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Endotoxin, an LPS found in the outer membrane of Gram-negative bacteria, has
been considered by many to be the principal toxin involved in the pathogenesis of
Gram-negative septic shock (1) . However, it is now clear that endotoxin may cause most
(ifnot all) of its biological effects via the release of host factors (2-5) . Several studies
have suggested that TNF, a cytokine produced by macrophages during septic shock,
is one ofthe endogenous mediators that causes cardiovascular injury and death (2-5) .

Previous studies examining the effects of endotoxin and TNF in animal models
have used a number of techniques to study cardiovascular function during the first
1-12 h after challenge. Most of these investigations have shown evidence of myocar-
dial depression (2-11) . However, recent studies of human and animal septic shock
have demonstrated that cardiovascular function continues to change over a period
of several days. Typically, the left ventricular ejection fraction (LVEF)' falls to a
nadir 2-3 d after the onset of hypotension. This progressive decrease in LVEF is
associated with IV dilatation and maintenance of normal or increased cardiac output.
In survivors, these cardiovascular changes return to normal in 7-10 d (12-20).
The present study shows that dogs given a single intravenous bolus of TNF pro-

duce all the same complex cardiovascular changes over 7-10 d as those seen in septic
shock over the same period . Furthermore, endotoxin without any other bacterial
products can also produce the same serial changes in cardiovascular function seen
in human septic shock.

Part ofthe funding for this research was provided by the Armed Forces Radiobiologic Research Institute
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were conducted according to the principles set forth in "Guide for the Care and Use of Laboratory
Animals," Institute ofLaboratory Animal Resources, National Research Counsel, DepartmentofHealth,
Education, and Welfare Publication No. 74-23 (National Institutes of Health).

1 Abbreviations used in this paper. bw., body weight; CI, cardiac index; EDVI, end diastolic volume index ;
ESVI, end systolic volume index; LVEF, left ventricular ejection fraction; MAP, mean arterial pressure ;
SVRI, systemic vascular resistance index .
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Materials and Methods
Experimental Design .

	

The protocol used in the present study has been previously described
(17, 18) . 1 wk before challenge, we performed baseline hemodynamic evaluations and labora-
tory blood tests . On day 0, a thrombin-fibrin clot containing endotoxin (15 mg/kg body weight
[b.w.]) was surgically implanted (as previously described) into the peritoneum ofeight purebred
male beagles weighing 10-12 kg (17, 18) . The endotoxin (Sigma Chemical Co., St . Louis,
MO) was phenol extracted from Escherichia coli 26:B6 (Lot No. 93F-4041). On day 0, another
group of 16 purebred male beagles weighing 10-12 kg were infused with TNF. Eight dogs
received active TNF (60 pg/kg b.w.) and six animals received heat-inactivated TNF (60 hg/kg
b.w.) . Recombinant TNF was provided by the Chiron Corporation (Emeryville, CA) and
was expressed in a yeast system with purity >98% as judged by SDS-PAGE (21) . The protein
concentration was 12 mg/ml as determined by Bradford protein assay with sp act of 2-4 x
10 1 U/ng in the L929 cell killing assay (22, 23) . The endotoxin content of the TNF solution
was 25 ng/mg protein as assayed by the limulus amebocyte lysate test (20) . Control TNF
was denatured by boiling for 30 min in endotoxin-free test tubes . Individual dosages of active
or heat-inactivated TNF were mixed with 200 cc of PBS in bags previously treated with 3 cc
of dog plasma to coat the administration tubing . The TNF solution was then infused into
dogs through a central intravenous catheter using a control pump for 1 h .

Endotoxin and TNF were given to dogs by different methods to simulate more closely
their role in human infection . Endotoxin was placed in an intraperitoneal clot (to simulate
a peritoneal abcess) as a nidus of infection releasing toxin slowly over several days. The TNF
was given as a sustained infusion for 1 h to reproduce the rapid increase in blood levels that
occurs in human and animal sepsis (3-5) .
The same hemodynamic evaluations performed at baseline were repeated on days 1, 2,

and 10 after challenge with endotoxin or TNF. At each time point, intravascular catheters
were inserted using only subcutaneous 1% lidocaine to obtain blood for laboratory analysis .
In addition, hemodynamic data were determined in conscious nonsedated dogs simultane-
ously using pulmonary and femoral artery catheters and radionuclide cineangiography of
the left ventricle . Animals then received an intravascular volume infusion (80 ml/kg b.w. lac-
tated ringers for 45 min), after which simultaneous hemodynamic and radionuclide studies
were repeated . All intravascular catheters were removed each day after completing hemo-
dynamic evaluations .
Hemodynamic changes after endotoxin and TNF challenges in the present study were com-

pared with those of dogs previously described (17, 18) . In previous studies, 39 animals re-
ceived challenges of viable E. coli in a peritoneal clot of various bacterial doses (7, 14, or 30
x 109 CFU/kg b.w.), and 14 control dogs received surgical implants of a sterile peritoneal
clot.

Physiologic Measurements and Hemodynamic Calculations.

	

All intravascular catheter hemo-
dynamics and radionuclide cineangiogram measurements were made using techniques pre-
viously described (17, 18) . Hemodynamic data were indexed by animal body weight in kilo-
grams . Hemodynamic values were calculated according to standard formulas previously
described (17, 18) .

Statistical Methods .

	

Mean values were compared with an analysis ofvariance and significance
adjusted with a Tukey Test (Figs . 1-4). The time courses of a hemodynamic variable (e.g.,
EF) were summarized at each offour time points (baseline, days 1, 2, and 10 after challenge)
by assigning ranks to the corresponding mean values ofthe variable . Patterns ofhemodynamic
responses to each challenge were assessed with the Kendall coefficient for concordance among
the groups of dogs receiving endotoxin, TNF, and three different doses of viable E. coli (24) .
A coefficient of concordance value of 1 indicated complete agreement among the assigned
ranks and a value of 0 indicated maximal disagreement. The shaded areas in Figs . 1-4 repre-
sent the mean value t SEM for 100 normal dogs ; the respective SE was adjusted to the size
of the comparison group.

Results
Blood Cultures and Clinical Manifestations.

	

All dogs treated with endotoxin or TNF
had sterile blood cultures for the first 2 d after treatment and at baseline and recovery
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(day 10). For 2 d after challenge, all dogs given endotoxin or TNF were febrile and
had signs of septic shock (i .e ., weakness and lethargy) . One ofthe eight dogs treated
with endotoxin and one ofthe eight dogs treated with TNF died 2 d after challenge.
By days 7-10, the seven surviving dogs in both groups were afebrile and appeared
healthy. As previously reported, dogs treated with viable E. coli had a similar time
course ofillness . Control dogs treated with sterile clots or heat-inactivated TNF had
sterile blood cultures, and were afebrile and healthy throughout the study (17, 18).

Hemodynamics in Dogs Treated with Endotoxin.

	

From baseline to days 1 and 2, dogs
challenged with endotoxin had a significant decrease (p < 0 .05) in mean value for
mean arterial pressure (MAP). By day 10, mean MAP returned toward baseline
values . At each time point (baseline, days 1, 2, and recovery), volume loading in-
creased (p < 0.05) mean MAP similarly (Fig. 1 A). From baseline to days 1, 2, and
10, the mean value for cardiac index (CI) did not change significantly (Fig . 1 B) .

FIGURE 1 .

	

Mean t SE changes
in MAP(A), CI (B), and SVRI
(C) in dogs treated with endo-
toxin. The solid lines connect
the mean hemodynamicvalues
pre-volume infusion on serial
days and the dotted arrows con-
nect mean hemodynamicvalues
for the pre- and post-volume in-
fusion each day. The shaded
areas represent the "normal"
range and are the mean t SE
values obtained from 100 other
normal dogs standardized for
comparison.
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At each time point, volume loading increased (p < 0.05) mean CI similarly. From
baseline to days 1, 2, and 10, systemic vascular resistance index (SVRI) did not change
significantly. At each time point, volume loading also decreased (p < 0.05) SVRI
similarly (Fig . 1 C) .

In dogs challenged with endotoxin, there was a small, insignificant decrease in
LVEF from baseline to day 1 (Fig. 2 A) .- By day 2, however, LVEF decreased
significantly (p < 0.05) . By day 10, mean LVEF returned toward baseline values .
At each time point, volume loading increased mean LVEF similarly (N5%). On day
2 after volume infusion, mean LVEF was still markedly depressed . From baseline
to day 1, end diastolic volume index (EDVI) decreased (p < 0.05) and end systolic
volume index (ESVI) did not change significantly (Fig . 2, B and C) . From day 1
to day 2, EDVI and ESVI increased (p < 0.05) in size. Volume loading did not

FIGURE 2 .

	

Mean f SE changes
in EF (A), EDVI (B), and ESVI
(C) in dogs treated with endo-
toxin. The format is the same
as Fig. 1 .
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significantly affect ESVI at any time point. In response to volume loading, mean
EDVI showed no significant change at baseline or recovery. On days 1 and 2, how-
ever, volume infusion increased EDVI significantly (p < 0.05) . By day 10, these
changes in IV size had decreased but had not yet returned to baseline values .

Hemodynamics (MAP, CI, SVRI, EF, EDVI, ESVI) in Dogs Treated with TNF.

	

From
baseline to days 1 and 2, dogs challenged with TNFhad a significant decrease (p <
0.05) in mean value for MAP (Fig . 3 A) . By day 10, mean MAP returned toward
baseline values . At each time point (baseline, days 1 and 2, and recovery), volume
loading increased mean MAP similarly. From baseline to days 1, 2, and 10, the mean
value for CI did not change significantly (Fig . 3 B) . At each time point, volume
loading increased (p < 0.05) mean CI similarly. From baseline to days 1, 2, and 10,
SVRI did not change significantly. At every time point, however, volume loading
decreased (p < 0 .05) SVRI similarly (Fig . 3 C) .

FIGURE 3.

	

Mean t SE changes
in MAP(A), CI (B), and SVRI
(C) in dogs treated with TNF.
The format is the same as Fig. 1 .
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From baseline to days 1 and 2, dogs challenged with TNF had a significant de-
crease in LVEF (p < 0.05) . By day 10, mean LVEF returned toward baseline values
(Fig . 4 A) . At each time point, volume loading increased mean LVEF similarly
(-4To). On days 1 and 2 after volume infusion, mean LVEF still remained markedly
depressed . From baseline to days 1 and 2, EDVI andESVI did not change significantly
(Fig. 4, Band C) . Volume loading did not significantly affect ESVI at any time point.
Volume loading on day 2 significantly increased (p < 0.05) LV size (EDVI) .

Comparison of Serial Hemodynamics with Endotoxin, TNF, and Viable E. coli.

	

Serial

FIGURE 4 .

	

Mean f SE changes
in EF (A), EDVI (B) and ESVI
(C) in dogs treated with TNF.
The format is the same as Fig . 1 .
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mean changes in hemodynamic parameters were compared in dogs challenged with
viable E. coli (previously described), endotoxin, or TNF (17-20). To determine if
changes in hemodynamic parameters were similar for different types of challenges,
we calculated the coefficient of concordance (see Materials and Methods) . The
coefficient ofconcordance determined whether thehemodynamic responses ofanimals
in these different groups occurred at similar time points .
When comparing the pattern of hemodynamic changes of all the groups of dogs

treated with E. coli, endotoxin, or TNF, we noted an overall positive concordance
for all the hemodynamic parameters studied (p <0.05) . The individual concordance
for the serial changes in hemodynamics were (see Materials and Methods) : EF, 0.94
(p < 0.005); MAP, 0.85 (p < 0.03) ; CI, 0.81 (p < 0.02) ; stroke volume index, 0.73
(p < 0.03) ; ESVI, 0.55 (p < 0.08) ; and EDVI, 0.07 (p = ns). As previously described,
control dogs treated with heat-inactivated TNF or sterile clots had no significant
changes in hemodynamic parameters compared with those at baseline (17-20).

Laboratory Values .

	

Laboratory results from baseline, days 1 and 2, and recovery
showed that pH and p02 were normal (laboratory data not shown) . Hemoglobin,
sodium, potassium, bicarbonate, chloride, glucose, creatinine, blood urea nitrogen,
and calcium values were within normal range andcould not have affected cardiovas-
cular function .

Discussion
When a fibrin clot containing endotoxin is implanted intraperitoneally or when

TNF is infused intravenously, the hemodynamic profile after volume infusion is de-
creased LVEF, increased left ventricular size, with normal or high Cl, and normal
or low systemic vascular resistance (a "hyperdynamic" response). The endotoxin-
induced or TNFinduced decrease in EF was greatest at 2-3 days after challenge.
In surviving animals, this decrease in EF reversed after 10 d. These serial cardiovas-
cular changes are identical to those seen in dogs receiving surgical implants ofviable
E. coli in a fibrin clot and are very similar to the cardiovascular profile seen in humans
with septic shock (12, 13, 17-20) . The finding that either endotoxin or TNF (without
viable bacteria or other bacterial cell components) induced this characteristic car-
diovascular response supports the hypothesis that either endotoxin or TNFare medi-
ators of shock caused by sepsis .
While hemodynamic data from dogs treated with endotoxin and TNF followed

a similar time course over 10 d, there were some notable but not significant differ-
ences in IV volumes (EDVI and ESVI) on day 1 . These differences may have been
caused by effects of the method of administration or by specific mediator properties .
Animals treated with intraperitoneal endotoxin developed peritonitis, which may
have lowered effective circulating volume by shifting fluid into the abdomen. This
action may explain the lower EDVI and ESVI seen on day 1 in endotoxin-treated
animals. Differences in hemodynamics may also have been caused by the effects of
different mediators. Endotoxin may have produced hemodynamic compromise via
TNF release; however, endotoxin may have also caused the release of other endoge-
nous substances with their own hemodynamic effects . Thus, the exact hemodynamic
sequelae would result from the complex cardiovascular interactions among avariety
of substances (mediators) and physiologic conditions (peritonitis) .

In previous studies, we have examined whether endotoxin is the universal or sole
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mediator of the cardiovascular changes observed during septic shock (19, 20). In
one study, we implanted Staphylococcus aureus ( a Gram-positive microorganism without
endotoxin) into animals intraperitoneally, andmeasured serial hemodynamicchanges
and serial endotoxin levels using a sensitive chromogenic limulus lysate assay. S. aureus
produced hemodynamic changes identical to Gram-negative bacteria with no de-
tectable endotoxemia, thus documenting that endotoxin is not the only bacterial
mediator ofseptic shock. Findings from the present study combined with those from
this previous study demonstrate that endotoxin can produce all ofthe major cardio-
vascular abnormalities observed in septic shock, even though it is not the only medi-
ator of this syndrome.
The finding that structurally and functionally distinct bacteria result in similar

hemodynamic patterns suggests that they cause this cardiovascular dysfunction via
a final common pathway of injury (25, 26). Recent studies suggest that endogenous
cytokines released from monocytes, such as TNFor IL-1, maybe part ofthis common
pathway. TNF is a potent inducer of acute shock in animals, and antiTNF anti-
bodies can protect against lethal intravenous bacterial and endotoxin infusions (2-5) .
IL-1 can also produce hypotension, and both IL-1 and TNF can act synergistically
to produce hypotension (27) . This present study demonstrates that a single intrave-
nous injection ofTNF in dogs produces many ofthe complex hemodynamic changes
seen during human septic shock over a 7-10-d period . The findings from this study
support the hypothesis that different bacterial toxins can stimulate the release of en-
dogenous mediators, which then act by a common pathway to produce a similar
pattern of cardiovascular injury during septic shock (2-5, 17-20, 25, 26).

This study demonstrates that either endotoxin (a component of the outer mem-
brane of Gram-negative bacteria) or TNF (a cytokine released from macrophages)
can reproduce all the complex serial hemodynamic changes seen in the 7-10 d after
onset of sepsis . These changes were analogous to those previously documented in
human and animal bacterial sepsis (i .e ., acute hypotension followed by a falling LVEF
over 2-3 d; and, with adequate fluid resuscitation, high or normal cardiac output
andlow or normal systemic vascular resistances) (12-20) . In surviving animals, these
changes returned to normal in 7-10 d. This study confirms that endotoxin, although
not necessary to produce septic shock, it is probably one of several important bac-
terial toxins that may induce septic shock. This study also supports the hypothesis
that endogenous mediators (such as TNF) respond to bacterial products to induce
the cardiovascular abnormalities of septic shock.

Summary
Survivors ofboth human and animal bacterial shock develop a characteristic pat-

tern of progressive changes in cardiovascular function over a period of 7-10 d. In
this present study, we examined whether endotoxin (a product of Gram-negative
bacteria) or TNF(a cytokine released from macrophages) could reproduce the same
complex cardiovascular changes observed in septic shock over a period of 7-10 d .
To test this hypothesis, we implanted a thrombin-fibrin clot containing purified en-
dotoxin from E. coli into the peritoneal cavity of eight dogs, and infused TNF into
eight different dogs . Over the next 10 d, serial simultaneous heart scans and ther-
modilution cardiac outputs were performed in these awake nonsedated animals. By
day 2 after challenge with either endotoxin or TNF, animals developed a decrease
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(p < 0.05) in both mean arterial pressure and left ventricular ejection fraction . With
fluid resuscitation, animals manifested left ventricular dilatation (increased [p < 0.05]
end diastolic volume index), increased or normal cardiac index, and decreased or
normal systemic vascular resistance index . In surviving animals, these changes
returned to normal with 7-10 d . The time course of these changes was concordant
(p < 0 .05) with that previously described in a canine model of septic shock using
viable bacteria . During the 10-d study, control animals receiving sterile clots or heat-
inactivated TNF had not significant changes in hemodynamics . The results from
this canine model demonstrate that either endotoxin or TNF alone can produce many
ofthe same hemodynamic abnormalities seen in human septic shock and in a canine
septic shock model induced by live bacteria . These findings support the hypothesis
that the action of endogenous mediators (TNF) responding to bacterial products
(endotoxin) is the common pathway that produces the serial cardiovascular changes
found in septic shock .
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