the cell-bound radioactivity was
measured. Specific binding was calculated as total binding minus non-
specific binding in the presence of excess unlabeled ET-1. The apparent
dissociation constant (Kd) and maximal binding capacity (Bm.) were
calculated by Scatchard analysis of binding data.

Determination of intracellular Ca2" concentration ([Ca2+]). Con-
fluent HeLa and HEp-2 cells which had been deprived of FBS for 48 h
were dispersed with 0.25% trypsin and 0.02% EDTA, and incubated
with 5 ,iM fura-2 acetoxymethylester (Dojin Chemical, Kumamoto,
Japan) at 37°C for 20 min in HBSS. Suspended fura-2-loaded cells
were washed, and incubated for 20 min in physiological salt solution
(130 mMNaCl, 5 mMKC1, 1 mMMgCl2, 1.5 mMCaCl2, and 20 mM
Hepes, pH 7.4), containing 0.5% BSAand 10 mMglucose to allow for
intracellular dye cleavage. Fluorescence of fura-2-loaded suspended
cells (5 X 106 cells/ml) was measured at 37°C using continuous rapid
alternating excitation from dual monochromators (340 and 380 nm),
and emission at 505 nm(CAF-100, Japan Spectroscopic Co. Ltd., To-
kyo) as reported (9). Fluorescent measurement was converted to [Ca2+]
by determining the maximal fluorescence (Rmax) with 10% Triton
X-100, followed by the minimal fluorescence (Rmin) with 15 mM
EGTA, pH 10.5. The following formula was used: [Ca2]i = Kd[(R
- Rmin)/(Rrmn - R)] X (380min/380g,) assuming that the Kd for the
fura-2:Ca2+ complex is 224 nM at 37°C (10).

Cell proliferation. Cells were seeded into 12-well cluster dishes (2.9
x 104 cells/well). After 24 h, the cells were washed, and replaced with 2
ml serum-free MEMwith or without ET- I and incubated for the indi-
cated times. After completion, cells were trypsinized, and the cell num-
ber was measured by Coulter Counter. To determine whether the anti-
body for ET-l used for RIA affects the cell proliferation, tumor cells
which had been replaced with fresh MEMcontaining 0.2% FBS (HeLa
cells) or 3%FBS (HEp-2 cells) were incubated in the absence and pres-
ence of various dilutions (1:1,000-1:1,000,000) of rabbit ET-l anti-
serum and nonimmune rabbit serum (1: 1,000) as control. After 72 h,
cell number was determined.

Statistical analysis. Results were expressed as mean±SEM. Statisti-
cal analysis was performed by Student's t test for nonpaired data.

Results

Serial dilution curves generated by extract of the conditioned
media of both HeLa and HEp-2 tumor cells were parallel to
that of standard ET- 1 in RIA (data not shown). HeLa cells
under a serum-free condition released ET- 1-LI as a function of
time, reaching a plateau after 24 h (Fig. 1). Presence of FBS in
the incubation medium potentiated the amounts of ET- 1-LI
released from both cells; the rates of ET- 1-LI released from
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Figure 1. Release of ET- 1-LI from HeLa cells as a function of time
under a serum-free condition. Each point represents the mean of
four to eight dishes; bars indicate SEM.

HeLa and HEp-2 cells under a serum-free condition were
3.53±0.44 and 22.3±4.3 fmol/24 h/106 cells (n = 4), respec-
tively, whereas they were 220±14 and 190±26 fmol/24 h/ 106
cells (n = 3) in the presence of 10% FBS.

Reverse-phase HPLC profile of ET-1-LI in extract of the
conditioned media from HeLa cells is shown in Fig. 2. Reverse-
phase HPLC revealed two ET-I-LI components, one major
component coeluting with standard ET- I and the other having
yet uncharacterized retention time.

Northern blot analysis of poly(A)+ RNAfrom both tumor
cells using cDNA from human prepro-ET- 1 as a probe is
shown in Fig. 3. A single hybridization band corresponding to
the size (2.3 kb) of mRNAcoding for human prepro-ET- 1 was
demonstrated in both cells.

To characterize the specific binding sites for ET- I in these
tumor cells, binding study using 1251-ET-l as a radioligand was
performed. Unlabeled ET- I competitively inhibited the bind-
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Figure 2. Reverse-phase HPLC profile of ET- 1-LI in extract of the
conditioned media from HeLa cells. (Solid line) ET-I-LI in each
fraction. (Dashed line) A linear gradient (15-60%) of acetonitrile.
Elution positions of standard ET-2, ET- 1, big ET- 1, and ET-3 are in-
dicated by arrows 1, 2, 3, and 4, respectively.
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Figure 3. Northern blot
analysis of HeLa and HEp-
2 cell mRNA.
Poly(A)+RNA (10 ,g) was

hybridized with human
prepro-ET-l cDNA as a

probe. A single band with a

size of 2.3 kb was observed
in both tumor cells. Size
markers in kilobases are in-
dicated on the left.

ing of '25I-ET- to both cells (Fig. 4). Scatchard analysis indi-
cated the presence of a single class of noninteracting binding
sites for ET-1 in both cells: the apparent Kd and Bma, were 1

x 10-10 Mand 6.8 x I05 sites/cell (HeLa cells), and 3 X I0-' M
and 1.4 X 1010 sites/cell (HEp-2), respectively.

The effect of ET- 1 on [Ca2]i in these two cell lines was

studied by measuring changes of fura-2-Ca2+ fluorescence (Fig.
5). The basal [Ca2+j] was 190.9±7.2 nM(n = 34) in HeLa cells.
ET- 1 induced gradual increase in [Ca2"Ji which lasted for at
least the 30-min observation period. The ET- 1 -induced [Ca2+]
increase was a dose-dependent effect; increases in [Ca2+ji in
HeLa cells 3 min after the addition of various doses of ET- 1

over the basal levels were 124.1±5.6% (10-'4 M), 139.6±4.0%
(10-13 M), 169.9±17.4% (10-12 M), 185.5±13.4% (10-"1 M),
and 216.3±9.5% (1010 M) (n = 5; P < 0.01 vs. control). The
increase in [Ca2+]i by ET-l (10- " M) was completely abolished
by pretreatment with 3 mMEGTAor 1O-8 Mnicardipine. The
basal [Ca2+]i in HEp-2 cells was 124.1±4.9 nM (n = 14), and
ET- 1 also induced, although less effectively, [Ca2+]i in-
creases which were dose-dependent: 107.0±0.5% (10-8 M),
109.3±1.7% (10-7 M), and 114.4±4.9% (10-6 M) over the basal
levels (n = 5, P < 0.01 vs. control) (data not shown).

Under serum-free conditions, ET- 1 significantly (P < 0.01)
stimulated proliferation of HeLa cells in a dose-dependent
manner (10-3-_10-9 M) and that of HEp-2 cells to the less
extent (I0-8 10-7 M) after 72 h (Fig. 6). In HeLa cells, ET-l as

low as 10-13 Minduced an approximate twofold increase in cell
number and maximal stimulation (approximate fourfold in-
crease) was observed at 10-9 M; the approximate EDse was 3
X 10-12 M. The ET-l-induced proliferation of HeLa cells was

attenuated by 1O-8 Mnicardipine and completely inhibited by
10-7 Mnicardipine, whereas nicardipine (I0-l- 0I' M) added
alone did not affect cell growth (data not shown). Addition of
rabbit anti-ET- serum dose-dependently inhibited prolifera-
tion of HeLa cells [95.2±1.2% (1:1,000,000); 86.0±4.8%
(1:100,000); 75.2±6.0% (1:10,000); 37.6±2.9% (1:1,000)],
whereas the antiserum only at a high concentration (1: 1,000)
significantly inhibited proliferation of HEp-2 cells (Fig. 6).
Nonimmune rabbit serum (1: 1,000) had no effect on prolifera-
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Figure 4. Competitive binding of '25I-ET- 1 to cultured HeLa (A) and
HEp-2 (B) cells by unlabeled ET- 1. Each point is the mean of dupli-
cate determinations. Specific bindings of HeLa and HEp-2 cells were
93 and 79% of total bindings, respectively, after 2 h incubation at
370C. (Inset) Scatchard analysis of binding data.

tion of either tumor cells. The antiserum (1: 1,000) completely
blocked the mitogenic effects by exogenous ET-1 (10-" M,
HeLa cells; 10-8 M, HEp-2 cells).

Discussion

In the present study, the apparent parallelism of serial dilution
curves between the extracts of conditioned media from HeLa
and HEp-2 tumor cells and standard ET- 1 in ET- 1 RIA as well
as the time-dependent accumulation of ET- 1-LI in the media
strongly suggest that ET- I and/or related peptides immunologi-
cally indistinguishable from ET-l are released from both tu-
mor cells. ET- 1-LI release from the cells was markedly in-
creased when cultured in the presence of FBS compared with
that under a serum-free condition. This is consistent with our
recent observation that the release of ET- I -LI from cultured rat
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Figure 5. Representative tracings of [Ca2]i response to ET- 1 in HeLa
cells. Fura-2-loaded cells were challenged with various doses (1 0-13-
10-'° M) of ET- 1 (A-C). After pretreatment with 10-' Mnicardipine
(D) or 3 mMEGTA(E), ET-l (10-" M) was added.

mesangial cells is stimulated by FBS ( 11), suggesting the poten-
tiating effect of some serum component(s) on synthesis and/or
release of ET- 1. Reverse-phase HPLC analysis coupled with
RIA for ET- 1 of the extracted conditioned media from HeLa
cells revealed one major peak coeluting with synthetic ET-1,
although the nature of the second minor one remains un-
known. It may be a degradative product of ET- 1. Furthermore,
Northern blot analysis of poly(A)+ RNAfrom both tumor cells
demonstrated the expression of preproET- 1 gene in these cells.
These findings verify de novo synthesis of ET- 1 by and its re-
lease from two separate tumor cell lines derived from human
carcinoma (HeLa and HEp-2).

The binding study clearly demonstrates that HeLa cells
have ET- I receptors with higher affinity (Kd, 1010 M), whereas
HEp-2 cells have ET- 1 receptors with lower affinity (Kd, 3
X I0-7 M). The binding affinity of the ET- 1 receptors in HeLa
cells was comparable to those (Kd, 1-4 X 1010 M) of high-af-
finity receptors in vascular smooth muscle cells (9), cardiocytes
(12), mesangial cells (13), and fibroblast ( 14) thus far reported.
The ET- 1-induced [Ca2+]i increase was gradual and sustained.
This is in contrast to the ET- 1-induced [Ca2+Ji increases in
other cells, such as vascular smooth muscle cells (9), cardio-
cytes ( 12), glomerular mesangial cells ( 13), and fibroblasts ( 14);
they are composed of the initial transient phase and the subse-
quent sustained phase. It has been suggested that the [Ca2+]i
transient derives from Ca2+ mobilization from intracellular
store site and the sustained [Ca2+]i from Ca2+ influx (9, 12-15).
In the present study, however, pretreatment with nicardipine
or EGTA completely abolished the rise in [Ca2+]i by ET- 1,
suggesting that the ET- 1-induced increase in [Ca2+]i mayderive
from Ca2+ influx through dihydropyridine(DHP)-sensitive
Ca2+ channels. ET- 1 dose-dependently stimulated increases in
[Ca2+]i in fura-2-loaded tumor cells whose effect was far more
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Figure 6. Effects of ET-l and rabbit anti-ET-1 serum on growth of
tumor cells. (A) Quiescent HeLa (.) and HEp-2 (o) cells were incu-
bated with indicated doses of ET- I under a serum-free condition, and
cell number was measured after 72 h. Each point represents the
percentage to control in the absence of ET-l (HeLa, 6.5±0.4 X 103
cells, n = 11; HEp-2, 2.3±0.1 X l0 cells, n = 5) from a single experi-
ment; bars show SEM. *P < 0.01 vs. control. (B) The cells were incu-
bated with various dilutions (1: 1,000,000-1: 1,000) of rabbit ET- I an-
tiserum (HeLa , HEp-2 o) and nonimmune rabbit serum (1: 1,000)
(HeLa , HEp-2 o) for 72 h in the presence of 0.2-3% FBS, and the
cell number was measured. Each point represents the percentage to
control in the absence of rabbit sera (HeLa, 1.1±0.0 X 106 cells, n = 8;
HEp-2, 2.3+0.2 x 105 cells, n = 6) from a single experiment; bars
show SEM. *P < 0.025; **P < 0.01 vs. control.

potent in HeLa cells than in HEp-2 cells. The differential ef-
fects of ET- 1 on [Ca2+]i increase in both tumor cells may be
accounted for by their different affinities of ET- 1 receptors.

Synthetic ET- 1 dose-dependently stimulated the prolifera-
tion of quiescent tumor cells, of which effect was also far more
effective in HeLa cells than in HEp-2. These data indicate that
ET- 1 is a potent mitogen not only for normal cells, but for
tumor cells as well. It should be noted that the minimum effec-
tive concentration to induce mitogenic effect on HeLa cells by
ET- l (- l0o1 M) is comparable with that of circulating ET- I
in humans (- 6 X I0-` M) (7) and far lower than those
(- 10-` M) to induce mitogenesis in other cells, such as rat
vascular smooth muscle cells (4), fibroblasts (5), and glomeru-
lar mesangial cells (6). Furthermore, the potency of ET- 1 for
proliferation of the cells closely corresponded to that for [Ca2+]i
increase and the ET- 1-stimulated growth of these cells was in-
hibitable with voltage-dependent Ca2+-channel blocker. These
data are compatible with the importance of Ca2+ influx for the
ET- 1-induced mitogenesis in rat vascular smooth muscle cells
(4). Taken together, we speculate that Ca2+ influx through
DHP-sensitive Ca2+ channels may be involved in the mecha-
nism of the ET- 1-induced proliferation of tumor cells.

The neutralization experiments using ET-1 antibody re-
vealed that the proliferation of HeLa cells was inhibited more
effectively than that of HEp-2 cells by coincubation with rabbit
anti-ET- 1 antiserum, but not with nonimmune rabbit serum.
These data are consistent with the differential effects by exoge-
nous ET- 1 on [Ca2+]i increases and growth of these tumor cells.
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Very recently, Kusuhara et al. have demonstrated ET- 1 syn-
thesis by other cancer cell lines and speculated a modulatory
role of ET- 1 in the growth of stromal cells surrounding cancer
cells ( 16). Although they failed to detect ET- l binding sites in
only pancreatic tumor cell lines, neither the exact autocrine
role of ET- 1 in the tumor cell lines nor the existence of ET- 1
receptors in other tumor cell lines which produce ET- I -LI have
been extensively studied. The far lower affinity of ET- I recep-
tors and the lesser effects of ET- I on [Ca2+]i and cell growth in
HEp-2 cells compared with those of HeLa cells in the present
study might argue against the major role of ET- 1 as an auto-
crine factor for HEp-2 cells, but for its paracrine role for the
neighboring stromal cells as suggested (16). Therefore, it re-
mains unsettled whether ET- 1 production by the tumor cell
lines in general acts either as an autocrine growth factor for
their own cells or as a paracrine growth factor for other cells.

In conclusion, the present study demonstrates that ET- 1 is
synthesized by and released from human carcinoma cell lines,
and that ET-l stimulates proliferation of these cells through
receptor-mediated increase in [Ca2"Ji, possibly derived from
Ca2" influx. Our data thus suggest that ET- 1 produced by the
tumor cells may function as an autocrine/paracrine growth fac-
tor for certain tumor cells.
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