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Several energetic and dynamical aspects of proton transfers are treated. The effect of intrinsic 
barrier asymmetry on BEBO calculated Bronsted plots is investigated, and contributions to work 
terms are also considered. The dynamics of transfer of a light particle between two heavier ones is 
discussed for a particular potential energy surface, making use of classical trajectories, semidassical 
concepts, and a previous quantum study. The question of nonequilibrium polarization of solvent 
is also considered. 

1 INTRODUCTION 

It is a pleasure to participate in this symposium honouring Professor R. P. Bell, 
whose work has illuminated so many parts of the proton transfer field. In this paper 
I would like to comment on several aspects of proton transfer, both energetic and 
dynamic : (1) effect of '' intrinsic barrier asymmetry " on Bronsted plots, (2) dynamics 
revealed by recent classical and quantum mechanical studies for an H-atom transfer, 
(3) contributions to the " work terms, " and (4) the possibility, as in electron transfers, 
of nonequilibrium polarization of the solvents. 

2 INTRINSIC BARRIER ASYMMETRY A N D  BRONSTED SLOPES 

Sometime ago we considered a model of a proton transfer reaction,' 

AiH+A2 +Ai+HAZ (2.1) 
(charges are omitted for notational brevity), in which the process occurred in three 
steps : 

(2.2) 
(2.3) 
(2.4) 

AIH+Az + AIH- * *A2 
AIK- -A2 -+ Al. * *HA2 
Al* * *HA2 -+ Al +HA2. 

Of these only the middle one depended on the standard free energy of reaction AGO' 
for (2.1).* 

Step (2.2) involves a free energy change w' (called a " work term ") for bringing 
the reactants close together ; wr includes steric (orientation) effects and, where 
necessary,2 partial desolvation. The next step (2.3) is the actual proton transfer 
and involves intramolecular and solvent reorganization to form the transition state, 
followed by an intramolecular and solvent relaxation. Step (2.4) is a " disorienting " 
and resolvating one ; it contains a work term - wp, wp being the analogue of w' for 
the reverse reaction. 

* AGO' is actually the " standard " Gibbs free energy change in the prevailing medium and at the 
prevailing temperature. 
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R. A. M A R C U S  61 

In an approximation which was quadratic for treating (2.3) and which at  the same 
time neglected “ ),-asymmetry ” (3.f-A2, defined later), the rate constant was given by 

k,  = Z exp( - AG*/kT), (2.5) 
apart from the usual statistical factors.‘k 2 is the collision frequency in solution, 
AG* is 

AG* = ~‘+(R/4)(1+AGg’/i)~ (IACi’I < i) (2 .6)  

AG;’ = AG” + W” - w‘. (2.7) 

and 

i, is the “ intrinsic ” free energy barrier,’ i.e., the barrier in (2.3) when AG;’ = 0. 
AG;’ is seen from eqn (2.7) to be the effective standard free energy of reaction for 
the proton transfer step itself. 

Similarly, in a bond energy-bond order (BEBO) type of calculation, the corres- 
ponding vaIue of AG* is given by eqn (2.8) when i-asymmetry is neglected and when 
the E’s in ref. (1) are replaced by free energies, 

(2.8) 
where y is ln2. 

Implica- 
tions of the equations are apparent : a small 1 implies a large curvature of a Bronsted 
plot; a small 2, also implies a large limiting rate at large negative AGi’ when w‘ is 
small, but the limiting rate is small when wr is large. 

Specifically, if a potential 
energy surface is varied by varying AGO‘ of reaction (2.1), holding constant the intrinsic 
barriers of the exchange reactions 

AG* = w‘ + 044) + (AG;;’/2) + ()./4y)ln cosh(2yAG;;’/l.), 

The difference between eqn (2.6) and (2.8) was typically relatively small.’ 

A question which arises is the effect of ).-asymmetry. 

AiH+A, + A,+HA,, ( i  = 1, 2) (2.9) 
do the preceding considerations prevail ?3 The intrinsic barrier E.J4 for the reaction 
in eqn (2.9) may depend on i, and the difference in is called here the 2.-asymmetry 
Differences in 2, and L 2  were neglected in deriving eqn (2.6), prompted in part by a 
finding that such effects were relatively minor in the quadratic case, i.e., in eqn (2.6).‘ 
We consider now their effect on the BEBO derived formula, eqn (2.8). 

The problem is how to calculate the effect of varying AGO‘ holding the intrinsic 
barriers constant and not assuming I , ,  = Typically, a potential energy surface 
is not automatically characterized in terms of ,il, 2, and AG;’. For example, in a 
BEBO model for the reaction in eqn (2.9), the potential energy of formation of an 
intermediate state can be written as 

A E  = V, - Vln?‘ - V2n4*, (2.10) 

where, along the reaction path, bond order is conserved : 

n,  and Vi are the bond order and bond energy of the A,H’th bond, pi is an exponent 
which reflects a property of that bond. For the exchange reaction in eqn (2.9), ni 
is 5 in the transition state, and so A E  for that reaction, which we may call AEl, or 
better yet, Ai/4, is found from eqn (2.10) to be Vi [I -2(+)p’]. 

12’ + ? I ,  = 1 (2.1 I )  

* If sr and sp are the statistical factors for forward and reverse steps. it suffices to replace wr and 
Further, k ,  is the k in footnote 3 Of ref WP by W r - - k T I n  sr, w P - W  In sP, to include their effect.’ 

(1)  in the case of diffusion effects. 
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62 DYNAMICS OF PROTON T R A N S F E R  

The potential energy change accompanying the reaction in eqn (2.3) is A V : 
AV = V1- V2. (2.12) 

Thus, the effect of AV on the potential energy barrier to reaction A€ can be investi- 
gated, holding the intrinsic barriers l1 and E., constant, only by varying p 1  and/or p 2  
simultaneously. (It is not clear that this precaution was followed previ~usly.)~ 
The value of t i l  in the transition state is obtained by setting dAE/dnl = 0 and intro- 
ducing the resulting it1 and n2 into eqn (2.10). 

Investigation of the effect of A V on A€, holding R and Az constant, is considerably 
simplified, as in eqn (10) of ref. (l), by noting that p ,  z 1 and expanding nf' in eqn 
(2.10) in a Taylor series, retaining only the first two terms. The barrier A€ is found 
(eqn (12) of ref. (1)) to be 

AE = n$AV- ( & 4 y ) t i i  I n  n f ,  (2.13) 
i =  1.2 

where it! and ni  are the solution of dAE/dnf, = 0, i.e., of 
0 = -AV-(Al/4y)(ln nfi + 1)+(i2/4y)(h nf ,+  1) 
n t + n t  = 1. 

(2.14) 

(Eqn (2.8) can be obtained from eqn (2.13) and (2.14) by setting ;Cl = L2 = I., 
replacing AV by AG;', and adding to (2.13) the barrier wr of the first step (2.2).) 
Now, at last, AE depends only on AG;', 

The slope of a (AE, A V )  plot at  a given A 1  and 11, is obtained by observing that 
dAE/dAV is the sum of (dAE/JAV,,?) and of (aAE/an?)dY(anf/aAV). Since 
(dAE/dn\)Av is zero, one finds from eqn (2.13) that 

and 12. 

dAE/dA V = n!. (2.15) 
The A€ in eqn (2.13) can be obtained by first introducing values for n? and ni 

into eqn (2.14), solving the latter for AV, and introducing this result into eqn (2.13). 
In table 1 the results of such a calculation are given choosing a rather large asym- 
metry : A1/4 = 12 and A2/4 = 2. 

TABLE 1 .-EFFECTS OF REACTANT ASYMMETRY ON (AE, A V) PLOTS 

AV AE nz ' AV AE 
: 

n2 

0.1 - 19.2 0.4 0.6 0.0 7.2 

0.3 -11.7 1.8 0.8 12.8 16.3 
0.4 -8.2 3.1 0.9 25.1 26.9 
0.5 -4.4 4.8 

0.2 - 15.2 1.0 0.7 5.4 10.7 

From table 1 one sees that the l./4 in eqn (2.6), namely AE at A V  = 0, is 7.2. The 
latter is close to (Al +A,)/2. The Bronsted slope dA€/dAV for the system is seen 
from eqn (2.15) to  be n$. Thus, when the true slope is 0.1, 0.3, 0.6 and 0.8, say, 
one finds from the above A and the corresponding AV's in table 1 that the slope 
calculated from eqn (2.6) is 0.17, 0.30, 0.50 and 0.72, respectively, values which are 
fairly close to the true slopes. 

3 S O M E D Y N A M I C A L  ASPECTS OF LIGHT PARTICLE TRANSFER 

Chemical kinetics has received additional insight from recent studies with mole- 
cular beams, lasers, and infra-red chemiluminescence.6 On the theoretical side the 
main method for interpreting these data has involved computer-calculated classical 
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R. A. M A R C U S  63 

trajectories of the atoms,6b* because of the difficulty of solving the fully three- 
dimensional reactive collision problem numerically and quantum mechanically. 
Numerical quantum mechanical studies have been almost entirely confined to collinear 
collisions.* In the case of proton transfers no trajectory or quantum mechanical 
numerical studies appear to have been made as yet. 

Some insight into the dynamics can be obtained by studying instead the transfer 
of a hydrogen atom between two heavier particles. The only quantum mechanical 
study which has appeared is that of a collinear collision between HBr and C1. 

C1+ HBr +- ClH + Br, 

using a London-Eyring-Polanyi-Sat0 potential energy surface. This limitation of 
collinearity is perhaps not in itself too dismaying; the actual collisions in solution, 
with major steric or solvation features, can differ substantially from the usual three- 
dimensional gas phase collisions. 

The transmission probability was calculated for the reaction and, more specifically, 
for the formation of various vibrational states of the product HC1 of this exothermic 
proce~s .~  To analyze the results of this study and to obtain implications for other 
light particle transfer, Dr. Ellis of this laboratory has undertaken some classical 
trajectory studies on this and related systems. While the results will be described 
elsewhere,l O some features are summarized below. 

3 4 R, a u 

FIG. 1.-Skewed-axes plot of potential energy contours for reaction (3.1). R1 = RCI-H, R2 = 
RH-B~/C,  where C is the usual mass-scaling factor l1 (0.987 here). The dotted line denotes a 

transition state, and a reactive trajectory is also indicated. 

A diagram of the surface used is given in fig. 1 in the usual skewed-axes form? 
(As is well known, plots in rectangular-axes form, while frequently used, are misleading 
for purposes of analyzing the dynamics of individual trajectories.) The radial 
coordinate is, essentially, a scaled C1- Br distance, while the angular coordinate is 
the protonic coordinate. In one definition, the transition state is the line of steepest 
ascent from the saddle-point, indicated in fig. 1 by the dotted line. The latter is seen 
to be curved in the present highly exothermic instance. 

A typical trajectory for reactants with an initial zero-point vibrational energy and 
with a substantial initial translational energy (9 kcal/mol above the barrier height 
of 1 kcal/mol) is indicated in fig. 1. For most of the trajectories corresponding to 
these and lower energies the relevant part of the dotted line is effectively perpendicular 
to the horizontal axis. Thereby, the reaction coordinate in this appreciably exother- 
mic system is essentially the C1 - - Br distance. 

We found that the classical probabilities agreed approximately with the quantum 
mechanical values, for the transitions which were classically allowed, i.e., those for 
which the final vibrational states of products were attainable from the initial ones of 
reactants via real-valued classical mechanical trajectories. (Classically-forbidden 
transitions are those which require complex-valued trajectories. 2, 

A substantial fraction of the trajectories which passed through the transition 
state region (i.e., across the dotted line) did or did not recross it to reform reactants, 
depending on the initial translational energy. The behaviour in the preliminary 
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64 D Y N A M I C S  O F  P R O T O N  T R A N S F E R  

studies appears to suggest that a proper phasing of the H-and C1-Br motions is 
needed for reaction. The recrossing itself " wastes " phase space. It implies that, 
apart from tunnelling corrections, the rate will be typically less than that predicted 
by transition state t h e ~ r y . ' ~  However, even a factor of three as a discrepancy 
between transition state theory and the actual dynamics is a minor one, considering 
the large variations in rate which can be studied by variation of factors such as AG;'. 

A second deduction can be made from the classical trajectories using semi- 
classical l4 arguments : Because the zero-point energy of the vibrational motion (more 
precisely, a vibrational " action variable " J) is roughly constant up to the transition 
state region in the above study, the vibrational motion is substantially " adiabatic " l4 
in this region of space. The "quantum number " of the vibration N is related to J 
by the well-known Bohr-Sommerfeld eqn (3.2) for a vibrational coordinate, a formula 
later justified by the WKB solution of the Schrodinger equation. 

J = ( N + t ) h .  

While N can have any real value classically but only integer values quantum mechani- 
cally, the same approximate adiabatic behaviour which led to a tendency to preserve 
J classically in the present case, in the region up to the transition state, will lead to a 
similar tendency to preserve N quantum mechanically in that spatial region. The 
vibrational energy is, for a harmonic oscillator of frequency v, equal to Jv, both 
classically and quantum mechanically. Thus, apart from minor variations of v in 
this region, the vibrational energy is also roughly constant. Since isotopic effects on 
the rate constant, in the absence of tunnelling, are largely attributed to differences in 
zero-point energies of reactants and the transition state,' there should be essentially 
no isotopic effect on the rate constant in this appreciably exothermic system, when H 
is substituted for D. 

Finally, a type of Franck-Condon principle also operates in the region where the 
system moves from one channel to another, the momentum of the " slow " coordinate 
C1-Br being substantially conserved in that region. Here, the protonic motion is 
very nonadiabatic, and a significant increase of its vibrational action (and energy) 
occurs. Thus, in the reverse reaction vibrational energy should facilitate the proton 
transfer, an effect which might be observable in a suitably stabilized (e.g., intra- 
molecularly hydrogen-bonded) system using short laser pulses. 

In the case of the corresponding thermoneutral system 
C l + H C 1 3  ClH+Cl, (3.3) 

the potential energy surface is quite different from that depicted in fig. 1. The surface 
is now symmetrical about the bisector of the acute angle, and the dotted line repre- 
senting the transition state now lies along that bisector. The reaction coordinate is, 
in the vicinity of the transition state, perpendicular (as before) to the dotted line and 
so now is substantially a motion of the proton. The original zero-point energy of 
the protonic motion has thus been lost, or really converted to motion along the 
reaction coordinate, when the system passes across the dotted line region. The full 
effect of an H and D isotopic difference in zero-point energy is thereby felt, yielding 
a maximum isotope effect (tunnelling corrections aside). These facts are well- 
known,I5 but it is interesting to see them borne out by the behaviour of the trajectories. 
The various dynamical results, classical and semiclassical, thus have implications for 
approximate dynamical treatments of light particle transfer, but we shall omit here 
further discussion of them. 

The above remarks apply to potential energy surfaces such as that in fig. 1 and 
its analogues for less (or more) exothermic reactions. In the case of proton transfers 
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R. A. M A R C U S  65 

in solution the effective surface is more apt to have potential energy wells in the two 
channels rather than free escape channels out to infinity, wells created by hydrogen 
bonding or by cage effects. Nevertheless, from semiclassical considerations, effects 
similar to those described above are expected to apply in this case also. 

4 WORK TERMS wr A N D  wp 

In the case of carbon acids 
or bases, which do not participate in hydrogen bonding, some desolvation of an 
attacking nitrogen oxygen base or acid may be needed and not compensated for by 
a favourable AG;', and so contribute a term wies to wr. Again, in the large molecules 
which are usually involved and when the reactants are not joined by hydrogen bonding, 
an appreciable steric restriction may occur, and contribute a term wit. For example, 
in the gas phase abstraction of a hydrogen atom from an alkane by a methyl group 

a steric factor of the order of can be anticipated,16 and would correspond to a 
work term wr of about 4 kcal/mol. Such steric factors might be reduced somewhat 
by favourable AGi', but only a slight effect would be anticipated in the present case. 

If one assigns to the partial desolvation a contribution of the order of 6 kcal/mol 
and assumes a steric effect of the above magnitude the net wr for nonhydrogen bonded 
reactants would be about 10 kcal/mol, which is of the same order as that needed to 
explain the data.2* 

Another contribution to the work term can also occur, when the immediate 
product of the third step in the reaction, eqn (2.4), is not the separated products but 
rather is a metastable intermediate which later ruptures, (cf. eqn (5.1) later). 
Whenever this last step has an activation barrier W i e c  which exceeds the barrier for 
the intermediate to reform the reactants, this wiec should in effect be added to the 
previously computed free energy barrier. 

W' = W i e s  + Wft + wiec. 
Of these w' contributions, only the first two contribute to the w' in eqn (2.7). 

The work term can be a composite of several terms. 

CH3+HR + CH4+R, (4.1) 

We then have 

(4.2) 

5 NONEQUILIBRIUM SOLVENT POLARIZATION 

In electron transfer reactions a charge transfer occurs between two reactants, and 
the " charge centres " are usually some 5 to 10 A apart. In the transition state the 
electron cannot be in both places at the same time, and the solvent orientation- 
vibrational polarization adopts a value which is some compromise. The solvent 
electronic polarization, on the other hand, can largely follow the motion of the electron 
being transferred. This situation, where the nuclear part of the solvent polarization 
is not that dictated by either charge centre alone and where the electronic part is 
dictated by the instantaneous position of the transferred electron and by the field due 
to the nuclear part, was termed " nonequilibrium polarization " and treated in some 

In the case of a simple proton transfer between two adjacent centres, as in eqn 
(2.3), the charge is transferred only over a relatively short distance, and an effect such 
as the above would be expected to be minor. In some cases, however, the assumed 
mechanism involves rearrangement of several bonds, with a somewhat larger dis- 
placement of charge in the proton transfer step (5.1). One example might be 

(followed by elimination of N2 and by other processes). 
AH+R1RzC=N+=N- + A-+RIR2CH-N+ N (5.1) 

S 10-3 
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66 D Y N A M I C S  OF P R O T O N  T R A N S F E R  

To obtain the potential energy of the transition state for any given configuration 
of the nuclei of the reaction complex and of the surrounding solvent, the Schrodinger 
equation is solved for the electronic wave function. When attention is focused on 
the electrons of the reactants, and the electrons of the solvent are treated, for reason 
of simplicity, as forming a polarizable dielectric continum, one obtains a nonlinear 
Schrodinger equation. 

The free energy of formation of a nonequilibrium polarization state with an 
arbitrary orientation-vibration solvent polarization is given by 

W,,, = -[(I - 1/D0,)/8n] J D2dr- J P . D dr+2nc JP2dr  (5.2) 

neglecting dielectric image effects. D(r) is the field directly due to the charges on the 
reactants, l/c is l/Dop- l/Ds, r is any point in the solvent, P(r) is a function of the 
arbitrary orientation-vibration polarization, and Do, and D, are the optical and static 
dielectric constants of the solvent, respectively. Ultimately, eqn (5.2) can be replaced 
by a more rigorous, statistical mechanical expression, but it will suffice for purposes 
of the present discuqsion. 

The Schrodinger equation for the wave function $ of the electrons of the reactants, 
for any nuclear configuration Y, of the reactants and (positions) of solvent molecules 
is obtained by minimizing 2o the following functional p($) with respect to ,$ at a 
given P. 

(5.3) 

where r1 denotes the totality of coordinates for the reactants’ electrons, and I V$ I 2  
really denotes a summation over such electrons a, b, . . . : I Va$ l 2  + I Vb$ l 2  + . . . ; 
V(r, r,) includes the potential energy arising from interactions within the reactants 
and with the solvent molecules, apart from that included in the relatively long-range 
polarization term W,,,. 

UItimately, all values of the r,  are considered and a suitable quantum and statistical 
mechanical average is made over r,. The D appearing in eqn (5.2) is 

1/1 r-r1 I being an abbreviation for a sum over reactants’ electrons, 1 /I r-ra I + 
When the resulting (nonlinear) Schrodinger equation is solved for $, one obtains 

a $ which depends on P(r).  p($) then becomes a function of P which can then be 
obtained by then minimizing p with respect to P. In the case of electron transfer 
reactions it was possible to introduce a simplifying approximation, writing $ as a 
linear contribution of two terms with weak overlap between them, one term being the 
same as for the reactants and the other being the same as for the products, and both 
reactants treated as spherical.18 The results obtained from eqn (5.2)-(5.4) can be 
shown (Appendix 1) to be equivalent to those obtained l 8  earlier by a different and 
in some respects less general method. 

To the extent that the electronic wave function for the transition state of the 
reaction in eqn (5.1) could be similarly approximated for this purpose,21 the 
previous 4*  * results for electron transfers could be adapted to that for proton transfer, 
and added to the contribution to AE in eqn (2.10). When $ cannot be written as a 
linear combination eqn (5.2)-(5.4) remain applicable but more formidable. Elect- 
ronic structure calculations for the transition state of reactions such as (5.1) would 
therefore be helpful. 

1/1 r-ryb I+  . . . 
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R. A. M A R C U S  61 

When the electronic energy of the system has been obtained as a function of 
r, and P, the latter remain to be treated, statistically as in transition state theory or 
dynamically. Examples of dynamical treatments for other or  related potential 
energy surfaces are given in ref. (21) and (22). 

6 S U M M A R Y  

A substantial " reactant asymmetry '' does not have a large effect on the slope of 
Bronsted plots (Section 2) .  Possible contributions to the work terms are summarized 
in Section 4, and the relation of the nonequilibrium polarization study in electron 
transfers to a possible one in proton transfer is considered in Section 5. On the 
dynamics side, some results and implications of a recent study of dynamics of light- 
particle transfer are described in Section 3. 

APPENDIX 1 
R E L A T I O N  OF E Q N  (5.3) TO THOSE I N  REF. (18) 

If $l denotes the electronic wave function for the pair of reactants, as in ref. (18) and 
t,b2 denotes that for the products, a trial $ is 

This $ is introduced into eqn (5.3) and the variation, 6 9 ,  is calculated at fixed P, and set 
equal to zero. The 6cl and 6c2 are subject to 

When the assumption of weak overlap of t+bl and $ 2  is imposed, one can show that one 
obtains the result that the free energy of reactants with an arbitrary P equals that of the 
products, in this same P environment. This condition is identical with that imposed in 
ref. (18) to satisfy the Franck-Condon principle for these weak overlap systems. One 
next finds P by minimizing 9 subject to this new constraint, obtaining a relation the same 
as that used in ref. (18). The results in that paper are then obtained when the approximation 
of spherical reactants is introduced. 

C l + C 2  = 1 .  (A2) 
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