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TOPICAL REVIEW

Endurance exercise performance in Masters athletes:
age-associated changes and underlying physiological
mechanisms
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Older (‘Masters’) athletes strive to maintain or even improve upon the performance they

achieved at younger ages, but declines in athletic performance are inevitable with ageing. In

this review, we describe changes in peak endurance exercise performance with advancing age

as well as physiological factors responsible for those changes. Peak endurance performance is

maintained until ∼35 years of age, followed by modest decreases until 50–60 years of age, with

progressively steeper declines thereafter. Among the three main physiological determinants of

endurance exercise performance (i.e. maximal oxygen consumption (V̇O2max), lactate threshold

and exercise economy), a progressive reduction in V̇O2max appears to be the primary mechanism

associated with declines in endurance performance with age. A reduction in lactate threshold,

i.e. the exercise intensity at which blood lactate concentration increases significantly above base-

line, also contributes to the reduction in endurance performance with ageing, although this

may be secondary to decreases in V̇O2max. In contrast, exercise economy (i.e. metabolic cost of

sustained submaximal exercise) does not change with age in endurance-trained adults. Decreases

in maximal stroke volume, heart rate and arterio-venous O2 difference all appear to contribute

to the age-related reductions in V̇O2max in endurance-trained athletes. Declines in endurance

exercise performance and its physiological determinants with ageing appear to be mediated

in large part by a reduction in the intensity (velocity) and volume of the exercise that can be

performed during training sessions. Given their impressive peak performance capability and

physiological function capacity, Masters athletes remain a fascinating model of ‘exceptionally

successful ageing’ and therefore are highly deserving of our continued scientific attention as

physiologists.
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The demographics of age are changing dramatically.
According to current population forecasts, the number
of elderly will increase worldwide from 6.9% of the
population in 2000 to a projected 19.3% by 2050. In
parallel with this overall increase in older adults, the
number of middle-aged and older (‘Masters’) athletes
is expected to increase as well. This is an interesting
sub-demographic of adults because many individuals in
this group express a highly unique physiological phenotype
that could be termed ‘exceptionally successful ageing’.
Masters athletes strive to maintain and, in some cases,
improve upon the performance they have achieved at
younger ages. Indeed, the peak exercise performance

of Masters athletes continues to increase each year.
However, declines in athletic performance are inevitable
and the underlying reasons are important to under-
stand. This raises a number of intriguing questions,
including: How does peak exercise performance change
with advancing age? What physiological mechanisms and
modulating factors are responsible for the age-related
decline in exercise performance? Why do these
mechanisms and factors change with ageing? The aim
of the present review is to address these issues in
the context of endurance exercise performance, for
which a relatively large body of empirical evidence is
available.
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Table 1. Comparison of 1896 Olympic winning times in running events and current Masters
records that surpass those winning times (from ESPN and World Masters Records)

Current age-group records that
1896 Olympic winning time surpass 1896 Olympic times

(from the first Olympic and age at which these
Running events games in Athens) records were achieved

100 m (s) 12.0 11.7 (61 years)
200 m (s) 22.2 22.1 (46 years)
400 m (s) 54.2 53.9 (63 years)
800 m (min:s) 2:11.0 2:10.4 (60 years)
1500 m (min:s) 4:33:2 4:27:7 (60 years)
Marathon (h:min:s) 2:58:50 2:54:5 (73 years)

Endurance exercise performance with ageing

Peak athletic performance has improved dramatically
in the past 100 years, although the age at which
peak performance is achieved in Olympic track and
field (athletics), swimming, baseball, tennis and golf
has remained constant over this period (Schulz &
Curnow, 1988). However, as the number of older adults
participating in competitive events has increased (at
a much greater rate than young adults), and training
and nutritional practices have evolved, Masters athletes
have achieved impressive improvements in peak exercise
performance (Ericsson, 1993). For example, in 2005 Kozo
Haraguchi of Japan set a new age-group record in the 100 m
dash of 21.69 s at the age of 95. In 2003, Ed Whitlock of
Canada became the oldest person to break 3 h in marathon
at the age of 73. In some athletic events (e.g. marathon
running), Masters athletes over 70 years of age have
surpassed the winning time at the first Olympic games held
in Athens (Table 1). These exceptional individual athletic
achievements are fascinating not only to the general public,
but also to those of us who study the effects of ageing
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Figure 1
Changes in men’s and women’s marathon running times with
advancing age (from USA Track & Field and World Masters Athletics).

on physiological functional capacity. It also highlights the
broad question of how endurance exercise performance
changes with age in healthy adults.

As illustrated in Fig. 1, endurance performance in
running events decreases with age in a curvilinear fashion.
In general, peak endurance running performance is
maintained until ∼35 years of age, followed by modest
decreases until 50–60 years of age, with progressively
steeper reductions thereafter (Tanaka & Seals, 2003). The
pattern appears to be similar for both non-elite and
elite endurance athletes (Joyner, 1993). In general, the
magnitude of decline in endurance running performance
with age is greater in women than in men (Joyner, 1993;
Tanaka & Seals, 1997; Donato et al. 2003) (Fig. 1). However,
interpretation of this apparent widening of sex differences
with advancing age is confounded by the relatively smaller
number of female versus male runners in the older groups.
Indeed, such increasing sex differences with age are absent
in the endurance swimming events, where approximately
equal number of men and women compete throughout
the age range (Donato et al. 2003) (Fig. 2).

The overall reduction in peak exercise performance
with age tends to be greater in endurance than in ‘sprint’
events (Tanaka & Seals, 1997, 2003) (Fig. 2). It is not
known why or how the duration of the athletic event
influences the age-associated decline in peak performance.
One possibility is that endurance and sprint events rely
on different energy-producing pathways to sustain muscle
activity. For example, findings from several cross-sectional
studies indicate that the declines in maximal aerobic
exercise capacity with age are considerably greater than
those observed in ‘anaerobic’ muscle power (Larsson et al.
1979; Grimby & Saltin, 1983; Tanaka & Seals, 1997). This
appears contradictory to the well-established preferential
loss of type II muscle fibres (one of the determinants of
anaerobic muscle power) with advancing age in healthy
non-physically conditioned adults (Larsson et al. 1979;
Grimby & Saltin, 1983; Tanaka & Seals, 1997). However,
these fibre type changes are relatively small or non-existent
in trained athletes (Coggan et al. 1990; Trappe et al.
1995).
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Physiological determinants of endurance exercise
performance

Based largely on studies in young endurance-trained
athletes, the three main physiological determinants of
endurance performance are believed to be maximal
oxygen consumption, exercise economy and the exercise
intensity at which a high fraction of the maximal oxygen
consumption can be sustained, as typically defined by
the ‘lactate threshold’ (Hagberg & Coyle, 1983; Joyner,
1993). In the following section, we review the available
information on how changes in these determinants may
contribute to age-related declines in endurance exercise
performance (Fig. 3).
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Figure 2
Men’s and women’s swimming performance with advancing age (from
Federation Internationale de Natation).

(a) Exercise economy. Exercise economy is measured as
the steady-state oxygen consumption while exercising
at a specific submaximal exercise intensity below the
lactate threshold (see below). Among endurance athletes,
exercise economy is an important determinant of endu-
rance performance (Morgan et al. 1989), particularly in
groups that are more homogeneous than heterogeneous in
V̇O2max (Morgan et al. 1989). Starting with the findings of
the dissertation study of Professor Sid Robinson published
in 1938 (Robinson, 1938), cross-sectional observations
made by numerous independent laboratories indicate
that exercise economy does not change with advancing
age (Astrand, 1960; Allen et al. 1985; Wells et al. 1992;
Evans et al. 1995). For example, in a cross-sectional
study of male endurance runners, there was no difference
in running economy between young and older athletes
(Allen et al. 1985). Similarly, no significant association
was found between running economy and age among
highly trained and competitive female runners aged
35–70 years (Wells et al. 1992). We found that in healthy

female athletes, running economy explained little of the
variance in age-related decreases in endurance running
performance after accounting for differences in V̇O2max and
lactate threshold, which explained 85% of the variability
in 10K performance (Evans et al. 1995). The results of
several longitudinal studies have confirmed that running
economy does not change with age in endurance-trained
Masters athletes (Robinson et al. 1976; Trappe et al. 1996).
Thus, available data in this area indicate that reductions
in exercise economy do not contribute significantly to
the decreases in endurance exercise performance observed
with advancing age.

There are a number of physiological factors that
determine exercise economy. Among them, the percentage
of type I muscle fibres is positively associated with
exercise economy in cyclists (Horowitz et al. 1994).
In this context, well-trained Masters athletes have a
similar muscle fibre distribution to performance-matched
younger runners (Coggan et al. 1990). Consistent with
this, a 20 year longitudinal study showed that with
maintenance of strenuous endurance training, muscle
fibre type distribution did not change with age in highly
trained Masters athletes (Trappe et al. 1995). Therefore,
maintenance of muscle fibre type with ageing could
contribute to the preserved exercise economy of Masters
athletes.

(b) Lactate threshold. The ability to sustain a high
fraction of one’s maximal oxygen consumption during
submaximal exercise typically is evaluated using the
blood lactate threshold. Numerous criteria, techniques
and nomenclature for the lactate threshold have been

 Endurance exercise performance

 Maximal oxygen
consumption

 Lactate
threshold

 Exercise
economy

 Maximal
heart rate

 Maximal
stroke volume

 Maximal
a-v O2 difference

Training intensity
& volume

 Aging

Figure 3
Factors and physiological mechanisms contributing to reductions in
endurance exercise performance with advancing age in healthy adults.
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used in the past. It is generally defined as the exercise
intensity at which blood lactate concentration increases
significantly above baseline (Allen et al. 1985; Coyle, 1995).
In young endurance-trained adults, the lactate threshold
predicts exercise performance in distance events ranging
from 2 miles to the marathon (Hagberg & Coyle, 1983;
Allen et al. 1985; Joyner, 1993), whereas power output at
the lactate threshold is the best laboratory predictor of
time-trial performance among competitive female Masters
cyclists (Nichols et al. 1997). Absolute work rate or running
speed at lactate threshold declines with advancing age
in endurance athletes (Iwaoka et al. 1988; Maffulli et al.
1994; Evans et al. 1995; Wiswell et al. 2000). However,
lactate threshold does not appear to change with increasing
age when expressed relative to the percentage of V̇O2max

(Iwaoka et al. 1988; Maffulli et al. 1994; Evans et al.
1995). The latter finding suggests that the contribution of
decreases in lactate threshold to reductions in endurance
exercise performance with ageing may be secondary to
decreases in V̇O2max. Indeed, a recent longitudinal study of
51 male and 23 female Masters runners reported that the
change in lactate threshold over a mean follow-up period
of 6 years was not predictive of a corresponding change in
running performance when it was expressed as a percent
of V̇O2max (Marcell et al. 2003).

(c) Maximal aerobic capacity. Maximal oxygen
consumption establishes the upper limit of maximal
energy production through oxidative phosphorylation
and is generally considered to be a primary determinant
of endurance exercise performance among young
endurance-trained athletes (Joyner, 1993; Coyle, 1995).
V̇O2max declines approximately 10% per decade after age
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Figure 4
Relation between 10 km running speed and maximal oxygen
consumption (V̇O2max) among competitive female distance runners
varying widely in age (H. Tanaka and D. R. Seals, unpublished
observations).

25–30 years in healthy sedentary adults of both sexes
(Heath et al. 1981; Buskirk & Hodgson, 1987; FitzGerald
et al. 1997; Tanaka et al. 1997; Eskurza et al. 2002; Pimentel
et al. 2003). Early investigations suggested that the rate
of decline in V̇O2max with advancing age was as much as
50% smaller in endurance exercise-trained athletes than
in sedentary adults (Heath et al. 1981; Kasch et al. 1990).
However, we and others subsequently established that
when expressed as per cent decrease from early adulthood,
the rate of decline in V̇O2max with age is not reduced in
healthy adults who habitually perform aerobic exercise
(Hodgson & Buskirk, 1977; FitzGerald et al. 1997; Tanaka
et al. 1997; Wilson & Tanaka, 2000; Eskurza et al. 2002;
Pimentel et al. 2003; Fleg et al. 2005). In fact, endurance
exercise-trained men and women demonstrate greater
‘absolute’ (ml kg−1 min−1) rates of decline in V̇O2max with
age than healthy sedentary adults (FitzGerald et al. 1997;
Tanaka et al. 1997; Eskurza et al. 2002; Pimentel et al.
2003), probably as a result of greater baseline levels of
V̇O2max as young adults and greater reductions in habitual
exercise with ageing compared with sedentary adults
(FitzGerald et al. 1997; Eskurza et al. 2002). It is interesting
to note that the greater absolute rate of decline in V̇O2max

with age in endurance-trained vs sedentary subjects also
been observed in rats (Zimmerman et al. 1993) and has
been reviewed in detail elsewhere (Tanaka & Seals, 2003).

Endurance performance and V̇O2max are strongly and
positively related in groups of highly trained and
competitive distance runners varying in age (Fig. 4).
Moreover, reductions in endurance exercise performance
with age are closely associated with corresponding
decreases in V̇O2max (Fuchi et al. 1989; Marcell et al.
2003). Indeed, V̇O2max was the best predictor of age-related
changes in endurance exercise performance in 51 male
and 23 female Masters runners who were followed
longitudinally for a period of 6 years (Marcell et al. 2003).
Thus, a progressive reduction in V̇O2max appears to be a
key physiological mechanism associated with declines in
endurance performance with advancing age.

In spite of the strong association between V̇O2max

and endurance exercise performance, other factors
may contribute to age-associated reductions in end-
urance performance. Although the comparison is not
straightforward because of different scaling and units, the
fact that the rate of decline in endurance performance
with age appears to be smaller than the corresponding
fall in V̇O2max (Joyner, 1993) is consistent with this idea.
It may be that other putative determinants of end-
urance performance (e.g. ‘anaerobic’ muscular power,
muscle capillary density) may decline to a lesser extent
with advancing age (Grimby & Saltin, 1983; Coggan
et al. 1992; Coyle, 1995), thus offsetting the effects
of the decrease in V̇O2max. Furthermore, reductions in
endurance performance with age are typically curvilinear,
whereas the decrease in V̇O2max typically is presented
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as a linear function of age. On the other hand, recent
evidence indicates that the rate of decline in V̇O2max over the
entire adult age range actually may be curvilinear, rather
than linear, with the rate accelerating with advancing
age (Fleg et al. 2005). This concept, originally described
by Buskirk & Hodgson in 1987 (Buskirk & Hodgson,
1987), would be more consistent with the notion that a
decrease in maximal oxygen consumption is the primary
mechanism causing age-related reductions in endurance
exercise performance.

Declines in the exercise training ‘stimulus’ with
advancing age

The factors that contribute to reductions in V̇O2max

with age in Masters endurance athletes are incompletely
understood. Available evidence points to the seemingly
inevitable consequence of an overall reduction in the
exercise training ‘stimulus’ (i.e. exercise-training intensity,
session duration and weekly frequency) with advancing
age (Pollock et al. 1997; Tanaka et al. 1997; McGuire
et al. 2001; Eskurza et al. 2002) (Fig. 5). As early as 1967,
Dill et al. suggested that highly trained distance runners
who become sedentary exhibit a greater than normal
decrease in maximal aerobic capacity with advancing age
(Dill et al. 1967). Similarly, the results of longitudinal
studies suggest that V̇O2max can be fairly well maintained
over phases of middle-age lasting up to 10 years in men
and women who continue to train vigorously (Kasch &
Wallace, 1976; Pollock et al. 1987). However, there is no
evidence that exercise training intensity and volume (and
V̇O2max) can be maintained for longer periods, especially at
older ages (Dill et al. 1967; Pollock et al. 1997). Increases
in job- and family-related responsibilities may impinge
on the availability of time and energy for the intensive
training required to remain competitive. Increased
prevalence of exercise training-associated injuries among
Masters athletes also probably contributes to their reduced
training intensity and volume (Kallinen & Markku,
1995). Moreover, the motivation to train may be reduced
with advancing age among Masters athletes similar to
the declines in compliance observed in older patients
participating in cardiac rehabilitation programs (Cooper
et al. 2002). The goals underlying the motivation to
train also may shift somewhat from achieving personal
records in younger athletes to health benefits in older
athletes (Ogles & Masters, 2000); the latter would probably
accommodate reductions in exercise intensity with age.
The ‘intrinsic drive’ to exercise or be physically active
may decline with ageing as well, as rodents given life-
long access to running wheels demonstrate marked
reductions in noctural running behaviour with advancing
age (Valentinuzzi et al. 1997). In summary, it appears that
at least in healthy adults, the ability to maintain the overall

exercise-training stimulus contributes to the rate of decline
in V̇O2max and therefore endurance exercise performance
with advancing age.

Physiological mechanisms responsible for age-related
declines in V̇O2max in the endurance-trained athletes

V̇O2max has an exact physiological definition that is
expressed by the Fick equation: maximal cardiac
output × maximal arterio-venous O2 difference. Within
this physiological context, there is some controversy
regarding the mechanisms responsible for the reduction
in V̇O2max with age in endurance athletes. In particular, the
exact contribution of central (i.e. cardiac) and peripheral
(i.e. oxygen extraction) factors to the reduced V̇O2max in
Masters compared with young adult endurance athletes
is unclear. However, it appears that decreases in both
maximal cardiac output and maximal arterio-venous O2

difference may play a role (Table 2 and Fig. 3). Attempts to
determine the effects of ageing on the Fick determinants of
V̇O2max in endurance athletes have relied almost exclusively
on cross-sectional studies comparing young and Masters
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Figure 5
Progressive declines in running (training) mileage and speed with age
in female endurance-trained runners. (Modified from Tanaka et al.
(1997); used with permission).
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Table 2. Oxygen consumption and its determinants at maximal exercise in endurance
exercise-trained men

Young men Older men Age-related change
(28 years) (60 years) (%)

Oxygen consumption (ml kg−1 min−1) 68.2 49.4 28
Cardiac output (l min−1) 27.0 21.7 20
Stroke volume (ml beat−1) 147 132 10
Heart rate (beats min−1) 184 165 10
a–v O2 difference (ml (100 ml)−1) 16.7 15.2 8

The data were compiled from four studies in which values for all of the variables were reported
in groups of young and older groups (Grimby et al. 1966; Hagberg et al. 1985; Rivera et al. 1989;
Ogawa et al. 1992).

endurance-trained athletes. Longitudinal studies clearly
are needed to fully address this question.

(a) Central factors. Maximal cardiac output. Although
it has been reported that maximal cardiac output is
maintained with advancing age (Rodeheffer et al. 1984),
the majority of the evidence supports the idea that maximal
cardiac output decreases with advancing age in healthy
sedentary adults (Julius et al. 1967; Saltin, 1986; Rivera et al.
1989; Ogawa et al. 1992; Hunt et al. 1998) in proportion
to the decline in maximal oxygen consumption (Grimby
et al. 1966; Proctor et al. 1998). Maximal cardiac output
also is reduced in older Masters (60–70 years) compared
with young (20–30 years) endurance-trained athletes as a
result of reductions in both maximal stroke volume and
maximal heart rate (Rivera et al. 1989; Ogawa et al. 1992)
(Table 2).

Maximal heart rate. Historically, maximal heart rate
has been viewed as the primary mechanism mediating
age-related reductions in maximal cardiac output and
V̇O2max, particularly in endurance exercise-trained athletes
(Heath et al. 1981; Hagberg et al. 1985). Starting from
early adulthood, maximal heart rate declines with age
at a rate of ∼0.7 beats min−1 year−1 in healthy sedentary,
recreationally active and endurance exercise-trained adults
(Tanaka et al. 2001). A slower conduction velocity,
a reduced responsiveness of the sinoatrial node to
β-adrenergic stimulation (Fleg et al. 1994) and a decreased
intrinsic heart rate (Jose & Collison, 1970) are among the
mechanisms believed to contribute to the reduction in
maximal heart rate with ageing.

Maximal stroke volume. In older endurance exercise-
trained adults, maximal stroke volume is reduced modestly
to 80–90% of that observed in young endurance-trained
adults (Ogawa et al. 1992) (Table 2). There is very
limited information as to how changes in the major
determinants of stroke volume (e.g. preload, afterload
and intrinsic contractility of the heart) contribute to

the age-related reduction in maximal stroke volume in
endurance-trained adults. It is unclear if a reduction
in left ventricular filling is involved. Results of studies
indicating that left ventricular preload, as expressed as
left ventricular end-diastolic dimension, area or volume,
is not related to age in healthy relatively active adults
(Fleg, 1986) do not support such a role. In young adults,
total blood volume exerts an important influence on
maximal stroke volume and maximal oxygen consumption
(Convertino, 1991). However, total blood volume appears
to be preserved in older endurance-trained athletes (Jones
et al. 1997). We cannot exclude the possibility that
other determinants of the cardiac preload, including LV
end-diastolic pressure, diastolic filling time, venomotor
tone, myocardial compliance and/or a combination of
these factors, contribute to the age-related decline in
maximal stroke volume in endurance exercise-trained
adults (Schulman et al. 1992; Arbab-Zadeh et al.
2004).

The large elastic arteries stiffen with advancing age and
lead to an increase in aortic input impedance as well as
vascular afterload, thereby impeding the ejection of blood
from the left ventricle during systole and, consequently,
stroke volume during exercise (Chen et al. 1999). Although
the degree of arterial stiffening with advancing age is
attenuated in endurance-trained compared with sedentary
adults, endurance athletes nevertheless demonstrate large
elastic artery stiffening with age (Tanaka et al. 2000).
This could contribute to the reduction in maximal
stroke volume seen in older endurance-trained adults
via increases in the left ventricular afterload and aortic
input impedance (Mazzaro et al. 2005). On the other
hand, no differences in left ventricular afterload, as
indirectly assessed by mean arterial pressure or total
peripheral resistance, have been reported in young and
older endurance-trained men (Rivera et al. 1989).

It is, especially difficult to evaluate the contractility of
the left ventricle in intact human subjects during exercise
because of the complex and concurrent actions of multiple
influencing factors. Moreover, there is no satisfactory index
of contractility that is completely independent of left
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ventricular preload and afterload (Fleg, 1986; Giada et al.
1998). Animal studies using the isolated perfused heart
preparation find that contractility declines significantly
with advancing age in endurance-trained rats and that the
magnitude and the rate of the decline is similar to sedentary
rats (Starnes & Rumsey, 1988). The similarly lower ejection
fractions at maximal exercise observed in both older
sedentary and older endurance-trained athletes compared
with young men are consistent with these observations in
experimental animals (Schulman et al. 1992).

(b) Peripheral factors. Maximal arterio-venous O2

difference reflects the capacity of (primarily) active skeletal
muscles and the respiratory muscles to extract and
consume oxygen from the blood for ATP production
during maximal exercise. In sedentary adults, maximal
arterio-venous O2 difference clearly declines with
advancing age, consistent with the marked reductions
in capillary density and mitochondrial enzyme activities
observed with ageing in this group (Coggan et al.
1992). Reductions in peripheral oxygen extraction during
maximal exercise also appears to contribute to the decline
in V̇O2max with age in endurance exercise-trained adults
(Table 2), as maximal arterio-venous O2 difference declines
modestly (5–10%) over a span of ∼30 years in this group
(Hagberg et al. 1985; Saltin, 1986; Rivera et al. 1989). It
remains to be determined if the reduction in maximal
arterio-venous O2 difference with ageing in endurance
athletes reflects reductions in maximal oxygen delivery
to or extraction by the active muscles. However, older
endurance-trained athletes can oxygeneate blood in the
lungs to a similar extent as young athletes, and their
contracting muscles are capable of extracting oxygen
as much as their younger counterparts (Saltin, 1986).
Furthermore, muscle oxidative enzyme activities and
capillarization (expressed per area or per fibre) are
similar between young and older endurance-trained adults
(Coggan et al. 1992; Proctor et al. 1995). Thus, it is
likely that maximal oxygen delivery, rather than oxygen
extraction, is a major contributor to the age-related
reduction in maximal arterio-venous O2 difference in
endurance-trained adults.

As skeletal muscle mass is closely related to maximal
aerobic capacity among healthy humans across the adult
age range (Fleg & Lakatta, 1988), a decline in maximal
arterio-venous O2 difference may be secondary to an
age-related loss of muscle mass. However, V̇O2max remains
lower in older compared with young endurance-trained
athletes after correcting for muscle mass (Proctor & Joyner,
1997). Rather, we find that among healthy men varying in
age, fat-free mass exerts its permissive influence on V̇O2max

via an effect on central circulatory function involving
blood volume, stroke volume and cardiac output (Hunt
et al. 1998).

Summary and conclusions

In summary, Masters endurance athletes are capable
of remarkable athletic and physiological functional
performance, thereby representing a uniquely positive
example of ‘exceptional ageing’. Nevertheless, endu-
rance exercise performance decreases during middle-age
and declines at an even more rapid rate in older age.
The available data indicate that decreases in V̇O2max

are the most clear and consistent contributor to these
declines in performance. Reductions in the lactate
threshold also may contribute, whereas submaximal
exercise economy is preserved with ageing in endurance
athletes. The age-associated decreases in V̇O2max in end-
urance exercise-trained adults are mediated by reductions
in maximal cardiac output and maximal arterio-venous O2

difference, with reductions in both maximal stroke volume
and heart rate contributing to the former. The decreases
in endurance exercise performance and V̇O2max with ageing
in endurance exercise-trained athletes are associated most
closely with reductions in exercise training intensity and
volume, probably as a consequence of changes in a
number of physical and behavioural factors (e.g. increased
prevalence of injuries, and reductions in energy, time
and motivation to train). The ‘Masters athlete model’
continues to be a rich source of insight into our ability
(or lack thereof) to maintain peak physical performance
and physiological function with human ageing.
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