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Abstract

Lipid rafts (LRs) are dynamic, sterol- and sphingolipid-enriched nanodomains involved in the regulation of cellular functions
and signal transduction, that upon stimuli, via (e.g. association of raft proteins and lipids), may cluster into domains of
submicron or micron scale. Up to date, however, lipid raft clusters were observed only under artificially promoted conditions
and their formation in vivo has not been confirmed. Using non-destructive approach involving Raman and Atomic Force
Microscopy imaging we demonstrated the presence of clustered lipid rafts in endothelium of the aorta of the db/db mice
that represent a reliable murine model of type 2 diabetes. The raft clusters in the aorta of diabetic mice were shown to
occupy a considerably larger (about 10-fold) area of endothelial cells surface as compared to the control. Observation of
pathology-promoted LRs confirms that the cellular increase of lipid content results in clustering of LRs. Clustering of LRs
leads to the formation of assemblies with diameters up to 3 micrometers and increased lipid character. This massive
clustering of lipid rafts in diabetes may trigger a signaling cascade leading to vascular inflammation.
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Introduction

In 1987, van Meer et al. [1] using 7-nitrobenz-2-oxa-1,3-diazole
(NBD)-labeled probes quantified fluorescent lipids sorting on the

apical and basolateral sides of epithelial cells. They found that

NBD-glucosylceramide was four-fold enriched on the apical

membrane contrarily to NBD-sphingomyelin that was equally

distributed both on the apical and basolateral sides [1]. This

experiment has created the idea of lipid rafts (LRs), i.e.

microdomains with properties different from the surrounding cell

membrane. In 1992, Brown and Rose [2] discovered that

glycosylphosphatidylinositol(GPI)-anchored proteins and glyco-

sphingolipids are enriched in detergent-resistant membranes

(DRMs) isolated in cold detergent extraction, whereas phospho-

lipids are depleted from DRMs. This finding initiated an

enormous growth of studies on these lipid-rich structures; it is

enough to say that the Scopus search returned over 2000 citations

with ‘‘lipid raft’’ in the article title! Nevertheless, up to now there is

no apparent agreement on the size, composition, and function of

LRs [3–8]. Moreover, the conclusions obtained by studying model

membrane systems are difficult to verify in real cell systems, mainly

due to lack of methods enabling measurements of transient nano

objects. [3,7], Nevertheless, today it is quite well established

experimentally that the self-organization of proteins and lipids

regulates the bioactivity of cell membranes [9]. The up-to-date

definition of membrane rafts describes them as ‘‘small (10–

200 nm) heterogeneous, highly dynamic, sterol- and sphingolipid-

enriched domains that compartmentalize cellular processes. To

form larger platforms small rafts can sometimes be stabilized

through protein-protein and protein-lipid interactions [5]. In fact,

the size of the observed domains varies between 4 nm (lipid shell

size [6]) to several micrometers in model systems [10]. The size of

LRs makes them ungrateful subjects for in vivo studies, although

there are several experimental evidences of local clustering of

protein and lipid reporters of various size [6], observed also

directly in the nanoscale in living cells [11]. Other evidences for

nanoscale clustering were gathered with new microscopic tech-

niques, as reviewed in the recent work by Simons and Gerl [12].

The total internal reflection fluorescence (TIRF) microscopy and

single quantum dot tracking were used to study the level of

cholesterol in lipid rafts, while the protein behaviour was

investigated by fluorescence correlation spectroscopy (FCS) [13].

Additionally, super-resolution optical microscopy methods e.g.

stimulated emission depletion (STED) [14], stochastic optical

reconstruction microscopy (STORM) [15], and scanning near

optical microscopy (SNOM) [16] can were used to reveal the lipid

– protein correlation in the plasma membrane. The majority of

the methods used to study lipid rafts is based on fluorescence and/
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or require an initiator for cross-linking, which results in clustering

of these dynamic, transient nanostructures into more stable,

resting, microdomains [12]. For instance, the cross-linking of

proteins ganglioside (GM1) and caveolin-1 (CAV-1) with cholera

toxin (CTX) and anti-CAV-1 antibody, respectively, results in raft

clustering to the size observable under an optical microscope.

Nevertheless, such observations are inherently perturbed by the

marker conjugation, i.e. the antibody cross-linking itself induces

raft clustering by recruitment of suitable membrane constituents

[12].

Caveolae are considered as a specific type of membrane rafts of

a characteristic flask shape and various functions related mostly to

signal transduction and lipids’ regulation [17,18]. Caveolae are

expressed in various cells, particularly in smooth muscle cells,

fibroblasts, adipocytes, and endothelial cells. In the latter they

constitute more than one-third of the overall surface of the plasma

membrane [17], in agreement with a high level of CAV-1

expression in these cells [19].

Crucial cellular functions of rafts, including signal transduction,

protein sorting, and synaptic transmission, were shown to be

related to cholesterol and/or sphingolipids depletion [4]. It was

suggested that the cholesterol content may activate inflammatory

signaling pathway and contribute to the development of athero-

genesis [20], closely related to type 2 diabetes mellitus (T2DM). In

endothelial cells, endothelial nitric oxide synthase (eNOS) is

targeted by LRs and caveolae of the plasma membrane and Golgi

apparatus [19]. Expression of CAV-1 leads to inhibition of the NO

release, i.e. binding caveolin-1 keeps eNOS in an inactive state

[21]. CAV-1 is also related to the insulin secretion and insulin

mediated signaling. [21] In this light, it is not surprising that lipid

rafts may play a key role in the early onset and development of

T2DM, as well as, may be involved in the regulation of the

endothelium phenotype.

In this work we present LRs clustering in T2DM visualized by

application of Raman and atomic force microscopy (AFM)

imaging. Raman spectroscopy is a label-free technique with great

potential for providing information about the biochemical

composition of samples. Generally, pathological anomalies lead

to chemical changes, which affect the vibrational spectra.

Previously, Raman spectroscopy has been widely used to

investigate pathological tissues. [22–25] The chemical specificity

of Raman imaging enabled recognition of non-externally-induced

LR assemblies in the vascular wall endothelium and their chemical

characterization. Parallel AFM imaging of tissue topography and

phase resulted in the determination of the exact size of these

structures and enabled to link this information with the LR

chemical composition. Immunohistochemical staining with anti-

CAV-1 antibody confirmed the identity of the observed structures.

The visualization of pathology-induced clustering of LRs opens a

new perspective for studying the role and formation mechanisms

of these assemblies in T2DM and others endothelium-related

pathologies.

Materials and Methods

The methodology based on simultaneous use of Raman

spectroscopy and AFM was applied for imaging of the same area

of the sample to gain information about both chemical compo-

sition and physical properties of the studied area. A Raman

microscopic image is obtained by parallel measurement of spectral

and spatial information, where the spectral information is the

result of inelastic (Raman) scattering of the incident light

illuminating the sample [26]. A microscope is used to transfer

both the incident (laser) light and the Raman scattered light,

therefore, the obtained information is derived from a very small

volume of the sample (voxel) limited by the resolution of the

optical microscope. Raman images are recorded by scanning the

sample in the x and y directions and acquiring a complete Raman

spectrum at each voxel. Therefore, Raman imaging results in a set

of Raman spectra containing chemical information about the

sample. Finally, the intensity of the ‘‘marker’’ (characteristic for a

given component) band is calculated in each Raman spectrum

and, after color-coding, it becomes a visual representation of the

component distribution in the sample.

Atomic Force Microscopy (AFM) imaging is based on scanning

the sample surface with the tip mounted at the end of the optically

controlled, flexible cantilever [27]. Several different modes of

operation are commonly used e.g. the tapping (AC) mode applied

to soft samples such as cells and tissues. In tapping mode [28,29]

the tip is oscillating with the close to resonance frequency and high

amplitude when the tip is under non-contact conditions. When the

oscillating tip approaches the sample surface, the amplitude of the

vibration is damped, therefore the oscillation amplitude can serve

as a feedback parameter to measure the surface topography. In

addition to the topography, the AC mode enables registration of

other wave-related properties including a phase image, visualizing

compressibility and/or hydrophobicity of the sample surface [30].

Application of combined Raman and AFM imaging to study the

same sample area results in gaining information about the

chemical structure of the sample along with its surface character-

ization (topography, stiffness, compressibility etc.). This method-

ology has previously been used to study murine tissue. [31].

The db/db mice represent a genetically-modified model (leptin

receptor–deficient mice) of type 2 diabetes [32]. The samples were

resected from a thoracic fragment of the aorta taken from the db+

(heterozygotic) or db/db (homozygotic) mice at the age of 16 and

20 weeks. The resected and split-open arteries were tightly glued

to the cell-Tak-coated calcium fluoride surface (en face prepara-

tion). Subsequently, the tissue was preserved by a ten-minute

soaking in formalin and rinsing twice with distilled water. Overall,

the four 16-weeks old (2 db+ and 2 db/db, respectively) and three

20-weeks old (1 db+ and 2 db/db, respectively) mice were studied.

Raman imaging and AFM analysis was done with a Confocal

Raman Imaging system WITec alpha 300 using 1006air objective

(Olympus, MPlan FL N, NA=0.9). The laser excitation wave-

length of 532 nm, laser power of ca. 5–10 mW and the integration

time of 0.2 second per spectrum were used in all cases. Images of

an edge length 15615 mm (75675 pixels, one scan per point, 5652

spectra in total) or 464 mm, in the case of depth profiling (40640

pixels, one scan per point, 1600 spectra in total), were acquired. In

each case, the number of measured voxels was at least three-fold

the edge size in order to satisfy the Nyquist criterion. The spectral

resolution was 3 cm21.

AFM measurements were performed in the AC mode with the

Force Modulation probes (k = 2.8 N/m, WITec). The resolution of

images was 2006200 pixels for the area of 20620 mm.

Depth profiling of the tissue was obtained by multiple imaging

of the same area in several layers of the sample with a 0.4–1 mm

step in the z-direction. The layers marked as z= 0.0 mm were

chosen by maximizing the intensity of the oscilloscope signal.

Data matrices were analyzed using a WITec Project software

(background subtraction using a polynomial of degree 2 and the

automatic removal of cosmic rays). The analysis of the spectra was

supported by a Cluster Analysis (CA) (K-means, Manhattan

distance, WITec Project Plus). CA was applied routinely to

analyze all the hyperspectral imaging data. A ImageJ processing

program [Rasband, W. S.; U. S. National Institutes of Health:
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Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–

2012.] was applied to calculate the LRs areas.

For immunohistochemical staining, each tissue was surrounded

by a hydrophobic marker (Novocastra) and washed with PBS. In

the first step, endogenous mouse antibodies were blocked using the

MOM blocking reagent (VectorLabs) to reduce the background.

Then preincubation with 5% normal goat serum (JacksonIm-

muno) and 2% non-fat dry milk in PBS for 30 min were used to

reduce non-specific binding. For fluorescent detection of endothe-

lial caveolin-1 and lipid raft formation, the sections were incubated

in humid chambers with polyclonal rabbit anti-CAV1 antibody

(Sigma) and FITC- conjugated cholera toxin B subunit (Sigma),

respectively. After rinsing in PBS, the secondary biotinylated goat

anti rabbit Ig was applied (JacksonImmuno). Following another

rinse in PBS, the sections were incubated with Cy3- conjugated

streptavidin (JacksonImmuno) to visualize the primary antibody

binding site. Finally, nuclei were stained using a Hoechst 33258

solution (Sigma).

3D fluorescence images of immunostained lipid rafts were

acquired with an A1-Si Nikon (Japan) confocal laser scanning

system built onto a Nikon inverted microscope Ti-E using a Plan

Apo 1006/1.4 Oil DIC objective. The images were acquired at a

resolution of 102461024. Specimens were excited with 405, 488,

and 561 nm diode lasers. 3D pictures were reconstructed using

NIS-Elements AR 3.2 software.

Ethics Statement
Dr. Lukasz Mateuszuk (Jagiellonian Centre for Experimental

Therapeutics) was granted a formal waiver of ethical approval for

animal work. The agreement was made by II local ethical

committee for the animal experiments from Institute of Pharma-

cology Polish Academy of Sciences in Krakow number 955/2012

in 26th July 2012. This agreement is valid for 3 years.

All efforts were made to minimize suffering. Mice were

anesthetized with ketamine (Vetoquinol) and xylazine (Bayer)

solution in doses of 80 mg and 8 mg per kg body weight,

respectively. The drugs were administered intraperitoneally.

Results and Discussion

Chemical characteristics of lipid rafts
Raman imaging is an emerging tool in medical diagnostics and

has been already applied in the study of various pathologies [22–

25,33–35]. The db/db mice represent a genetically-modified

model (leptin receptor–deficient mice) of T2DM [32]. The

representative Raman distribution image of the en face (split-

open) vascular wall of a db/db mouse together with the AFM

topography and phase images of the studied surface are shown in

Fig. 1 (compare Fig. S1, Supporting Information for the control).

Spherical structures with sizes up to 3 mm (Fig. 1) were

identified in the studied tissues of db/db mice and assigned to

aggregated LRs. In the Raman distribution images, these

structures were distinguished, among others, by the very strong

intensity of the C-H stretching band in the 2800–3100 cm21

range (Fig. 1B) related to all organic components in the sample

(mostly proteins and lipids). In the AFM images these assemblies

were observed as protuberances of the tissue with a diameter

between 300–3000 nm and a height/depth of 30–300 nm

(Fig. 1C, topography) and significantly different physicochemical

properties from the surrounding tissue (Fig. 1D, phase). The

increased intensity of the nC-H Raman band for LRs corresponds

to the increased tightness of packing due to the higher degree of

order in LRs relatively to the surrounding tissue [36] and directly

correlates with considerably different compressibility of these areas

shown in the AFM phase images. The combined topography and

phase images clearly demonstrate that these structures are

localized on the uppermost layer of the endothelium over the

plasma membrane. The topography indicates the existence of the

protuberances on the very top of the tissue, while the phase image

confirms that the lipid-rich structures have different properties

than the rest of the tissue (and excludes the probability of

structures localized just below the plasma membrane, for instance

lipid droplets protruding above the tissue and covered by the

membrane).

Chemically, rafts are lipid-protein structures with raft proteins

containing at least one transmembrane domain or hydrophobic

modification [37] such as GPI-anchor [38], double acylation [10]

or palmitoyl group [39] and rich in saturated sphingolipids and

phospholipids [8]. To extract information about the chemical

structure of raft assemblies, CA (K-means, Manhattan distance)

was applied in order to isolate them from other components of the

sample and characterize their spectral signature in detail. Fig. 2

presents the representative CA result of a Raman image of the en
face db/db sample.

LRs, marked in red color in the cluster map (Fig. 2B) have a

considerably different average spectrum (red line, Fig. 2C) than

other classes identified in the tissue. Bands that appeared or

increased in intensity in the fingerprint region of the average raft

spectrum were assigned mostly to the lipid-type components. The

band at 1745 cm21 was attributed to the carbonyl stretching

vibrations in esters, both phospholipids and triglycerides [24].

Features observed at 1455–1446 cm21 with a significantly higher

intensity in the raft spectrum were related to lipids in general (the

CH2 bending vibration mode) and bands in the 1300–1315 cm21

range are were attributed to the CH2/CH3 twisting vibrations.

Bands at 1130 and 1075 cm21 are were assigned to the C-C

stretching vibrations of acyl chains [24]. The feature at 1099 cm21

was due to the symmetric phosphate stretching mode [24]. The

very characteristic band at ca. 725 cm21 (Fig. 2 and 3) was related

to the symmetric stretching vibrations of the N+(CH3)3 choline

group (718 cm21 in phosphatidylcholine and sphingomyelin, and

721 cm21 in phosphatidylinositol, respectively) [40]. The latter

assignment was confirmed by the presence of the feature at ca.
780 cm21, attributed to the O-P-O bending mode, and observed

at the similar wavenumber in the spectrum of phosphatidylinositol

(776 cm21) [40]. Additionally, the C-H stretching region consid-

erably differentiated the raft and non-raft spectra. The hallmark of

rafts was a considerable increase of the components at ca. 2854
and 2883 cm21 relative to the one at 2940 cm21 (resulting in an

overall increase of the nC-H band integral intensity). It is

rationalized by the increase of lipid to protein ratio in rafts

compared to other areas of the tissue (features at 2854, 2883 and

2940 cm21 can be assigned to ns(CH2) in lipids and fatty acids,

ns(CH3) in lipids and fatty acids and n(C-H) in lipids and proteins,

respectively [24]).

In general, the obtained average raft spectra unequivocally

showed the presence of the lipid-protein structures. The spectra

were dominated by features due to fatty acids with the

phosphocholine group, most probably sphingomyelin. The pres-

ence of sphingomyelin was highly expected as it is a major lipid

component of caveole-related domains [41]. Moreover, the

apparent heterogeneity in the raft composition inside the single

raft assembly was observed upon depth profiling of the en face
sample (Fig. 3; compare also Fig. S2, Supporting Information).

Up to four classes were extracted for the images recorded at

different depths of the representative raft, showing a clear

difference in the composition of the lipids/proteins between these

layers. For instance, the features at 2885 and 705 cm21, very
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characteristic for cholesterol and cholesterol esters [24], were more

pronounced in the average spectrum of the orange class.

Additionally, the features, characteristic to phosphatidylinositol,

appeared in the orange spectrum, namely bands at 778 and

413 cm21, along with the increased intensity of the bands at ca.
725 cm21 (sphingolipids) [40]. Overall, all the layers showed the

sphingolipid-protein signature, while the inner layer (the orange

class) was richer in phosphatidylinositol-type compounds and

cholesterol esters. As it will be shown below, raft composition

varied also depending on the size of these structures.

Lipid rafts: db/db versus control
The relationship between LRs/caveolae and eNOS [17,19,21]

and decreased NO level in T2DM raise the question whether the

formation of lipid rafts is affected by the development of this

pathology. The comparison of the Raman images of the en face

Figure 1. Representative visual, Raman and AFM images of the en face db/db vascular wall. The microphotograph of a studied tissue
(100x, A), the Raman distribution image obtained by integration of the band in the 2800–3100 cm21 range (B) and the complementary topography
(C) and phase (D) AFM images.
doi:10.1371/journal.pone.0106065.g001

Figure 2. Representative Cluster Analysis of the en face db/db vascular wall sample. The Raman distribution image of the db/db sample
obtained by integration of the band in the 2800–3100 cm21 range (A), the CA results (K-means, Manhattan distance, 5 classes; B) and the
complementary average spectra of classes (spectra were normalized to the 1011 cm21 band and offset in order to emphasize the differences
between them, the Raman intensity in the 2700–3200 cm21 range is 3-fold magnified relatively to the fingerprint region, C).
doi:10.1371/journal.pone.0106065.g002
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samples of db+ (control, Fig. 4A) and db/db (T2DM, Fig. 4B, C)

mice showed striking differences between the tissue area covered

by LRs in T2DM relatively compared to the control.

Sparse lipid-rich assemblies were found in the db+ tissues, while

the db/db fragments contained numerous protuberances and

invaginations on the very top surface of the tissue regardless of the

age of the studied mice (16 or 20 weeks old). Overall, there was

about a ten-fold increase in the endothelial surface covered by

lipid-rich platforms in T2DM compared to the control for both 16

and 20 weeks old diabetic animals (Fig. S3, Supporting

Information). The clustering of lipid rafts had a considerable

impact on the average Raman spectra, as it causes an increase in

the overall lipid content in the endothelium. The overall lipid

content can be statistically measured as the ratio of the integral

intensity of the band for lipids and proteins (centered at

2940 cm21, assigned to the C-H stretching vibrations) to the

Figure 3. Depth profiling of the lipid raft. Raman distribution images (integration over the band in the 2800–3100 cm21 range) at different
depths (denoted by z value, the layer marked as z = 0.0 mm was chosen by maximizing the Raman intensity signal, A), Cluster Analysis of the
corresponding images (B) with the averaged spectra of classes (C, spectra were normalized to the 1011 cm21 band and offset in order to emphasize
the differences between them, the Raman intensity in the 2700–3200 cm21 range is 3.5-fold magnified relatively to the fingerprint region).
doi:10.1371/journal.pone.0106065.g003

Figure 4. Clustering of lipid rafts in T2DM. Comparison of the representative Raman distribution images (integration over the band in the 2800–
3100 cm21 range) of the en face endothelium of db+ (control, A), 16-weeks-old db/db (B) and 20-weeks-old db/db (C) mice. The overall endothelium
lipid content (defined as the average intensity ratio of the band at 2940 to the band at 1008 cm21 in all measured db/db or db+ samples; D). The
individual lipid content of LRs (defined as the intensity ratio of the band at 2940 to the band at 1008 cm21 for individual LR assemblies) as a function
of their area (E). The correlation between the average spectra of representative LRs and their size (the scale bar denotes 1 mm, the spectra were
normalized to the 1011 cm21 band and offset in order to emphasize the differences between them, the Raman intensity in the 2700–3200 cm21

range is 3-fold magnified relatively to the fingerprint region; F).
doi:10.1371/journal.pone.0106065.g004
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well-defined protein marker band (at ca. 1008 cm21, attributed to

the ring breathing mode of phenylalanine) in the obtained Raman

images (Fig. 4D). It is clear that the overall lipid content increased

in T2DM compared to the control (Fig. S4, Supporting

Information). Moreover, the lipid-to-protein ratio in the individual

LRs increased with increasing size of LRs (Fig. 4E), which was

shown in the average raft spectra as increase of bands due to lipids

in bigger assemblies relative to smaller rafts (Fig. 4F). After

rejecting three outliers (N= 25, 5% level of decision), the p-value

equals 0.0025 (Fig. S5, Supporting Information), showing that the

correlation between the lipid content and the raft area was

significant and that the lipid-to-protein ratio increased with

increasing of the raft area.

Lipid rafts: aggregation versus T2DM-progression
To account for the shape and exact size of clustered LRs, the x,

y and z dimensions of individual lipid-rich structures were read off

the AMF topography images and compared below (Fig. 5).

The results presented in Fig. 5 indicate that the shape of rafts

observed in our experiment resembles an ellipsoid of similar x and

y widths, and of a significantly smaller height (x>y$z). LRs size

spans the range of 300–3000 nm in x, y and 30–300 nm in z

(Fig. 5A–C). Taking into account a very good vertical resolution of

AFM (ca. 1 nm) and the typical height of the lipid bilayer (a few

nanometers) it was concluded that the clustered LRs, observed in

pathological conditions, considerably overgrew the cell membrane.

The AFM images also strongly confirmed that the observed raft

assemblies were located in the uppermost layer of the endothe-

lium. The size of LRs is considerably age-dependent. With the

development of T2DM both the diameter and, particularly, the

height of LRs increased (Fig. 5E), due to the progressive clustering

of the raft assemblies into larger platforms, up to 3 micrometers in

diameter for 20-weeks old animals.

Immunohistochemical staining with anti-CAV-1 antibody

confirmed the existence of CAV-1 rich patches in the studied

tissues (Fig. 6).

Although the Raman/AFM and fluorescence images are not

directly comparable due to the possibility of additional co-

clustering of LRs upon the introduction of the external probe,

the general picture inferred from the fluorescence images

confirmed the Raman and AFM findings. Particularly, (i)

significant proliferation of LRs in the endothelium of db/db mice

versus the control db+ subjects and (ii) association of these

structures into larger assemblies with the progress of the pathology,

are clearly observed.

Micrometer-size raft phase has previously been detected in

model systems [12]. Our ex vivo study of aggregated LRs

confirmed the previous findings obtained in membrane models.

We showed clearly that also in the tissue the increase of the overall

lipid content, associated with the pathology progress, results in a

dramatic increase in the LRs aggregation in the endothelium.

Thus, a hyperlipidemia associated with the T2DM development

resulted in promoting of an overall increase of the lipid content

followed by clustering of LRs into larger assemblies and size-

dependent increased lipid character. The significant proliferation

of LRs in T2DM explained NO deficiency occurring likely due to

inhibition of eNOS activity [21]. Increased levels of saturated fatty

acids, associated with diabetic hypertriglyceridemia [42], were

suggested to increase recruitments of toll-like receptors (TLRs) into

lipid rafts [43]. TLRs are responsible for activation of the immune

cell responses and their stimulation via saturated fatty acids, which

is associated with the alteration of the cell membrane properties

[42]. Additionally, it was observed that the reduced levels of serine

palmitoyltransferaze, the first enzyme in de novo biosynthetic

pathway of sphingomyelin, may decrease both the sphingomyelin

levels and the function of lipid-raft associated proteins, for example

TLR4 [44]. Overall, the observed LRs clustering in T2DM was

involved with the increased signal transduction and changed the

Figure 5. Size statistics of clustered lipid rafts in T2DM. The x (A), y (B) and z (C) dimensions of LRs observed for 16-weeks-old (black) and 20-
weeks-old (red) mice determined based on the acquired AFM topography images (the example in D: a representative topography image along with a
topography cross-section) and the summary of statistical data related to the LRs size (E).
doi:10.1371/journal.pone.0106065.g005
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immune response of the vascular endothelium in the pathological

state. Our approach, enabling non-induced visualization of

clustered LRs opens a new perspective for LRs study in in vitro
and in vivo samples.

Conclusions

Clustered lipid rafts were observed on the surface of endothe-

lium of the aorta of diabetic db/db mice. According to our

knowledge, this is the first report showing the formation of these

structures solely upon the pathology development and not

artificially upon binding to any externally introduced fluorescent

probes for instance cholera toxin.

Identification of the observed structures as lipid rafts was based

on several experimental evidences of both chemical and

biochemical origin. These structures were enriched in lipids as

was clearly demonstrated by the Raman spectra. Assignment of

sphingolipids as a component of these lipids was rather straight-

forward, as a few of functional groups in biological compounds

show bands in the 700–750 cm21 range. The bands due to

sphingolipids were complemented with bands characteristic for

cholesterol and phospholipids (Fig. 3), altogether accounting for all

lipid constituents of rafts. The clear indication of a significantly

different nature of the observed lipid patches were provided by the

AFM phase images, confirming that these structures had

considerably dissimilar character compared to the other areas of

the tissue that can be related to increased order of raft structures.

Additionally, the AFM topography images clearly demonstrated

that the observed lipid structures were upper-most perturbations of

the tissue. Finally, the presence of lipid rafts in the endothelium of

db/db mice was independently confirmed by immunohistochem-

ical staining showing the presence of caveolin 1, the protein

characteristic only for lipids rafts.

Most of the observed structures had the diameter of ca. 500–

600 nm and the height of ca. 60 nm, indicating that in the

endothelium of db/db mice the rafts clustered into larger domains.

There are growing evidences that the clustering of lipids rafts can

occur on both sides of the membrane [8]. Antibodies, antigens,

and raft-lipid-binding proteins can extracellularly link to LRs,

while raft-clustering proteins have tendency to cluster on the

intracellular side. Such ‘‘vertical’’ clustering undoubtedly increases

the height of lipid rafts aggregates and justifies obtained heights of

LRs in endothelium of diabetic animals. Finally, our conclusion

about LRs was strongly supported by a comparison of the results

obtained for the control and diseased (diabetic) mice. In the

control animals, the number of aggregated LRs was scarce, while

in the pathological conditions the area covered by these assemblies

increased considerably. As the disease progressed, both the size

and the structure of LRs changed. According to Simons and Gerl

[12] nanoscale rafts assemblies in response to stimuli cluster into

bigger structures that, in the model systems, further cluster into

micrometer-sized raft phases. The observed changes upon the

T2DM development reflected the findings in model systems. Our

ex vivo study of non-induced, pathology-promoted LRs confirmed

that the cellular increase of lipid content is associated with a

clustering of LRs into larger assemblies with the diameter up to 3

micrometers and a systematic, size-related increase of their lipid

character.

About ten-fold increase in the LRs area may be closely related

to decrease of NO activity observed in T2DM probably due to

eNOS inhibition by CAV-1 [21]. Thus, it might be that lipids raft

clustering in the endothelium of diabetic mice is linked to

perturbation of cellular homeostasis and may be involved in the

triggering of signaling cascade leading to vascular inflammation.

Supporting Information

Figure S1 Representative visual, Raman and AFM

images of the en face db+ vascular wall. The microphoto-

graph of a studied tissue (100x, A), the Raman distribution image

obtained by integration of the band in the 2800–3100 cm21 range

(B) and the complementary topography (C) and phase (D) AFM

images.

(TIF)

Figure S2 Chemical heterogeneity of lipid rafts. Com-

parison of average Raman spectra of four random lipid rafts (A) of

the similar diameter along with Raman distribution images

obtained by integration of the band in the 2800–3100 cm21

range of a studied fragments of db/db samples (B, scale

bar = 0.5 mm). Labels in A denote some characteristic bands due

to lipids.

(TIF)

Figure 6. Representative images of lipid rafts obtained using confocal laser scanning microscopy. Two representative confocal
micrographs of db/db (A, B) and db+ (C, D) tissue fragments. Endothelial caveolin-1, cell nuclei and elastin fibers are visualized in red, blue and green
channels, respectively.
doi:10.1371/journal.pone.0106065.g006
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Figure S3 Endothelium area covered by lipid rafts. The

Raman distribution image obtained by integration of the band in

the 2800–3100 cm21 range of a studied fragment of db/db sample

(A), CA results (K-means, Manhattan distance) for a class assigned

to lipid rafts (B), the area classified as lipid rafts counted in Image J

processing program (Rasband, W.S., ImageJ, U. S. National

Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.

gov/ij/, 1997–2014), statistics related to calculated area of lipid

rafts (D) with the visual representation (E).

(TIF)

Figure S4 Average lipid content in tissues from db/db

and db+ mice. Integral intensity of marker bands due to lipids

and proteins at 2940 and 1008 cm21, respectively, in the

individual samples along with the ratio of bands due to lipids

and proteins (A), the average values for diabetic (db/db) and

control mice (db+) with the standard deviation (B) and the overall

endothelium lipid content (defined as the average intensity ratio of

the band at 2940 to the band at 1008 cm21 in all measured db/db

or db+ samples; C).

(TIF)

Figure S5 Statistical analysis of relationship between

lipid-to-protein ratio vs area of rafts. The raw data: area of

rafts (calculated based on AFM images) and lipid-to-protein ratio

(computed based on Raman images) (A) were used to create a plot

(B). The statistics results (C): R Spearman and p-value was

calculated with 5% level of decision for two data ranges: all data

(red and black) and after rejection of three outliers (red). The

Spearman’s rank correlation coefficient was calculated because the

Normality Test (Shapiro-Wilk) showed that the studied population

cannot be considered a normal distribution population (with 5%

level of decision). The obtained p-value equals 0.0025 (is

considerably lower than 0.05) showing significant correlation

and considerable increase of the lipid content with increasing area

of lipids rafts.

(TIF)
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