1	Endovascular Thrombectomy Beyond 24 Hours from Ischaemic Stroke Onset: A
2	Propensity Score-Matched Cohort Study
3	
4	Permesh Singh Dhillon ^{*1,2} , Waleed Butt ³ , Anna Podlasek ² , Emma Barrett ^{4,5} , Norman McConachie ¹ ,
5	Robert Lenthall ¹ , Sujit Nair ¹ , Luqman Malik ¹ , Martin A James ^{6,7,8} , Robert A Dineen ^{2,9} , Timothy J
6	England ^{10,11} .
7	1. Interventional Neuroradiology, Queens Medical Centre, Nottingham University Hospitals NHS
8	Trust, Nottingham, United Kingdom.
9	2. NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham,
10	United Kingdom.
11	3. Interventional Neuroradiology, Queen Elizabeth Hospital, University Hospitals Birmingham
12	NHS Trust, Birmingham, United Kingdom
13	4. Department of Research and Innovation (Medical Statistics), Manchester University NHS
14	Foundation Trust, Manchester, United Kingdom
15	5. Centre for Biostatistics, Faculty of Biology Medicine and Health, University of Manchester,
16	Manchester, United Kingdom
17 18	6. Exeter Medical School, University of Exeter, Exeter, United Kingdom
19	7. Stroke, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
20 21 22	8. Sentinel Stroke National Audit Programme, King's College London, United Kingdom
22	9. Radiological Sciences, Mental Health & Clinical Neuroscience, University of Nottingham,
24	Nottingham, United Kingdom
25	10. Stroke Trials Unit, Mental Health & Clinical Neuroscience, School of Medicine, University of
26	Nottingham, United Kingdom
27	11. Stroke, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, United
28	Kingdom

29	*Correspondence to:	Permesh Singh	Dhillon; permes	sh.dhillon@nhs.net	Tel: 01159249924

31	Competing	interests	&	Disclosures:
----	-----------	-----------	---	--------------

- 32 MAJ has received lecture and consultancy fees from Medtronic.
- 33 No other relevant disclosures or competing interests declared by the remaining authors.

- _

54 ABSTRACT

- Background: The safety and functional outcome of endovascular thrombectomy (EVT) in the very
 late (VL; >24 hours) time window from ischaemic stroke onset remains undetermined.
- 57

Methods: Using data from a national stroke registry, we used propensity-score-matched (PSM)
individual level data of patients who underwent EVT selected with CT perfusion or non-contrast
CT/CT angiography between October 2015 and March 2020. Functional and safety outcomes were
assessed in both late (6-24 hours) and VL time windows. Subgroup analysis was performed of imaging
selection modality in the VL time window.

63

Results: We included 1150 patients [late window: 1046 (208 after PSM); VL window: 104 (104 after 64 65 PSM)]. Compared to EVT treatment initiation between 6-24 hours, patients treated in the VL window had similar modified Rankin Scale (mRS) scores at discharge (Ordinal shift; common OR=1.08, 66 67 95%CI 0.69-1.47, p=0.70). No significant differences in achieving good functional outcome (mRS <2 at discharge; 28.8% (VL) vs 29.3% (late), OR=0.97, 95%CI 0.58-1.64, p=0.93), successful reperfusion 68 69 (mTICI2b-3) (p=0.77), or safety outcomes of symptomatic intracranial haemorrhage (sICH) (p=0.43) 70 and in-hospital mortality (p=0.23) were demonstrated. In the VL window, there was no significant 71 difference in the functional outcome amongst patients selected with perfusion versus without perfusion 72 imaging (common OR=1.38, 95%CI 0.81-1.76, p=0.18).

73

Conclusion: In this real-world study, EVT beyond 24 hours from stroke onset or last known well
appears feasible with comparable safety and functional outcomes to EVT initiation between 6-24
hours. Randomised trials assessing the efficacy of EVT in the VL window are warranted, but may only
be feasible with a large international collaborative approach.

79

80 INTRODUCTION

81

82 Endovascular thrombectomy (EVT) for large vessel occlusion (LVO) in acute ischaemic stroke (AIS) 83 has been proven to be effective when initiated within 6 hours of stroke onset (1). More recently, 84 randomised controlled trials (RCT) that utilised strict inclusion criteria using advanced neuroimaging 85 (CT perfusion or MR imaging) have demonstrated the efficacy and safety of performing EVT for 86 selected patients presenting between 6 to 16 hours (DEFUSE-3) or 6 to 24 hours (DAWN) from the onset of stroke or last known well (2, 3). The results indicate that the presence of salvageable tissue in 87 88 patients with good collateral circulation can persist well beyond 6 hours. 89 90 However, there is paucity of data on the characteristics and clinical outcomes in patients treated with 91 EVT beyond 24 hours from stroke onset or last known well, with only four studies of modest sample 92 sizes (between five to 34 patients) reporting outcomes in the very late (>24 hours) time window (4-7). 93 Hence, we sought to compare the safety and functional outcomes of patients undergoing EVT in AIS in 94 the very late time window from stroke onset or last known well with patients undergoing EVT initiated

95 in the late (6-24 hours) time window.

96

97

99 METHODS

100 Data Source and Study Design

101 We performed a cohort study on prospectively collected data of patients enrolled in the Sentinel Stroke 102 National Audit Programme (SSNAP) according to the Strengthening the Reporting of Observational 103 Studies in Epidemiology (STROBE) guidelines. SSNAP is a national stroke registry that includes all 104 hospitals admitting patients presenting with acute stroke in England, Wales and Northern Ireland 105 (covering 92% of the population of the United Kingdom, UK) (8). Overall case ascertainment in 106 SSNAP is estimated to be over 90% of all acute stroke admissions (8). Patient data, which include 107 demographic and clinical characteristics, treatments, and outcomes, are submitted prospectively by 108 clinical teams using a secure web-based case report form with real-time data validation checks to 109 ensure data quality, from the time of admission up to 6 months after stroke.

110

Pseudonymised individual level data of adult patients (≥ 18 years) presenting with AIS who received 111 EVT between 1st October 2015 (inception of the EVT section of SSNAP) and 31st March 2020 in 112 113 England and Wales were included. Patients were dichotomised according to the onset of stroke or last 114 known well to groin puncture: (i) late EVT window (6-24 hours), and (ii) very late EVT window (>24 115 hours). Patients with missing discharge modified Rankin Scale (mRS) data and those presenting within 6 hours were excluded. The selection of EVT-eligible patients was at the discretion of the practitioners 116 117 based on each institution's protocol. The initial imaging selection modality performed included noncontrast CT (NCCT)/CT angiography (CTA) and/or perfusion-based imaging. No specific limits were 118 applied to the clinical inclusion criteria, including age, pre-stroke disability and baseline stroke severity 119 120 on the National Institutes of Health Stroke Scale (NIHSS). Data on the parenchymal imaging findings 121 and clot location were not available.

122 *Outcome measures*

123 The main functional outcome was assessed with the mRS score at ultimate hospital discharge, ranging 124 from 0 - no symptoms to 5 – severe disability/bedridden and 6 - death. Other functional outcomes were 125 the mRS score at 6 months, good (mRS ≤ 2 or equivalent to the pre-stroke mRS) or excellent (mRS ≤ 1 or 126 equivalent to the pre-stroke mRS) functional outcome at hospital discharge and at 6 months, early 127 neurological improvement (ENI; National Institutes of Health Stroke Scale (NIHSS) decrease >4 between admission and 24 hours or NIHSS 0-1 at 24 hours), early neurological deterioration (END; 128 24-hour NIHSS increase >4 from baseline), futile recanalisation [patients achieving mRS 4-6 at 129 130 hospital discharge or worsening of the pre-stroke disability (mRS 4-5) despite successful reperfusion 131 (modified thrombolysis in cerebral infarction (mTICI) score of 2b to 3). Procedural outcomes were 132 successful reperfusion and complete reperfusion (mTICI score of 3) at the end of EVT. 133 Safety outcomes were in-hospital mortality, any type of intracranial haemorrhage (ICH) and 134 symptomatic intracranial haemorrhage (sICH) defined according to European Collaborative Acute 135 Stroke Study (ECASS) II (9) as any ICH with an increase of the NIHSS score of 4 or more within 24 136 hours or death. Workflow time metrics were stroke onset-to-arterial puncture, arterial puncture-to-first 137 pass, and total procedural time (defined as arterial puncture-to-final reperfusion/angiographic run). 138 Functional outcome measure (mRS) was assessed by a member of the Stroke team/physician at 139 discharge and during a routinely scheduled clinical visit at 6 months, or by a specialist nurse during a

140 follow-up telephone interview if the patient was unable to attend.

141 Statistical analysis

Study characteristics were summarised by the late and very late time windows using descriptive statistics for patient demographics, clinical characteristics and co-morbidities, EVT technique and time metrics. Continuous variables were expressed as means and standard deviation (SD) and categorical variables were expressed as frequencies or percentages. Comparisons of baseline variables were made using the Chi-square, Fisher's exact test or ANOVA, wherever applicable.

147 Propensity score matching (PSM), a reliable method of decreasing potential bias in large cohorts with multiple confounders, was conducted with a 2:1 matching of the logit of the propensity score using the 148 149 nearest-neighbour (Greedy type) matching and 0.2 caliper width (10). The matching was performed 150 without replacement, and unpaired patients not meeting the matching criteria were excluded. Each 151 PSM-derived pair was created using the R package MatchIt. The key variables accounted for in the PSM were: age (5-year age bands from <60years to >90 years), sex, baseline stroke severity (NIHSS), 152 pre-stroke functional status (mRS), prior administration of intravenous tissue plasminogen activator 153 154 (IV-tPA) and use of perfusion imaging.

Sensitivity analysis of patients presenting with a witnessed stroke onset only (excluding last known 155 156 well) and subgroup analysis, dichotomised according to the use of perfusion imaging, were performed. 157 Since the major confounders were accounted for using PSM, univariate analyses of the outcome measures used ordinal logistic regression for the full-scale mRS; binary regression analysis for 158 159 dichotomised mRS scores (good functional outcome mRS <2, and excellent functional outcome 160 mRS≤1), ENI, END, successful reperfusion mTICI2b-3, complete reperfusion mTICI3, any ICH, 161 sICH, and death. Analyses of binary and ordinal outcomes were expressed as an odds ratio (OR) with a 95% confidence interval (CI). Any missing outcome data were not imputed. Two-tailed P-value of 162 163 <0.05 was considered statistically significant. All analyses were conducted using StataSE 16.1 and R 164 4.1.0.

165 *Ethics*

166 SSNAP has permission to collect patient data without explicit consent, granted by the Confidentiality

167 Advisory Group of the National Health Service Health Research Authority under Section 251.

168 Pseudonymised data use was approved by the Healthcare Quality Improvement Partnership (HQIP)

169 Data Access Request Group. Additional ethical approval was not sought for this study. Data access

170 requests should be directed to SSNAP as the data provider and the HQIP as the data controller.

171 **RESULTS**

172 Characteristics of Study Population

173 A total of 4383 patients initially admitted to 123 hospitals, of which 25 are EVT-capable neuroscience 174 centres, underwent EVT for LVO during the study period. Of these, a total of 30 patients with a lack of 175 data on the mRS score at discharge and 3203 patients treated within 6 hours were excluded (Figure 1). 176 1046 patients treated 6-24 hours (late window) and 104 patients treated >24 hours (very late window) 177 from stroke onset or last known well were included. Compared to the late window, patients treated in 178 the very late time window had a lower baseline stroke severity (NIHSS) (12.7 ± 7.4 vs 15.2 ± 7.7) and 179 were treated with IV-rtPA less frequently (19.2% vs 31.5%) (Table 1). No significant differences were 180 observed in the remaining baseline characteristics or co-morbidities. After matching, there were 208 patients in the late window and 104 patients in the very late window, and all matched baseline 181 182 characteristics were statistically similar (Table 1). The distribution of propensity scores and patients 183 across both time windows are presented in Supplemental Figures 1 and 2 respectively.

184 *Outcomes (After Propensity Score Matching)*

185 When compared to EVT treatment initiation 6-24 hours from stroke onset or last known well, patients

treated in the very late time window had similar mRS scores at discharge (Ordinal shift: Figure 2,

187 Table 2; common OR=1.08, 95% CI 0.69-1.47, p=0.70). No significant difference was observed in the

188 odds of achieving good functional outcome (mRS≤2 at discharge; 28.8% (very late) vs 29.3% (late),

189 OR=0.97, 95%CI 0.58-1.64, p=0.93), successful reperfusion (very late: 80.0% vs late: 81.3%, p=0.77),

futile recanalisation (very late (59.6%)) vs late (60.5%); p=0.87), sICH (very late: 4.8% vs late: 8.0%,

191 p=0.43) or in-hospital mortality (very late: 9.8% vs late: 14.4%, p=0.23) across both time windows

192 (Table 2).

193

195 Sensitivity analysis

- 196 In the sensitivity analysis of patients presenting with a witnessed stroke onset only (excluding last
- 197 known well), no significant differences in the mRS score at discharge following EVT treatment
- 198 initiation between the very late and late time windows were demonstrated (Ordinal shift: Supplemental
- 199 Table 1; common OR=1.18, 95%CI 0.67-1.55, p=0.43).
- 200
- 201 Subgroup analysis
- 202 In the very late window, there was no significant difference in the functional disability (mRS at
- 203 discharge) between patients selected for EVT with versus without perfusion-based imaging (common
- 204 OR=1.38, 95%CI 0.81-1.76, p=0.18) (Supplemental Table 2).

206 **DISCUSSION**

207 The findings in our study provide real-world data into the functional and safety outcomes of EVT 208 treatment in patients in the very late time window. EVT performed beyond 24 hours was associated 209 with a similar rates of functional outcome, sICH and in-hospital mortality at discharge compared to 210 those treated between 6-24 hours from stroke onset or last known well. Based on aggregate data, our 211 safety outcome measures (sICH 4.8%, in-hospital mortality 9.8%) were comparable to those reported 212 in the EVT arm of the DAWN (sICH 6%, 90-day mortality 19%) (3) and DEFUSE-3 (sICH 7%, 90-213 day mortality 14%) (2) trials. Overall, compared to those treated in the late window, this suggests that 214 performing EVT in the very late (>24 hours) time window appears safe and feasible, whilst achieving 215 similar rates of functional independence (mRS<2).

216

217 Although current guidelines recommend EVT treatment for eligible patients meeting the strict 218 neuroimaging criteria between 6 to 24 hours from last known well, the efficacy of EVT beyond 24 219 hours remains undetermined. Previous case series or retrospective studies of modest sample sizes have 220 attempted to assess the efficacy of EVT in the very late window in patients selected with advanced 221 neuroimaging (CT perfusion or MR imaging), mirroring the inclusion criteria of the late window trials 222 (4-7). It has been suggested that salvageable penumbra may persist beyond 24 hours and reperfusion 223 therapy may remain beneficial in 'slow progressors' with a small infarct core and tenacious collateral 224 supply (5). However, the optimal method of patient imaging selection remains uncertain and many 225 institutions have limited access to urgent advanced imaging so select patients for EVT on the basis of 226 visual estimation of the core infarct size (ASPECTS) and collateral status on NCCT/CTA respectively, 227 even in the extended time windows. This may result in potentially broader and heterogeneous 228 penumbra-core tissue characteristics compared to trial cohorts. When patients in very late time window 229 in our study were stratified by the initial imaging modality selection, no significant differences in the 230 functional and safety outcomes were demonstrated in patients selected using NCCT/CTA only or using perfusion-based imaging, but these analyses are likely to be underpowered (mRS≤2 at discharge;
perfusion 32.5% vs non-perfusion 26.2%). Using NCCT/CTA only to select patients for EVT in the
extended time window may be a reasonable option, particularly as employing stringent perfusion-based
imaging criteria of the DAWN or DEFUSE-3 trials could result in a smaller proportion of eligible
patients being accepted for EVT, thereby potentially limiting the treatment impact on the overall
population (11, 12). Ongoing trials using more inclusive imaging criteria are currently limited to
patients presenting within the 6-24 hour window (13, 14).

238

239 It has been postulated that evolving clot composition and properties over time may render it more 240 resistant to retrieval (15, 16). Whereas some studies have demonstrated decreasing odds of successful 241 reperfusion (TICI2b-3) with increasing time from stroke onset to treatment, dropping to as low as 42% 242 at 24 hours, we showed no significant difference in patients achieving successful reperfusion between 243 the late (81.3%) and very late (80%) time windows, similar to other previous studies (2-4). This 244 suggests that high rates of reperfusion are still achievable beyond 24 hours from stroke onset, but the 245 rate of successful reperfusion is unlikely to be the main determinant for the lower proportion of very 246 late window patients obtaining good functional outcome in our study; 29% mRS <2 at discharge, which 247 compares unfavourably with two previous smaller studies assessing EVT beyond 24 hours using 248 advanced imaging selection criteria in which 41% (7) and 43% (4) of patients respectively achieved an 249 independent outcome at 90 days.

250

The strengths of this study include its relatively large sample size of patients (n=104) treated with EVT beyond 24 hours, the national coverage of a diverse range of hospitals and MT-capable neuroscience centres, and the high case ascertainment with consecutive patient enrolment. The accuracy and high quality data within the SSNAP database results from standardised case definitions and coding instructions, internal validation, audit trails and regular data quality reports for all participating sites(8).

257

258 There are several limitations in this study. First, due to its observational design, confounding by 259 indication and selection bias may have influenced the results. The lack of the ASPECTS, collateral 260 status, clot location or perfusion imaging target mismatch profiles in the registry, all key criteria in 261 patient selection in the extended time window from stroke onset, limits the interpretation of findings 262 due to potential underlying selection biases. However, the use of both perfusion and non-perfusion imaging selection extends the generalisability of our real-world data. Second, there was some missing 263 264 data for certain outcome measures, including the mRS at 6 months. However, our primary outcome 265 measured the mRS at hospital discharge (complete data in PSM cohort) and has been shown to 266 correlate highly with functional outcomes at 3 months (17). Third, although there were some 267 differences in between-group baseline characteristics, the key variables were adjusted for in the PSM analysis. In particular, the high rates of IV thrombolysis in both the late and very late time windows 268 269 reflect early administration of IV thrombolysis within 4.5 hours but a significant delay in EVT due to 270 the lack of out of hours availability in many centres. Fourth, the outcome measures, including the angiographic outcomes of vessel reperfusion, were self-assessed rather than independently evaluated 271 272 by a core laboratory. Fifth, a proportion of patients included in our study presented with a best 273 estimated onset of stroke (last known well), which may have overestimated the time since stroke onset. 274 However, similar associations with the outcomes remained in our sensitivity analysis of patients with a 275 witnessed stroke onset. Sixth, due to the small sample size in the study subgroups, our analyses of the 276 secondary outcomes and subgroups are likely to have been underpowered. Last, the assessment of 277 treatment benefit of EVT in the very late time window is precluded due to the lack of comparison to a 278 control group of patients that underwent best medical management only. Although prospective

randomised trials are needed to confirm the treatment benefit of EVT beyond 24 hours, an RCT maynot be practical due to the scarcity of patients presenting in this time period.

281

282 Conclusion

In this large real-world study, EVT in the very late time window from stroke onset or last known well appears safe without any significant increase in safety outcomes of sICH or mortality, and may be considered in selected patients presenting beyond 24 hours. Randomised trials assessing the efficacy of EVT in the very late time window are warranted, but may only be feasible with a large international collaborative approach.

288

289

Acknowledgements: We would like to thank all individuals and organizations participating in the
Sentinel Stroke National Audit Programme (SSNAP).

Sources of Funding: SSNAP is commissioned by the Health Quality Improvement Partnership and
funded by National Health Service (NHS) England and the Welsh Government. MAJ is supported by

the National Institute for Health Research Applied Research Collaboration South West Peninsula. The

views expressed in this publication are those of the author(s) and not necessarily those of the National

296 Institute for Health Research or the Department of Health and Social Care. No specific funding was

sought for this study.

298 Contributorship Statement: Conception and design: PSD, WB. Acquisition of the data: PSD.

Analysis and interpretation of the data: PSD, EB, AP, WB. Critical revision of the manuscript: PSD,

300 WB, AP, EB, NM, RL, SN, LM, MAJ, RAD, TJE. Study supervision: RAD, TJE. All authors approved

301 the final version of the manuscript.

302 REFERENCES

Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular
 thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five
 randomised trials. Lancet. 2016;387(10029):1723-31.

- Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al.
 Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N Engl J Med.
 2018;378(8):708-18.
- 3093.Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to31024 Hours after Stroke with a Mismatch between Deficit and Infarct. N Engl J Med. 2018;378(1):11-21.
- 311 4. Desai SM, Haussen DC, Aghaebrahim A, Al-Bayati AR, Santos R, Nogueira RG, et al.
- Thrombectomy 24 hours after stroke: beyond DAWN. J Neurointerv Surg. 2018;10(11):1039-42.
- 5. Kim BJ, Menon BK, Kim JY, Shin DW, Baik SH, Jung C, et al. Endovascular Treatment After Stroke Due to Large Vessel Occlusion for Patients Presenting Very Late From Time Last Known Well.
- 315 JAMA Neurol. 2020.
- Manning NW, Wenderoth J, Alsahli K, Cordato D, Cappelen-Smith C, McDougall A, et al.
 Endovascular Thrombectomy >24-hr From Stroke Symptom Onset. Front Neurol. 2018;9:501.
- Casetta I, Fainardi E, Pracucci G, Saia V, Vallone S, Zini A, et al. Endovascular treatment beyond
 24 hours from the onset of acute ischemic stroke: the Italian Registry of Endovascular Thrombectomy
 in Acute Stroke (IRETAS). J Neurointerv Surg. 2021.
- 321 8. Sentinel Stroke National Audit Programme [Available from:
- 322 <u>https://www.strokeaudit.org/About-SSNAP.aspx</u>.
- Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, et al. Randomised double blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic
 stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet.
 1998;352(9136):1245-51.
- 327 10. Austin PC, Xin Yu AY, Vyas MV, Kapral MK. Applying Propensity Score Methods in Clinical328 Research in Neurology. Neurology. 2021.
- Lopez-Rivera V, Abdelkhaleq R, Yamal JM, Singh N, Savitz SI, Czap AL, et al. Impact of Initial
 Imaging Protocol on Likelihood of Endovascular Stroke Therapy. Stroke. 2020;51(10):3055-63.
- Nguyen TN, Abdalkader M, Nagel S, Qureshi MM, Ribo M, Caparros F, et al. Noncontrast
 Computed Tomography vs Computed Tomography Perfusion or Magnetic Resonance Imaging
 Selection in Late Presentation of Stroke With Large-Vessel Occlusion. JAMA Neurology. 2021.
- Randomization of Endovascular Treatment in Acute Ischemic Stroke in the Extended Time
 Window (RESILIENTExt) 2021 [Available from: https://clinicaltrials.gov/ct2/show/NCT04256096.
- Window (RESILIENTEXT) 2021 [Available from: <u>https://clinicaltrials.gov/ct2/show/NCT04256096</u>.
 14. Pirson F, Hinsenveld WH, Goldhoorn RB, Staals J, de Ridder IR, van Zwam WH, et al. MR
 CLEAN-LATE, a multicenter randomized clinical trial of endovascular treatment of acute ischemic
 stroke in The Netherlands for late arrivals: study protocol for a randomized controlled trial. Trials.
- 339 2021;22(1):160.
- Bourcier R, Goyal M, Liebeskind DS, Muir KW, Desal H, Siddiqui AH, et al. Association of Time
 From Stroke Onset to Groin Puncture With Quality of Reperfusion After Mechanical Thrombectomy: A
 Meta-analysis of Individual Patient Data From 7 Randomized Clinical Trials. JAMA Neurol.
 2019;76(4):405-11.
- de Havenon A, Alexander MD, Nogueira RG, Haussen DC, Castonguay AC, Linfante I, et al.
 Duration of symptomatic stroke and successful reperfusion with endovascular thrombectomy for
 anterior circulation large vessel occlusive stroke. J Neurointerv Surg. 2021.
- 347 17. Ovbiagele B, Saver JL. Day-90 acute ischemic stroke outcomes can be derived from early
 348 functional activity level. Cerebrovasc Dis. 2010;29(1):50-6.
- 349

TABLES

Table 1: Table of characteristics according to time from stroke onset or last known well to endovascular treatment before and after propensity score matching (PSM).

	Before PSM After PSM			After PSM		
Feature	6-24 hours n (%) or mean±SD	>24 hours n (%) or mean±SD	P value	6-24 hours n (%) or mean±SD	>24 hours n (%) or mean±SD	P value
			Socio-demo	graphics		
Sample size	1046	104		208	104	
Sex (male)	554 (53.0)	60 (57.7)	0.35	128 (61.5)	60 (57.7)	0.43
Age: <60 years	322 (30.7)	41 (39.4)		83 (39.9)	41 (39.4)	
60-69	197 (18.8)	22 (21.1)		40 (19.2)	22 (21.1)	
70-79	295 (28.2)	20 (19.2)	0.24	55 (26.4)	20 (19.2)	0.62
80-89	207 (19.7)	19 (18.2)		27 (12.9)	19 (18.2)	
>90 years	25 (2.3)	2 (1.9)		3 (1.4)	2 (1.9)	
			Baseline chai	racteristics		
NIHSS on admission	15.2±7.7	12.7±7.4	0.001	12.0±7.0	12.7±7.4	0.45
Pre-stroke disability (mRS)	0.5±0.9	0.5±0.9	0.83	0.4 ± 0.9	0.5±0.9	0.63
IV Thrombolysis	330 (31.5)	20 (19.2)	0.009	50 (24.0)	20 (19.2)	0.28
Perfusion Imaging	378 (36.1)	43 (41.3)	0.29	76 (36.5)	43 (40.9)	0.41
Contact Aspiration	285 (26.2)	29 (27.8)	0.88	61 (29.3)	29 (27.8)	0.87
StentRetriever	165 (15.7)	15 (14.4)	0.70	23 (11.0)	15 (14.4)	0.47
Contact Aspiration & StentRetriever combined	566 (54.1)	60 (57.6)	0.47	124 (59.6)	60 (57.6)	0.73
Proximal Balloon Flow Arrest	272 (26.0)	34 (32.6)	0.14	48 (23.0)	34 (33.3)	0.07
	Co-morbidities					
Hypertension	489 (46.7)	50 (48.0)	0.79	93 (44.7)	50 (48.0)	0.54
Diabetes Mellitus	140 (13.3)	11 (10.5)	0.41	27 (12.9)	11 (10.5)	0.46
Atrial fibrillation	208 (19.8)	18 (17.3)	0.52	31 (14.9)	18 (17.3)	0.45

Prior Stroke/TIA	146 (13.9)	10 (9.6)	0.21	21 (10.0)	10 (9.6)	0.88
Congestive heart failure	57 (5.4)	2 (1.9)	0.12	10 (4.8)	2 (1.9)	0.21
		Time Metrics (mins)				
Onset to Arterial Puncture	632.2±250.3	2000.9±445.1	<0.001	615.4±256.1	2000.9±445.1	<0.001
Arterial Puncture to First deployment	26.7±20.6	24.0±17.2	0.20	27.3±21.7	24.0±17.2	0.20
Arterial Puncture to End of Procedure	59.2±40.3	58.7±40.9	0.89	61.4±41.7	58.7±40.9	0.58

n = number of events, N = number of patients, SD = standard deviation, mRS = modified Rankin scale, TIA = transient ischaemic attack, NIHSS = National Institutes Stroke Severity TICI = thrombolysis in cerebral infarction, IV = intravenous, ** propensity score matched 2:1 for age, sex, baseline NIHSS, pre-stroke disability, use of intravenous thrombolysis, and use of perfusion imaging for patient selection.


Table 2: Table of outcomes dichotomised by time from stroke onset or last known well to endovascular treatment after propensity score matching in the late (6-24 hours) and very late (>24 hours) time windows.

	Late Window (6-24 hours) n/N (%)	Very Late Window (>24 hours) n/N (%)	Very Late vs Late Window	
Outcome measures	or median (IQR)	or median (IQR)	OR (95% CI)**	P value
mRS at discharge (Ordinal)	4 (2 – 5)	4 (2 – 5)	1.08 (0.69 - 1.47)	0.70
mRS ≤1	33/208 (15.8)	14/104 (13.4)	0.82 (0.42 – 1.62)	0.57
mRS ≤2	61/208 (29.3)	30/104 (28.8)	0.97 (0.58 - 1.64)	0.93
mRS at 6 months (Ordinal)	2 (1 – 3)	2 (1 – 3)	1.20 (0.75 – 1.98)	0.45
mRS ≤2	31/57 (54.4)	22/35 (62.8)	1.42 (0.59 – 3.35)	0.42
TICI 2b-3	169/208 (81.3)	83/104 (80.0)	0.92 (0.50 - 1.65)	0.77
TICI 3	100/208 (48.0)	49/104 (47.1)	0.99 (0.62 - 1.58)	0.97
Futile Recanalisation	126/208 (60.5)	62/104 (59.6)	0.96 (0.59 – 1.55)	0.87
ENI	79/195 (40.5)	46/97 (47.4)	1.35 (0.83 – 2.20)	0.22
END	44/195 (22.5)	16/97 (16.5)	0.66 (0.35 – 1.26)	0.21
Any ICH	19/151 (12.6)	8/71 (11.2)	0.86 (0.36 - 2.09)	0.75
sICH	10/125 (8.0)	3/61 (4.8)	0.58 (0.15 - 2.20)	0.43
In-Hospital Mortality	30/208 (14.4)	10/104 (9.8)	0.63 (0.29 - 1.34)	0.23

n = number of events, N = number of patients, OR = odds ratio, CI = confidence interval, mRS = modified Rankin scale, sICH = symptomatic intracranial haemorrhage, TICI = thrombolysis in cerebral infarction, Futile Recanalisation = mRS4-6 despite TICI2b-3 recanalisation, ENI = Early neurological improvement (NIHSS improvement by \geq 4), END = Early neurological deterioration (NIHSS worsening by \geq 4). ** propensity score matched 2:1 for age, sex, baseline NIHSS, pre-stroke disability, use of intravenous thrombolysis, and use of perfusion imaging for patient selection.

FIGURES

Figure 1: Flow chart of the patient inclusion, exclusion and outcome data for endovascular thrombectomy treatment in the late (6-24 hours) and very late (>24 hours) time windows from stroke onset or last known well.

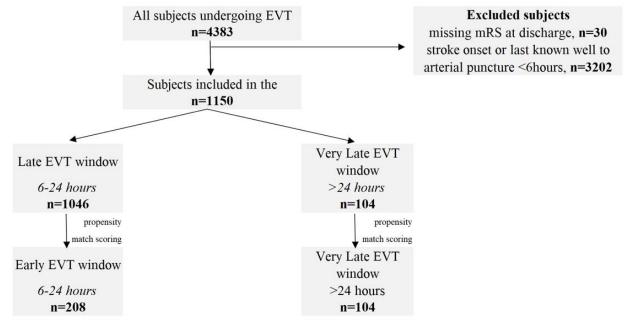
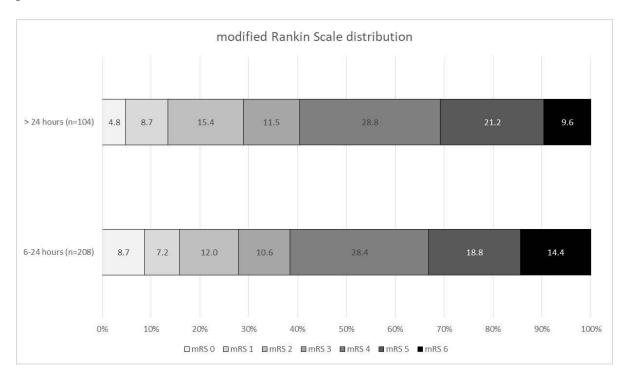
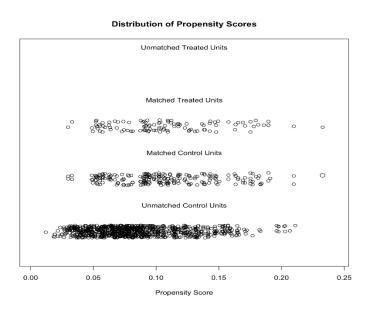



Figure 2: Distribution of the modified Rankin Scale (0 - no disability to 5 - severe disabilityand 6 - death) at discharge comparing EVT treatment in the late (6-24 hours) and very late (>24 hours) time windows after propensity score matching 2:1 for age, sex, baseline NIHSS, pre-stroke disability, use of intravenous thrombolysis and use of perfusion imaging for patient selection.

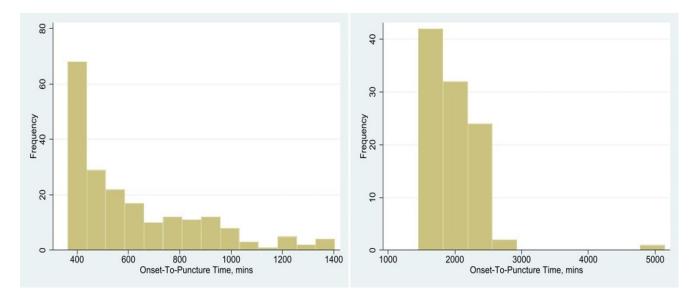
SUPPLEMENTAL MATERIAL

Supplemental Table 1: Table of outcomes dichotomised by time from stroke onset to endovascular treatment after propensity score matching in the late (6-24 hours) and very late (>24 hours) time windows in patients with a **witnessed stroke onset** only (excluding wake up stroke or last known well).

	Late Window	Very Late Window	Very Late vs Late Window	
Outcome measures	(6-24 hours) n/N (%)	(>24 hours) n/N (%)	OR (95% CI)**	P value
mRS at discharge (Ordinal)	N=115	N=71	1.18 (0.67 - 1.55)	0.43
mRS ≤2	31 (26.9)	18 (25.3)	0.87 (0.42 - 1.60)	0.57
TICI 2b-3	92 (80.0)	59 (83.1)	1.07 (0.45 - 1.93)	0.85
Futile Recanalisation	72 (62.6)	41 (57.7)	0.82 (0.45 - 1.51)	0.54
sICH *	5 (7.6)	2 (4.7)	0.58 (0.11 – 3.16)	0.53
In-Hospital Mortality	17 (14.7)	7 (9.8)	0.72 (0.29 – 1.77)	0.48


n = number of events, N = number of patients, OR = odds ratio, CI = confidence interval, mRS = modified Rankin scale, sICH = symptomatic intracranial haemorrhage, TICI = thrombolysis in cerebral infarction, Futile Recanalisation = mRS4-6 despite TICI2b-3 recanalisation. * n=65 late window group, n=42 very late window group. **propensity score matched 2:1 for age, sex, baseline NIHSS, pre-stroke disability, use of intravenous thrombolysis and use of perfusion imaging for patient selection.

Supplemental Table 2: Table of outcomes dichotomised by time from stroke onset or last known well to endovascular treatment in the very late (>24 hours) time window in patients selected with vs without perfusion imaging.


	Very Late Window n (%)		With vs Without Perfusion Imaging Selection		
Outcome measures	(Without perfusion)	(With perfusion)	OR (95% CI)**	P value	
mRS at discharge (Ordinal)	N=61	N=43	1.38 (0.81 – 1.76)	0.18	
mRS ≤2	16 (26.2)	14 (32.5)	1.35 (0.57 – 3.19)	0.48	
TICI 2b-3	49 (80.3)	34 (79.1)	0.92 (0.35 - 2.43)	0.87	
Futile Recanalisation	39 (63.9)	23 (53.4)	0.65 (0.29 - 1.43)	0.28	
sICH *	2 (5.5)	1 (4.0)	0.70 (0.06 - 8.26)	0.78	
In-Hospital Mortality	8 (13.1)	2 (4.6)	0.32 (0.06 - 1.60)	0.16	

n = number of events, N = number of patients, OR = odds ratio, CI = confidence interval, mRS = modified Rankin scale, sICH = symptomatic intracranial haemorrhage, TICI = thrombolysis in cerebral infarction, Futile Recanalisation = mRS4-6 despite TICI2b-3 recanalisation * n=25 with perfusion group, n=36 without perfusion group.

Supplemental Figure 1: Distribution of the propensity scores of patients that underwent endovascular thrombectomy in the late window (6-24 hours; 'control') and very late window (>24 hours; 'treated') from stroke onset or last known well. Patients were matched 2:1 for age, sex, baseline NIHSS, pre-stroke disability, use of intravenous thrombolysis and use of perfusion imaging for patient selection.

Supplemental Figure 2: Histogram demonstration of the number of patients (frequency) with time as a continuous variable in minutes across the late (6-24 hours; left) and very late (>24hours; right) endovascular thrombectomy time windows from stroke onset or last known well to arterial puncture (after propensity score matching).

