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Introduction: Sepsis is the most prevalent cause of Acute Kidney Injury (AKI).

Conversely, in some septic patients the glomerular filtration rate (GFR) is augmented.

The role of the inflammatory response and blood pressure to induce this increased GFR

is unknown. Herein, we relate inflammatory mediators and blood pressure to the iohexol

clearance-derived “true” GFR and kidney injury markers during systemic inflammation in

healthy volunteers.

Methods: Twelve healthy subjects underwent experimental endotoxemia (i.v.

administration of 2 ng/kg Escherichia coli-derived lipopolysaccharide, LPS). As a

gold-standard to determine the GFR, iohexol plasma clearance (GFRiohexol) was

calculated during a 6-h period on the day before (baseline) as well as 2 and 24 h after

LPS administration. Intra-arterial blood pressure was recorded continuously using a

radial artery catheter. Circulating inflammatory mediators and urinary excretion of kidney

injury markers were serially measured.

Results: Experimental endotoxemia profoundly increased plasma concentrations of

inflammatory mediators, including [mean ± SD or median [IQR] peak values (pg/mL)

of tumor necrosis factor (TNF)-α: 92 ± 40, interleukin (IL)-6: 1,246 ± 605, IL-8: 374

± 120, IL-10: 222 ± 119, IL-1 receptor antagonist (RA): 8,955 ± 2,429, macrophage

chemoattractant protein (MCP)-1: 2,885 [2,706 – 3,765], vascular adhesion molecule

(VCAM)-1: 296,105 ± 34,822, intercellular adhesion molecule (ICAM)-1: 25,0170 ±

41,764]. Mean arterial pressure decreased with 13 ± 11 mmHg (p < 0.0001). No

significant increase in the urinary excretion of tubular injury markers was observed

following LPS administration. GFRiohexol increased from 97 ± 6 at baseline to 118 ± 10

mL/min/1.73m2 (p < 0.0001) post-LPS administration and returned to baseline levels at

24 h post-LPS (99± 9 mL/min/1.73m2). Peak plasma concentrations of IL-6 (R2 = 0.66,

p = 0.001) and IL-8 (R2 = 0.51, p = 0.009), MCP-1 (R2 = 0.38, p = 0.03) and VCAM-1

levels (R2 = 0.37, p = 0.04) correlated with the increase in GFRiohexol, whereas a trend
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was observed for TNF-α (R2 = 0.33, p = 0.0509) and IL-1RA (R2 = 0.28, p = 0.08).

None of the kidney injury markers or changes in blood pressure were associated

with GFRiohexol. In multiple linear regression analysis, both peak IL-6 (p = 0.002)

and IL-8 (p = 0.01) concentrations remained significantly correlated with GFRiohexol,

without collinearity.

Discussion: Concentrations of pro-inflammatory cytokines, but not blood pressure,

are correlated with the endotoxemia-induced increase in GFR in healthy volunteers.

These findingsmay indicate that inflammatorymediators orchestrate the augmentedGFR

observed in a subgroup of sepsis patients.

Keywords: augmented renal clearance, sepsis, acute kidney injury, systemic inflammation, iohexol plasma

clearance, glomerular filtration rate, endogenous creatinine clearance

INTRODUCTION

Sepsis influences renal function. Naturally, most of the focus is
on sepsis-associated deterioration of renal function leading to
Acute Kidney Injury (AKI) in sepsis patients. Sepsis is the most
commonly observed cause of AKI, and AKI is often severe in
this group of patients (1). The inflammatory environment in the
kidney may lead to the redistribution of intrarenal perfusion (2)
and subsequent deterioration of the renal microcirculation.

On the other hand, renal hyperfiltration, defined as increased
creatinine clearance ≥130 mL/min/1.73m2, is also observed in
sepsis patients (3), with a reported prevalence ranging from 40 to
65% (4–6). The high cardiac output often observed in the early
phase of sepsis (7, 8), appears to be the most important predictor
of increased renal blood flow (7). Furthermore, renal functional
reserve is probably necessary for an increase in RBF to induce an
increased GFR (4). Importantly, while augmented renal clearance
may represent the renal reserve and is the opposite of AKI, it
may have detrimental clinical consequences, for instance due
to influencing the plasma concentrations of renally excreted
agents, such as antibiotics. Accordingly, evidence suggests that
renal hyperfiltration is associated with impaired outcome in the
general ICU population receiving antibiotic treatment (9). Yet,
the mechanisms driving renal clearance in the critically ill remain
poorly understood.

The aim of this study was to investigate the relation between
systemic inflammation, blood pressure, and kidney function in
healthy volunteers challenged with intravenous administered
bacterial endotoxin.

MATERIALS AND METHODS

Study Population
Data of healthy volunteers randomized to the placebo group of
a previously performed study (10) were used for the analyses
described in the present work. The study was approved by
the ethics committee CMOArnhem-Nijmegen (NL56102.091.15;
2015-2231), registered at clinicaltrials.gov (NCT02629874) and
conducted according to the ethical principles of the Declaration
of Helsinki ICH E6 (R1), the Dutch Medical Research Involving
Human Subjects Act and the guidelines of Good Clinical

Practice. All subjects provided written informed consent. Quality
assurance, monitoring and full data validation was performed by
an independent contract research organization.

Healthy male volunteers with a minimum age of 18 years
were screened for eligibility. Exclusion criteria consisted, among
others, of a body mass index of <18 or >30 kg/m2, illness in the
2 weeks before start of the study and significant blood loss within
90 days prior to the study. The use of medication, recreational
drugs, nicotine, caffeine, and alcohol were prohibited during the
duration of the study.

Study Procedures
Study procedures were performed on 3 consecutive days
on our intensive care unit: a baseline day, the day of the
endotoxin challenge and a follow-up day. A complete overview
of the study design is depicted in Figure 1. Escherichia coli-
derived lipopolysaccharide (LPS, 2 ng/kg, purified [US Standard
Reference Endotoxin Escherichia Coli O:113], [NIH, Bethesda,
MD, USA]) was administered to induce a transient systemic
inflammatory response. To pre-hydrate the subjects, 1.5 L 2.5%
glucose/4.5% NaCl was administered intravenously in the hour
before LPS administration, or at the same time point on the
baseline and follow-up day, according to our standardized
endotoxemia protocol (11). Following LPS administration, 250
mL/hour 2.5% glucose/ 0.45% NaCl was administered for 2
hours, followed by 150 mL/hour until discharge, 9 h after
endotoxin challenge. Fluid administration was identical on the
three study days. Cardiac rhythm was monitored using a 3-
lead electrocardiogram and blood pressure was continuously
measured using a 20-gauge arterial catheter. Data was recorded
using a Philips MP50 patient monitor and an in-house developed
data capturing system.

Iohexol-Based GFR Measurements
Iohexol plasma clearance has a very strong correlation with inulin
clearance: r2 = 0.96 (12). The water-soluble iodine contrast agent
iohexol (OMNIPAQUE 240, containing 518 mg/mL iohexol and
240mg iodine/mL, GE Healthcare, Eindhoven, the Netherlands)
was administrated as a single intravenous bolus of 5mL (13) at
2 h after LPS administration or at the same time point on the
baseline and follow-up day, see Figure 1. The blood samples to
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FIGURE 1 | Study design. Twelve healthy male volunteers were hospitalized and underwent experimental endotoxemia (intravenous administration of 2 ng/kg E.

coli-derived lipopolysaccharide). Inflammatory mediators, blood pressure, and glomerular filtration rate were measured at three consequent days: baseline day,

endotoxemia day, and follow-up day. LPS, lipopolysaccharide; h, hours.

TABLE 1 | Demographics of the study population.

Healthy male volunteer (n = 12)

Age (years) 23 ± 3

Length (cm) 183 ± 5

Weight (kg) 77 ± 8

BMI (kg/m2 ) 23.2 ± 2.5

BSA (m2) 2.0 ± 0.1

MAP (mmHg) 95 ± 11

GFRiohexol (mL/min/1.73m2 ) 97 ± 6

GFRECC (mL/min/1.73m2 ) 152 ± 16

Data is presented as mean ± standard deviation. BMI, body mass index; BSA,

body surface area; MAP, mean arterial pressure; GFR, glomerular filtration rate; ECC,

endogenous creatinine clearance.

determine iohexol concentration were obtained at 2, 3.5, 4, 6,
and 8 h after LPS administration, centrifuged at 2,000 g for 10min
at 4◦ Celsius (C) and stored at −80◦C until analysis using High
Performance Liquid Chromatography (HPLC) at the department
of Pharmacology and Toxicology, Radboudumc Nijmegen. The
plasma disappearance curve of iohexol was used to calculate the
GFR using the slope interceptionmethod, as described previously
(13). The GFR was corrected using the Brøchner-Mortensen
correction and for body surface area using the Mosteller formula
(14). GFRiohexol measurements were conducted on all 3 days
(Figure 1).

Creatinine-Based GFR Assessments
The GFR was also calculated using endogenous creatinine
clearance (GFRECC) on all 3 days. Urine was collected for a
period of 9 h and plasma and urine was sampled at the end
of the collection period to determine creatinine concentrations
according to routine clinical laboratory analysis methods.

Urinary Excretion of Kidney Injury Markers
For determination of kidney injury markers, urine was sampled
on the endotoxemia day at 0, 3, 6, 9, and 12 hours following LPS
administration or at the same time points on the baseline and
follow-up day. Urine was homogenized and samples were stored
at−80◦ C until analysis. Concentrations of neutrophil gelatinase-
associated lipocalin (NGAL), and kidney injury molecule (KIM)-
1 were measured using enzyme-linked immunosorbent assays
(ELISAs, Duoset, R&D systems, McKinley, USA), as were
levels of liver-type fatty acid binding protein (L-FABP, CMIC
holdings, Tokyo, Japan). Levels were normalized for urinary
creatinine concentrations.

Circulating Inflammatory Mediators
Ethylenediaminetetraacetic acid (EDTA)-anticoagulated blood
samples for measurement of inflammatory parameters were
obtained at 0, 0.5, 1, 1.5, 2, 3, 4, 6, and 8 h following LPS
administration. Samples were immediately centrifuged at 2,000 g
for 10min at 4◦C after which plasma was stored at −80◦C until
analysis of tumor necrosis factor (TNF)-α, interleukin (IL)-6
and IL-10, IL-8, IL-12, IL-1 receptor antagonist (RA), monocyte
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FIGURE 2 | Inflammatory mediators and blood pressure following LPS administration. All variables are depicted over time, relative from LPS administration, starting

from 0h until 8 h. (A) Tumor Necrosis Factor-alpha (TNF-α), (B) Interleukin (IL)-6, (C) IL-8, (D) IL-10, (E) IL-12, (F) Monocyte Chemoattractant Protein-1, (G) IL-1

Receptor Antagonist, (H) Macrophage Inflammatory Protein-1α, (I) MIP-1β, (J) Vascular Cell Adhesion Molecule, (K) Intercellular Adhesion Molecule, (L) Blood

pressure. Variance over time tested using a repeated measures one-way ANOVA. SBP, systolic blood pressure; MAP, mean arterial pressure; DBP, diastolic

blood pressure.
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chemoattractant protein (MCP)-1, macrophage inflammatory
protein (MIP)1-α, MIP1-β, intercellular adhesion molecule
(ICAM)-1, and vascular cell adhesion protein (VCAM)-1. Levels
of IL-6, IL-10, and TNF-α were determined using a validated
ISO9001 certifiedmultiplex immunoassay (Luminex, Austin, TX,
USA) at the Laboratory of Translational Immunology of the
University Medical Center Utrecht, as described elsewhere (15),
whereas concentrations of IL-8, MCP-1, IL-1RA, MIP-1α, MIP-
1β, ICAM-1, and VCAM-1 were determined using a Luminex
assay according to the manufacturer’s instructions (ICAM-1 and
VCAM-1: Bio-plex, Bio-rad, Hercules, CA, USA; rest: Milliplex;
Merck Millipore, Billerica, MA, USA).

Statistical Analysis
Data were tested for normality using the Shapiro-Wilk test and
presented as mean ± standard deviation (mean ± standard
error of the mean in figures), or median [interquartile range].
One-way repeated measures analysis of variance (ANOVA) was
used to test serial data. Correlations were calculated using
Pearson’s correlation coefficient. Multiple linear regressions
were performed and collinearity was evaluated. Logarithmic
transformation was used if data was not normally distributed. A
p-value of <0.05 was considered statistically significant. The data
was analyzed with SPSS version 25 (IBM, Armonk, NY, USA),
ANOVA analysis and figures were made using GraphPad Prism
version 5.03 (GraphPad Software, La Jolla, CA, USA).

RESULTS

Twelve healthy male volunteers, aged 23± 3 years, were enrolled
in the study. The demographic characteristics of the study
population are listed in Table 1.

Systemic Inflammatory Response
Parameters
Following LPS administration, a swift and profound increase
of both pro- and anti-inflammatory cytokines, chemokines, and
vascular adhesionmolecules was observed, illustrated in Figure 2
(peak values [all in pg/mL] of TNF-α: 92 ± 40 p < 0.0001, IL-
6: 1,246 ± 605 p < 0.0001, IL-8: 374 ± 120 p < 0.0001, IL-10:
222 ± 119 p < 0.0001, IL-12: 14.5 [9.3 – 20.6] p < 0.0001, IL-
1RA: 8,955± 2,429 p < 0.0001, MCP-1: 2885 [2,706 – 3,765] p <

0.0001, MIP-1α: 102± 17 p < 0.0001 and MIP-1β: 5,162± 1,016
p< 0.0001, VCAM-1: 296,105± 34,822 p< 0.0001, and ICAM-1:
250,170± 41,764 p < 0.0001.

Kidney Function and Urinary Excretion of
Tubular Injury Markers
Following administration of LPS, a significant increase in
GFRiohexol was observed, which returned to baseline levels
on the follow-up day (baseline: 97 ± 6; endotoxemia day:
118 ± 10; follow-up day: 99 ± 9 ml/min/1.73m2, p <

0.001, Figure 3). GFRECC showed a similar trend, but changes
did not reach statistical significance (baseline: 152 ± 16;
endotoxemia day: 164 ± 14; follow-up day: 157 ± 22
mL/min/1.73m2, p = 0.15, Figure 3). LPS administration did
not result in an increase of the urinary tubular injury markers
NGAL and L-FABP, whereas urinary KIM-1 concentrations
significantly decreased following LPS administration (p= 0.0025,
Figure 4).

Hemodynamic Parameters
The mean arterial pressure (MAP) initially increased post-LPS
administration, peaking at 1.5 h (from 94 ± 10 to 103 ±

18 mmHg), followed by a decrease with a nadir at 5 h after
LPS administration (−13 ± 11 mmHg compared to baseline,

FIGURE 3 | Kidney function changes due to LPS administration. The iohexol-derived GFR and GFR calculated using endogenous creatinine clearance are determined

on the three consecutive study days: baseline day prior to LPS administration, endotoxemia day in the hours following LPS administration and the follow-up day after

LPS administration. Variance over time tested using a repeated measures one-way ANOVA.
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FIGURE 4 | Urinary excretion of tubular injury markers following LPS administration. Concentration of tubular injury markers in urine depicted over time relative from

LPS administration, starting from 0h until 12 h. (A) Neutrophil gelatinase-associated lipocalin, (B) Kidney injury molecule-1, (C) Liver fatty acid-binding protein.

Variance over time tested using a repeated measures one-way ANOVA.

Figure 2). The systolic and diastolic blood pressure decreased by
22 ± 17 and 9 ± 9 mmHg compared with baseline, respectively
(p= 0.0003 and p= 0.003) (Figure 2).

Relationship Between Inflammatory
Markers and Iohexol-Based GFR
Peak plasma concentrations of the pro-inflammatory cytokines
IL-6 (R2 = 0.66, p = 0.001) and IL-8 (R2 = 0.51, p =

0.009), MCP-1 (R2 = 0.38, p = 0.03) and the maximum
increase in VCAM-1 levels (R2 = 0.37, p = 0.04) were
significant correlated with the increase in GFRiohexol (Figure 5
and Supplementary Table 1), whereas trends were observed
for TNF-α (R2 = 0.33, p = 0.0509) and IL-1RA (R2 =

0.28 p = 0.08). Peak levels of IL-10, IL-12, MIP-1α, MIP-
1β, and ICAM-1 did not correlate with GFRiohexol. In a
multiple linear regression analysis, with GFRiohexol as dependent

variable and the cytokines that correlated with GFRiohexol

as independent variables, peak IL-6 (p = 0.002) and IL-
8 (p = 0.01) remained independently associated with the
increase in GFRiohexol. Peak IL-6 and IL-8 levels showed no
collinearity with regard to their association with GFRiohexol (VIF
= 1.185, VIF = 1.185). The peak plasma concentrations of
the inflammatory mediators did not correlate with the non-
significant change in GFRECC following LPS administration
(Figure 5 and Supplementary Table 1).

Relationship Between Blood Pressure and
GFR
The peak and nadir of the arterial blood pressures (SBP, DBP, and
MAP) following LPS administration did not correlate with the
change in GFRiohexol and GFRECC (Supplementary Table 2).
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FIGURE 5 | Correlations between inflammatory mediators and GFR. Scatter plots of peak concentrations of inflammatory mediators correlated with the increase in

glomerular filtration rate (GFR, iohexol-derived and using endogenous creatinine clearance) on the endotoxemia day compared to the baseline day. (A)

Proinflammatory cytokine interleukin (IL)-6 with GFRiohexol (left) and GFRECC (right), (B) proinflammatory cytokine IL-8 with GFRiohexol (left) and GFRECC (right), (C)

Monocyte Chemoattractant Protein-1 with GFRiohexol (left) and GFRECC (right), (D) Vascular Cell Adhesion Molecule-1 correlated with GFRiohexol (left) and GFRECC (right).

For a complete overview of all correlations with GFRiohexol and GFRECC, see Supplementary Table 1. Correlations were tested using Pearson’s correlation coefficient.
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DISCUSSION

In this study in healthy volunteers with a systemic immune
response elicited by endotoxin administration, increases in
inflammatory mediators were significantly associated with the
increase in the “true GFR” measured by plasma clearance
of iohexol. This is the first report demonstrating a direct
relationship between the systemic inflammatory response and
increased GFR in humans.

Sepsis influences renal function. On the one hand AKI,
defined as a decrease in GFR, clearly recognized in the clinic,
but on the other hand also an augmented GFR is possible, a
phenomenon that is much less known. Renal hyperfiltration
is now increasingly being recognized as a clinical entity (16–
18). A highly relevant clinical consequence is the augmented
clearance of renally excreted drugs, most notably antibiotics,
which is important for daily practice as well as for clinical trials
investigating novel therapeutic compounds (19–21). Adjustment
of the dosing of these drugs should be considered when GFR
is increased, as is already common practice when the GFR is
decreased (22). The increase in GFR during early sepsis has
up to now mainly been explained from altered hemodynamics.
The hyperdynamic circulation observed in these patients is
characterized by a high cardiac output which is the most
important and independent predictor of renal blood flow (RBF)
(7). In addition, redistribution of blood flow through the kidney
during systemic inflammation may result in hyperfiltration (4,
7). However, to the best of our knowledge, we here describe
for the first time that the increase in GFR may also reflect a
direct consequence of the inflammatory process, independent of
hemodynamic changes.

Pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-8,
are important orchestrators of the innate immune response and
are associated with impaired outcome in ICU patients (23, 24).
Until now, many studies have focused on the occurrence of AKI
and a decrease of GFR due to inflammation (25, 26). This is in
contrast with the relation between inflammation and increase
in GFR that we demonstrate. It is known that Damage- and
Pathogen Associated Molecular Patterns (DAMPs and PAMPs)
such as cytokines and LPS interact directly with tubular cells
(27) and induce a pro-inflammatory cascade (28). A dysregulated
microcirculation in the kidney during systemic inflammation
may lead to a prolonged exposure of the inflammatory mediators
in regions with low blood flow and sustain the inflammatory
response and its consequences. It appears plausible that both the
intensity as well as the duration of the inflammatory response
is of relevance for the development of AKI. In experimental
human endotoxemia, the intensity is limited (as no increase in
tubular injury markers was found) and the duration is short-
lived (11, 29). Therefore, this model of systemic inflammation
in humans is too mild to induce AKI and to decrease GFR, but
nevertheless, the correlation of these inflammatory mediators
with the increase in GFR is very clear. This can indicate that
the inflammation-induced renal response may orchestrate the
pathophysiology of augmented renal function observed early in
a subgroup of patients with sepsis (4, 30).

A strength of this study is the use of a gold standard method
to measure GFR. De discrepancy between the correlations

with inflammation between the “true” iohexol-derived GFR
and the creatinine clearance-derived GFR advocates the use
of accurate methods in studies that test mechanistical or
pathophysiological risen hypotheses. However, methods using
intravenously administered exogenous compounds such as
iohexol are labor-intensive and have higher costs compared
to creatinine-based methods. Another strength of this study is
the standardized experimental translational design which limits
confounders that influence the kidney, hemodynamics or the
immune response; the healthy volunteers had a normal kidney
function and the standardized LPS-dose and schedule elicits a
reproducible and controlled inflammatory response (11). The
absence of cardiac output measurements and the possibility to
correct for changes in cardiac output is a limitation of the study.
It is known that experimental human endotoxemia results in
a hyperdynamic circulation with a high cardiac output (31).
In septic patients a high cardiac output is an important and
independent predictor of increased renal blood flow (RBF) (7).
Nevertheless, we are able to conclude that the increase in GFR
during experimental human endotoxemia is not dependent of
perfusion pressure, as it was observed while blood pressure
was significantly lower compared to baseline. In addition, an
increase in cardiac output and RBF does not always result
in an augmentation of the GFR. For example, concurrent
vasodilatation during systemic inflammation may result in a
lower glomerular capillary pressure and a low GFR (32). The
correlations of the cytokines with the increase in the measured
GFR we demonstrated suggest that systemic inflammation is an
important determinant of the GFR, even when corrected for
blood pressure.

In conclusion, in a highly standardized and controlled
experimental endotoxemia study in healthy volunteers, the
systemic immune response is significantly associated with the
increase in GFR measured using the gold standard iohexol
plasma clearance method, independent of hemodynamic effects.
This correlation between the inflammatory response and an
increase in GFR may explain the augmented GFR sometimes
observed early in sepsis patients.
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