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The modeling of coupled fluid transport and deformation in a porous medium is essential to
predict the various geomechanical process such as CO2 sequestration, hydraulic fracturing, and so
on. Current applications of interest, for instance, that include fracturing or damage of the solid
phase, require a nonlinear description of the large deformations that can occur. This paper presents a
variational energy-based continuummechanics framework to model large-deformation poroelasticity.
The approach begins from the total free energy density that is additively composed of the free energy
of the components. A variational procedure then provides the balance of momentum, fluid transport
balance, and pressure relations. A numerical approach based on finite elements is applied to analyze
the behavior of saturated and unsaturated porous media using a nonlinear constitutive model for the
solid skeleton. Examples studied include the Terzaghi and Mandel problems; a gas-liquid phase-
changing fluid; multiple immiscible gases; and unsaturated systems where we model injection of fluid
into soil. The proposed variational approach can potentially have advantages for numerical methods
as well as for combining with data-driven models in a Bayesian framework.

1. Introduction
The modeling of fluid transport in porous deformable media, and analyzing the coupled deformation-
transport behavior, is of importance for a variety of engineering and scientific applications, ranging from
the modeling of natural and engineered biological materials to geomechanics, e.g. [Ehl09, SLL+20, JA20,
Sel13, Sim92, DJB20, AZ15, SOS13, TA20, LHA18, FEN19,DSF10, vSAAGC20,MN12, SKH+19, TW18,
FJK+21, JJ14, Sim92, HG79, BOKCW20] and numerous other works. It has therefore been the focus of
numerous formulations, starting from the seminal work of Biot [Bio35, Bio41]. In this paper, we formulate
a general finite-deformation model for poroelasticity based on a variational approach.

The classical linear theory proposed by Biot has been applied to study a wide range problems, e.g.
[Cou04, Wan00, Rud01, Cow99]. However, the many assumptions of the linear theory, including linear
elastic response for the solid phase, infinitesimal strain, and constant permeability are too restrictive to
model the complex nonlinear response of many porous systems, such as polymers, damaged geomaterials
with fracture, and soft tissues.

Therefore, there have been many efforts to generalize the theory to the nonlinear setting, with early works
starting from Biot [Bio73]. More recently, examples of nonlinear large-deformation poroelastic models
include models for elastomeric and biological materials [MDW16]; multiphase continuum formulations
presented in [FG12] and [HZZS08] for saturated fields reinforced by elastic fibers and polymeric gels,
respectively; and for computational geomechanics, such as multiphase finite element formulations for fully
and partially saturated porous geomaterials, by Borja and coworkers [LBR04, Bor04, SB14]. Another older
approach is based on mixture theory, e.g. [Bow82], which leads to a formidable set of equations.

The key contribution of this paper is a variational derivation that starts from a free energy, and uses
variational principles to obtain the governing equations, in contrast to other works in the literature. For
instance, a closely-related body of work is by Borja and coworkers [Bor06, Bor04], in which they use a
thermodynamic approach based on an energy and also the balance laws of continuum mechanics; they
formulate a three-phase continuum mixture theory to analyze a partially saturated porous media. They use
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a free energy function of the medium is defined based on the solid strain, displacement vector, and pressure
of each phase. In a related approach, [KPC07] formulated an energy-based method for unsaturated porous
medium where they used the energy equation which is developed by [BC96].

Our approach is instead to directly use the energy and associated variational principles to derive the
governing equations. Similar approaches have been used in geomechanics to model solid materials with a
fluid phase, i.e. two-phase porous mediummodels, e.g. [BA95, SWB16, Ana15]. Variational approaches for
poromechanics are relatively recent, and appear to begin with [Gaj10, CA10]. While we follow the overall
structure of these works in our formulation, these have been restricted to simpler settings, e.g. saturated
systems, two-phase systems, and so on. In this work, as in those works, the governing equations are derived
from energy minimization. However, [CA10] assume a multiplicative decomposition of the deformation
gradient into an elastic part and a poromechanical part – corresponding to the deformation caused by fluid
transport – whereas we do not use this assumption.

This work presents a variational energy-based model for poromechanics, which can be applied to both
saturated and unsaturated porous mediums, containing compressible constituents. The proposed model is
amenable to the use of arbitrary energy density functions for both the fluid and solid phases. In particular, it
can model unsaturated porous media with compressible constituents, and multiple immiscible fluid phases
with compressible and incompressible constituents. Our strategy is to begin with the free energy density
function, and use a variational approach to obtain the conservation of mass and momentum, and the pressure
equality equations. An important advantage of the energetic formulation and the minimization structure is
the advantage for robust numerical schemes using finite elements and other methods [SF73]. In addition,
it can enable efficient numerical approaches to combining physics-based models with data-driven strategies
[KMDP22].

Organization. Section 2 provides the general formulation, starting with the kinematics and then using
a variational approach to develop the general governing equations. Sections 3 discusses the constitutive
models for saturated and unsaturated systems, which includes a discussion on porous media with single and
multiple fluids. Section 4 examines the relation between the referential and current volume fractions for
different assumptions on the fluid and solid responses. Section 5 provides numerical solutions of benchmark
problems proposed by Terzaghi andMandel. Sections 6, 7, and 8 provides numerical examples to investigate
the settings of a phase-changing (gas to liquid) fluid, multiple compressible fluids, and unsaturated systems.

2. Model Formulation
We assume that our system consists of N phases or components indexed by i, with i = 1 corresponding to
the solid skeleton phase, and i = 2, . . . , N corresponding to the fluid phases. We follow the motion of the
solid skeleton with respect to the reference configuration, i.e., we use a Lagrangian description. Therefore,
we use material time derivatives. Once we obtain the governing equations, they can be pushed forward to
the current configuration.

The gradient and divergence operators in the reference and current configurations will be denoted
∇0,∇,div0, div respectively. In general, quantities with the subscript 0 will refer to referential quantities.

We use
d

dt
to denote the material time derivative following the motion of the solid skeleton.

2.A. Kinematics
We consider a porous medium Ω, containing solid and fluid components. We consider a two-scale picture
motivated by homogenization. Namely, there is a macroscopic deformation x(x0, t), where x is the location
at time t of a material particle located at x0 in the reference configuration. To each macroscale location, i.e.,
for a given x0, there corresponds a microscale representative volume element (RVE), which accounts for
the geometry of the porous skeleton and other microscale features (Figure 1). Therefore, at the macroscopic
homogenized, an RVE is equivalent to a material point.

We define:
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Figure 1. Representative volume element of the porous medium, and relation of reference and current configurations.

1. the macroscale deformation gradient tensor F :=
∂x

∂x0
, the Jacobian J := detF , and the displace-

ment u(x0, t) := x(x0, t)− x0;
2. the densities Pi and P0i as the mass of component i per unit (current and referential respectively)

volume of the mixture;
3. the true densities ρi and ρ0i as the mass of component i per unit (current and referential respectively)

volume occupied by component i;
4. the volume fractions φi and φ0i of phase i in the current and reference respectively.

We highlight that we will use a Lagrangian description for all of these quantities. That is, while Pi, ρi, φi
all describe quantities in the current configuration, they will be written as functions of x0.

It follows from these definitions that:

P0i = φ0iρ0i (2.1a)
Pi = φiρi (2.1b)

A central assumption is that the entire RVE is mapped by F as an affine transformation. Further, the mass
of each phase contained in an RVE is the same in the reference and current configurations1. Together, these
imply the following relations between quantities in the reference and current configurations:

Differential volume: dΩ0 7→ dΩ = J dΩ0 (2.2a)
Density: P0i 7→ Pi = J−1P0i (2.2b)

True density: ρ0i 7→ ρi =
φ0i
φi
J−1ρ0i (2.2c)

The relation between the referential and current versions of other quantities such as the volume fraction
will depend on assumptions such as incompressibility, and will be discussed in later sections.

We notice that φ0i is a fixed referential quantity that depends only on the geometry of the reference RVE,
while φi depends on the deformation. Therefore, the latter is a suitable quantity to appear as an argument
of the total free energy below. Further, P0i is not a fixed referential quantity, because the mass of the fluid
phases in the RVE can change due to transport. Therefore, P0i is a suitable quantity to appear as an argument
of the total free energy.

1 We note, however, that the mass of the fluid phases in both the reference and current configuration can change in time due to
mass transport.
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2.B. Energetics
The total free energy of the porous medium consisting of a solid skeleton and N − 1 fluid phases is given
by:

E [x, {P0i}, {φi}] =

∫
Ω0

(W0 (∇0x, {P0i}, {φi})− ψ0(x, {P0i})) dΩ0−
∫
∂A
t∗0·xdS−

N∑
i=2

∫
∂Bi

η∗0iP0i dS

(2.3)
where W0 is the (Helmholtz) energy per unit referential volume, and ψ0 is the force potential per unit
referential volume. The boundary conditions correspond to specified mechanical traction t∗ on the solid
skeleton over some part of the boundary ∂A, and specified referential chemical potential η∗0i over some part
of the boundary ∂Bi for each fluid phase.

We will assume that the energy density W0 is additively composed of the energy densities of the
components:

W0 = φ0sW0s(F ) +
N∑
i=2

φ0iW0i(J, P0i, φi) (2.4)

whereW0i is the energy density of phase i per unit referential volume.
For the solid phase, it is standard to assume thatW01 is only a function of F , and that P01 and φ1 will

not appear.
For the fluid phases, we are typically given a free energy density (per unit current volume) that is a

function only of the true density of the corresponding phase. Denoting this given free energy density as
Wi(ρi), we write the energy densityW0i in terms of the arguments of E:

W0i =
Jφi
φ0i

Wi

(
J−1P0i/φi

)
(2.5)

where we have used that ρi = J−1P0i/φi from (2.1) and (2.2).

2.C. Balance of Mass
Following [Gaj10, Cou04], we define the (referential) chemical potential η0 as the variation of E with
respect to the referential density for the fluid phases in the bulk:

η0i = −δP0iE = −∂W0

∂P0i
+
∂ψ0

∂P0i
(2.6)

where we use the notation δP0iE to denote the variational (functional) derivative of E with respect to P0i.
The boundary condition that appears from the variational principle corresponds to η0i = η∗0i specified on
∂Bi; this is related, but not directly equivalent, to specifying the pressure in the general setting.

The velocity in the reference configuration – relative to the solid skeleton – of the i-th fluid phase is
assumed to be proportional to the gradient of the chemical potential:

v0i = Ki∇0η0i = Ki

(
−∇0

∂W0

∂P0i
+∇0

∂ψ0

∂P0i

)
(2.7)

where Ki is the positive-definite second-order permeability tensor of the porous medium in the reference
configuration. Following [BA95], we can push forward (2.7) as follows:

vi = J−1Fv0i = ki

(
−∇∂W0

∂P0i
+∇ ∂ψ0

∂P0i

)
(2.8)
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where ki is the permeability tensor of the porous medium in the current configuration,Ki = JF−1kiF
−T

[LBR04], using∇0 = F T∇. In an isotropic medium, the permeability tensor can be written:

ki =
k̃i
g
I (2.9)

where g is the gravitational acceleration, and k̃i is the hydraulic conductivity, which is defined as k̃i =
κ

γi
ρig.

κ is the true permeability of the solid; γi is the dynamic viscosity of the fluid; ρi is the fluid density; and I
is the second-order identity tensor.

Therefore, the fluid flux vector for the i-th phase is:

qi = Pivi = −ki
(
Pi∇

∂W0

∂P0i
− Pi∇

∂ψ0

∂P0i

)
(2.10)

The conservation of mass for each fluid phase in the current configuration can be written as follows:

−
∫
∂Ω
qi · n dS =

d

dt

(∫
Ω
Pi dV

)
⇒ −J div qi =

d

dt
PiJ (2.11)

where the differential form follows from the integral form by arbitrariness of Ω.
Specializing to a uniform gravitational field, the referential potential can be written as ψ0 = b0 ·x, where

b0 is the body force per unit referential volume. This can be written in terms of the densities and volume
fractions of the individual phases:

b0 := P0g =

(
N∑
i=1

P0i

)
g (2.12)

where P0 is the total mass per unit referential volume, and g is the force per unit mass due to gravity. Then,
we can simplify the potential term in (2.10) to:

∂ψ0

∂P0i
= g · x⇒ ∇ ∂ψ0

∂P0i
= g (2.13)

Consequently, the fluid flux vector in (2.10)) can be rewritten as follows:

qi = −ki
(
Pi∇

∂W0

∂P0i
− Pig

)
(2.14)

2.D. Balance of Momentum

Setting to zero the variation of E with respect to x yields the force equilibrium equation in the referential
and current forms:

div0 T +
∂ψ0

∂x
= 0⇔ divσ + J−1

∂ψ0

∂x
= 0 (2.15)

where T :=
∂W0

∂F
is the first Piola stress tensor; σ =

1

J
TF T is the Cauchy stress tensor; the body force is

defined through the derivative of
∂ψ0

∂x
; and the corresponding boundary conditions from the variation are

T n̂0 = t∗0.
If we specialize to a uniform gravitational field, the body force in the reference b0 is given by the
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expression in (2.12). In the current configuration, we have

b := Pg =

(
N∑
i=1

Pi

)
g (2.16)

where P is the total mass per unit current volume. We note that b0 and b are related by the expression
b = J−1b0.

2.E. Balance of Fluid Pressure
We first notice that the variables φi are not independent when we take variations; they must satisfy the

constraint
N∑
i=1

φi = 1. We can alternatively write this as:

N∑
i=1

φi = 1⇒ φ2 = 1− φs − φ3 − · · · − φi − · · · − φN (2.17)

We will eliminate φ2 in terms of the other φi. Further, we notice that φs will be prescribed; similarly, some
of the φi could be prescribed, e.g., due to incompressibility.

Setting to zero the variation of E with respect to φi, and using the form from (2.4), gives:

∂W0

∂φi
= φ02

∂W02

∂φ2

∂φ2
∂φi

+ φ0i
∂W0i

∂φi
= 0⇒ −φ02

∂W02

∂φ2
+ φ0i

∂W0i

∂φi
= 0 (2.18)

Since this is true for every i, it follows that:

φ02
∂W02

∂φ2
= φ03

∂W03

∂φ3
= · · · = φ0N

∂W0N

∂φN
(2.19)

We next recall that the derivative of the Helmholtz free energy with respect to volume, keeping tem-
perature and mass fixed, is the pressure p. Rewriting this in terms of the density ρ – which is inversely
proportional to the volume when the mass is fixed – and in terms of the Helmholtz free energy density per
unit volume, we have the following relation between the fluid pressure p and the Helmholtz free energy
density:

p = W (ρ)− ρ dW

dρ
(2.20)

This relation holds for each fluid phase individually.
Applying the equilibrium relations above to the form assumed in (2.5), we get that:

φ0i
∂W0i

∂φi
= J

(
Wi

(
J−1P0i/φi

)
− J−1P0i

φi

dWi

dρi

)
= Jpi (2.21)

Since J depends only on x0, it follows that the pressures in each phase pi at a given x0 must be equal.
We highlight that the balance of pressure provides a local condition that must be satisfied pointwise and

does not require the solution of PDE, in contrast to the balances of mass and momentum.

2.F. Compatibility with the Second Law of Thermodynamics
To ensure that the proposed model is consistent with the second law of thermodynamics, we first notice that
in an isothermal setting it reduces to the requirement that the dissipation is non-negative for any process
[GFA10].



7

Following [PF90, AK06, MD14, dMPBD18, AD17, AD15a, AD15b], we begin by taking the time
derivative of the free energy from (2.3) to get:

dE

dt
=

∫
Ω0

∑
i

(
∂W0

∂P0i
− ∂ψ0

∂P0i

)
dP0i

dt
dΩ0 (2.22)

where we have used that
dφi
dt

= 0 and
dx

dt
= 0 per our quasistatic model. We have assumed that the

boundary terms vanish for simplicity, but they can easily be accounted for following, e.g., [PF90, AD15a].
From Section 2.C, we can push back the balance of mass to the reference configuration to obtain:

− J div qi =
d

dt
PiJ ⇒ −div0 q0i =

d

dt
P0i (2.23)

and the corresponding flux for each fluid phase is given by:

q0i = −PiKi∇0

(
∂W0

∂P0i
− ∂ψ0

∂P0i

)
(2.24)

Using these expressions, and imposing the condition thatK is a positive-definite tensor, we can rewrite
dE

dt
as follows and use integration-by-parts:

dE

dt
=

∫
Ω0

∑
i

(
∂W0

∂P0i
− ∂ψ0

∂P0i

)
div0

[
PiKi∇0

(
∂W0

∂P0i
− ∂ψ0

∂P0i

)]
dΩ0

= −
∫
Ω0

∑
i

Pi∇0

(
∂W0

∂P0i
− ∂ψ0

∂P0i

)
·Ki∇0

(
∂W0

∂P0i
− ∂ψ0

∂P0i

)
dΩ0

≤ 0

(2.25)

which shows that E is non-increasing in the proposed model, as required by the second law of thermody-
namics.

3. Models for Saturated and Unsaturated Systems
Single Compressible Fluid in a Saturated Medium. The energy density is:

W0(F , P0f , φf ) = (1− φ0f )W0s(F ) + φ0fW0f (J, P0f , φf ) (3.1)

where we have used N = 2 (solid s and fluid f ).

Multiple Immiscible Compressible Fluids. The energy density is:

W0(F , {P0i}Ni=2, {φi}Ni=2) = φ0sW0s(F ) +
N∑
i=2

φ0iW0i(J, P0i, φi) (3.2)

where the subscript s denotes quantities corresponding to the solid.

Unsaturated Systems. Consider an unsaturatedmediumwith a solid phase, a incompressible fluid phase (e.g.
water), and an compressible fluid phase (e.g. air). The state variables for the energy are F , P0I , P0c, φI , φc,
where the subscripts c and I denote quantities corresponding to the compressible fluid and incompressible
fluid respectively.
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For the incompressible fluid phase, we require that the true density in the current configuration has a
fixed value ρ̃I :

P0I

JφI
= ρ̃I (3.3)

We notice that the energy is constant for an incompressible fluid: all states that satisfy incompressibility
have the same energy, and all other states are inadmissible (i.e., have infinite energy). Since this energy is a
constant, it will not appear once we take variations and consequently we can set it to 0 for simplicity.

Therefore, we can write the total energy density as:

W0(F , P0I , P0c, φI , φc) = φ0sW0s(F ) + φ0cW0c(J, φc, P0c) (3.4)

We highlight some issues. First, if we further assume that the solid skeleton is incompressible and affinely
deformed by F , this imposes the additional constraint J = 1. Second, we notice that the incompressibility
constraint is generally not satisfied in the reference configuration, i.e. ρ0I 6= ρ̃I in general. Third, it is
sometimes reasonable to neglect the energy of the compressible fluid (e.g., air at low pressure in rock); in
that case, we need only consider the energy of the solid. However, we emphasize that the problem still
contains the influence of the fluid through the mass transport equations (2.11).

4. Models for Referential and Current Volume Fractions

𝐹

𝑑Ω0
𝑑Ω0𝑓 = 𝜙0𝑓𝑑Ω0
𝑑Ω0𝑠 = 1 − 𝜙0𝑓 𝑑Ω0

𝑑Ω = 𝐽𝑑Ω0
𝑑Ω𝑓 = 𝜙𝑓𝑑Ω

𝑑Ω𝑠 = 1 − 𝜙0𝑓 𝑑Ω0

Solid

Fluid

Figure 2. Volume change for an incompressible solid phase with a compressible fluid.

Incompressible Solid with Compressible Pore Space. Consider a porous medium with an incompressible
solid skeleton and compressible fluid in the pore space (Figure 2). From incompressibility of the solid
skeleton – meaning that the true current density ρs has a given fixed value – and the fact that the mass of
the solid skeleton is conserved because there is no mass transport of the solid, we have that the volume
occupied by the solid phase in the reference and current is constant. Therefore, the current and referential
volume fractions of the solid phase are related by φs = J−1φ0s. Using that the fluid volume fractions in the
reference and current are given by φ0f = 1−φ0s and φf = 1−φs, we have that φf = 1−J−1(1−φ0f ).

Affinely Deformed Solid with Compressible Fluid. Consider a porous medium with a compressible solid
phase and a compressible fluid phase (Figure 3). Let φ0f and φ0s be the referential volume fractions of
fluid and solid phases, respectively. The deformation of the solid phase is assumed to be affine with the
macroscopic deformation gradient F . This implies that φ0s = φs as follows. We have the following relation
between current and reference volume elements for the entire RVE as well as for the solid skeleton:

dΩ = J dΩ0 (4.1)
dΩs = J dΩ0s
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𝐹

𝑑Ω0
𝑑Ω0𝑓 = 𝜙0𝑓𝑑Ω0
𝑑Ω0𝑠 = 𝜙0𝑠𝑑Ω0

𝑑Ω = 𝐽𝑑Ω0
𝑑Ω𝑓 = 𝜙𝑓𝑑Ω

𝑑Ω𝑠 = 𝜙0𝑠𝐽𝑑Ω0

Solid

Fluid

Figure 3. Volume change for a compressible solid phase with a compressible fluid.

Further, from the definition of the volume fraction of the solid skeleton, we have:

dΩs = φs dΩ = φsJ dΩ0 (4.2)
dΩ0s = φ0s dΩ0

therefore, by substituting last equation in second equation, we can derive:

dΩ0 = Jφ0s dΩ0 (4.3)

We can therefore conclude that φ0s = φs.
Further, since φf = 1− φs and φ0f = 1− φ0s, it follows that φ0f = φf .

𝐹

𝑑Ω0

𝑑Ω0𝑐 = 𝜙0𝑐𝑑Ω0

𝑑Ω0𝐼 = 𝜙0𝐼𝑑Ω0

𝑑Ω0𝑠 = 𝜙0𝑠𝑑Ω0

𝑑Ω = 𝐽𝑑Ω0

𝑑Ω𝑐 = 𝜙𝑐𝑑Ω
𝑑Ω𝐼 = 𝜙0𝐼𝑑Ω0

𝑑Ω𝑠 = 𝜙0𝑠𝐽𝑑Ω0

Incompressible 
fluid

Solid

Compressible 
fluid

Figure 4. Volume change for a compressible solid phase with incompressible and compressible fluid phases.

Compressible Solid with Compressible and Incompressible Fluids. Consider a porous medium with com-
pressible solid skeleton and air and incompressible water (Figure 4). Let φ0s, φ0I , and φ0c be the reference
volume fractions of compressible solid, incompressible fluid, and compressible fluid phases, respectively.
Assuming that the solid phase deforms affinely, we have that φs = φ0s. For the incompressible fluid phase,
we require that the true density in the current configuration have a fixed value ρ̃I , giving φI =

P0I

Jρ̃I
. Using

that the volume fractions must sum to 1, we have φc = 1− φ0s −
P0I

Jρ̃I
.
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5. Model Verification with Terzaghi’s and Mandel’s Problems

In this section, we verify the model by investigating its response in the model consolidation problems
proposed by Terzaghi and Mandel. The general form of the strain energy density for a saturated porous
medium with an incompressible solid phase and compressible fluid phase is:

W0 = (1− φ0f )W0s(F ) + φ0fW0f (J, P0f , φf ) (5.1)

Following section 2.D, the first Piola stress tensor can be derived as:

T = (1− φ0f )
∂W0s

∂F
+ φ0f

∂W0f

∂J
JF−T (5.2)

Using (2.5) and (2.21), we can write:

∂W0f

∂J
= −p

φf
φ0f

(5.3)

Thus, the Cauchy stress tensor can be written as follows:

σ = (1− φ0f )J−1F T ∂W0s

∂F
− φfpI (5.4)

Equation (5.4) shows that the total Cauchy stress is obtained by a summation of the solid and fluid partial
stresses σ = σs + σf , where σf = −φfpI is an isotropic stress tensor. In addition, the general expression
of the Cauchy effective stress tensor is σ′ = σ + pI , which can be written as:

σ′ = (1− φf )

(
F T ∂W0s

∂F
+ pI

)
(5.5)

Assuming that the deformation of the solid phase is small and that the response is isotropic, we linearize it
to get:

σ = (1− φf ) (2µε+ λ tr(ε)I)− φfpI (5.6)

where tr denotes the trace operator. We then define the renormalized Lame constants µ̃ = (1− φ0f )µ and
λ̃ = (1−φ0f )λ. We define p̃ = φfp and p as the total pressure and the intrinsic fluid pressure, respectively.

Following section 2.C, the conservation of mass for the fluid phase can be written as:

d

dt
PfJ = −J div q (5.7)

Following [Bor05], the bulk modulus of the fluid phase can be written:

Kf = ρf
dp

dρf
(5.8)

We recall further that:

Pf = φfρf (5.9)
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Using (5.8) and (5.9), we can rewrite the conservation of mass for the fluid and solid phases respectively as:

dJ

dt

φf
J

+
dφf
dt

+
dp

dt

φf
Kf

= − 1

ρf
div q (5.10)

dJ

dt

φs
J

+
dφs
dt

= 0 (5.11)

The second equation, for the solid phase, is derived in the same way as the equation (5.10) for the fluid
phase, but also using that there is no transport of the solid phase and that the solid phase is incompressible
(the bulk modulusKs →∞).

Adding (5.10) and (5.11) yields the balance of mass of the porous system as follows:

dJ

dt

1

J
+

dp

dt

φf
Kf

= − 1

ρf
div q (5.12)

Ignoring the effect of gravity and using (2.2) and (2.6), it follows that:

η0 =
∂Wf (ρ)

∂ρ
(5.13)

∂p

∂η0
= −Pf (5.14)

Using these equations and considering small deformations, (5.12) can be written as:

d tr(ε)

dt
+

dp

dt

φf
Kf

=
κ

γ
∇2p (5.15)

5.A. Terzaghi’s one-dimensional consolidation

In this section, we investigate the one-dimensional Terzaghi’s problem. The geometry of the sample is
shown in Fig. 5, and the numerical values of the model parameters are listed in Table 1. We consider a
fully saturated sample with porosity φf = 0.375 that is loaded instantaneously at t = 0 by a vertical load
w = 10 kPa at the top boundary, and then remains constant in time. This sets up a mechanical stress in the
sample.

The fluid flux is allowed to drain out of the top surface and is zero on the bottom surface. The pressure
boundary conditions of are:

Top BC: p̃(z = 0) = 0; Bottom BC:
∂p̃

∂z

∣∣∣∣
z=h

= 0 (5.16)

The closed-form solution to this problem can be written as [Cou04]:

p̄(z̄, t̄) =

∞∑
n=0

4

π(2n+ 1)
sin

(
(2n+ 1)π

2
z̄

)
exp

(
−(2n+ 1)2π2

4
t̄

)
(5.17)

p̃ =
wKf

Kf + φf (λ̃+ 2µ̃)
p̄; z = hz̄; t =

h2κ

γ

(
Kf (λ̃+ 2µ̃)

Kf + φf (λ̃+ 2µ̃)

)
t̄ (5.18)

Fig. 6 shows the comparison of the closed-form and numerical results at different times. Due to the
compressibility of the pore space, the fluid drains gradually from the top boundary of specimen; therefore
the pore pressure value decreases and the effective stress increases as time increases. As time increases, the
pore pressure tends to 0 and the solid partial stress tends to the external load.
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uu
Figure 5. Geometry of Terzaghi’s problem.

Property Value
Solid phase Lame constant, λ̃ 40 MPa
Solid phase Lame constant, µ̃ 40 MPa

Hydraulic conductivity, k̃ 10× 10−8 m/s
Fluid bulk modulus,Kf 2270 MPa

Table 1. Properties of solid and fluid phases.

5.B. Mandel’s two-dimensional consolidation

In this section, we discuss a two-dimensional consolidation of a porous sample. The geometry of the
specimen is shown in Fig. 7, and the material properties and soil porosity are assumed the same as the
previous example. We consider a specimen with infinite length in the z direction which is between two
horizontal plates (the top and bottom boundaries).

A constant load w = 10 kPa is applied in the vertical direction at t = 0, and remains constant thereafter.
The left and right boundaries are traction-free.

For the fluid flow, we assume that there is no flux at the top and bottom boundaries, and the pressure is
0 on the left and right boundaries (located at x = ±a/2).

The closed-form solution for the pressure distribution is [Cou04]:

p̄(x̄, t̄) = 2

∞∑
n=1

cos(αnx̄)− cosαn
αn − sinαn cosαn

sinαn exp(−α2
nt̄) (5.19)

p̃ =
1

3
B(1 + νu)wp̄; x = ax̄; t =

a2κ

γ

(
Kf (λ̃+ 2µ̃)

Kf + φf (λ̃+ 2µ̃)

)
t̄ (5.20)
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Figure 6. Variation of pressure with height for Terzaghi’s problem.

where αn is the solution of the following equation:

tanαn
αn

=
1− ν
νu − ν

; where ν =
λ̃

2(λ̃+ µ̃)
; νu =

3ν +B(1− 2ν)

3−B(1− 2ν)
; B =

Kf

φfKu
; Ku = λ+

2µ̃

3
+
Kf

φf
(5.21)

Once the load is applied, the fluid pressure decreases at the vicinity of left and right boundaries due
to drainage out of the sides. Due to relatively slow drainage, the pressure decrease cannot be observed
immediately in the whole domain, while the total load remains constant. Therefore, the pore pressure
increases beyond the initial value at the center of specimen, which is the Mandel effect. The closed-form
solution and our numerical results are shown in Fig. 8 for various times; we notice a signature of the
Mandel effect at t = 0.5 s wherein we have the maximum value of pore pressure in the central region of the
specimen. Similarly, Fig. 9 shows the pore pressure distribution at t = 1.0 s. We see clearly the increase of
pore pressure beyond the initial pressure at the center, and it goes to 0 on the right and left boundaries.

The variation of non-dimensional pore pressure (p̄) at different locations (from Fig. 7) vs. logarithmic
time is plotted in Fig. 10. The log scale makes more prominent the pore pressure increase above its initial
value shortly after applying the vertical load due to the Mandel effect. Also, the comparison of these three
graphs at pointsA,B, and C, clearly shows that the specimen experiences the highest amount of early times
pressure increase at the central points (point A), and the Mandel effect vanishes at the vicinity of left and
right boundaries.

6. Van der Waals compressible fluid
In this section, we examine a porous medium containing a single fluid phase that is modeled as a Van der
Waals (VdW) gas, motivated by experimental approaches such as [KPZB12]. A key feature of the VdW
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Figure 7. Geometry and the boundary conditions for Mandel’s problem.
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Figure 8. Variation of pore pressure in the horizontal direction at different times.

model is that it allows for a change from gas to liquid, and provides a simple model for gases such as
carbon dioxide (CO2). An important challenge in simulating gas injection in porous media is to predict the
gas-liquid phase transformation of the injected gas under high pressure in the vicinity of the injection point.
The VdW model for the fluid phase enables us to investigate this complex behavior.

The Helmholtz free energy density per unit current volume of a VdW gas is given by the expression:

Wf (ρ) = cρRT (1− log(cRT ))− ρRT log (ρ− b)− aρ2 (6.1)

where c, a, b, R and S0 are constants, and T is the temperature [MM09].
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Figure 9. Pressure distribution for Mandel’s problem at t = 1 s.
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Figure 10. Pore pressure vs. time at different distances from the center of specimen.

Following (2.5), we rewrite this as:

W0f (J, P0, φ) =
Jφ

φ0
W
(
J−1P0/φ

)
= c

P0

φ
RT (1− log(cRT ))− P0

φ
RT log

(
φJ

P0
− b
)
− a P

2
0

φ2J
(6.2)
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where we have used that φ = φ0 from Section 4 (affinely deformed solid with compressible fluid).
We use a Neo-Hookean model for the solid phase:

W0s(F ) =
µ

2
(tr(F TF )− 2)− µ log J +

λ

2
(log J)2 (6.3)

Using (2.6) and (2.10), we find the chemical potential and fluid flux:

η0 =

(
cRT (1− log(cRT ))−RT log

(
1

ρ
− b
)

+
RT

1− bρ
− 2aρ

)
(6.4)

q = −φk
(
RT∇ρ
1− bρ

+
bRTρ∇ρ
(1− bρ)2

− 2aρ∇ρ
)

(6.5)

where ρ =
P

φ
is the true current density of the fluid.

The first Piola stress can be obtained from the energy density:

T = (1− φ)
(
µF − µF−T + λ log JF−T

)
− P0

(
RTF−T

1− bρ
− aρF−T

)
(6.6)

The geometry and boundary conditions are shown in Fig. 11, and the material properties of soil and CO2
gas are listed in table 2. This provides a simplified model of CO2 injection through a well. The numerical
calculation uses soil porosity of φ0f = 0.2 and a constant flux q = 4.4 kg/m2 s

(
2.225× 103 L/m2 s

)
is

assumed at the injection point.

P

P P

u

u u

4.0

Figure 11. Geometry and boundary conditions of the specimen.

Fig. 12 illustrates the variation of pore pressure vs. inverse fluid density (ρ−1), along the vertical direction
below the center of injection (shown by the dashed line in Fig 11). As shown in Fig. 12, the simulation is
repeated at different temperatures: below, above, and close to the critical temperature of CO2. As expected,
near the center of injection, shortly after start of fluid injection, we see a gas-liquid phase transformation
due to the high pressures when the temperatures are below the critical temperatures (T < Tc, T = 270 K
and T = 285 K).

Fig. 13 plots the variation of pore pressure with distance from the injection point along the vertical
direction. Near the center of injection, we have the highest value of pore pressure which decreases gradually
as we move away from the injection point. We can expect that if the temperature is just below Tc, the
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Property Value
Solid phase Lame constant, λ 57.7 MPa
Solid phase Lame constant, µ 38.46 MPa

Hydraulic conductivity, k̃ 0.1 m/s

Gas constant, R 8.32 m3.Pa/K.mol

CO2 constant, a 0.364 Pa m6/mol2

CO2 constant, b 42.67× 10−6 m3/mol
Critical temperature, Tc 303.4 K

Table 2. Properties of the solid phase and VdW gas (corresponding to CO2, from [Bie07])
.
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Figure 12. Pore pressure variation vs. inverse fluid density at different temperatures at t = 20 s.

injected fluid will undergo a phase transformation in the high pressure region close to the center of injection.
Therefore, it is possible to find the range of parameters such as injection flux and injection temperature to
avoid the phase transformation. We highlight that we do not consider heat transfer effects in any of these
calculations.

To further examine the effect of the pore pressure distribution around the injection point, the pre-
dicted pore pressure value at different times is plotted in Fig 14. This simulation uses a flux 2.2 kg/m2 s(
1.112× 103 L/m2 s

)
and temperature T = 320 K at the injection point. The plot clearly shows the increase

of pore pressure with time.
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Figure 13. Pore pressure variation vs. distance from the injection point at t = 20s for different temperatures.

7. Multicomponent Fluid Phase
In this section, we apply the model to a porous medium with two immiscible ideal gases, motivated by
experimental approaches such as [Sar66].

The Helmholtz free energy density per unit current volume of an ideal gas is:

Wi(ρi) = −ρiRT
(

1 +
3

2
log

(
3

2
RT

)
− log (ρiξi)

)
(7.1)

where R and ξi are constants and T is the temperature [MM09]. Following (2.5), we rewrite the energy
density of the gases as:

W0i(J, P0i, φi) =
Jφ

φ0i
W (J−1P0i/φi) = −P0i

φi
RT

(
1 +

3

2
log

(
3

2
RT

)
− log

(
P0iξi
Jφi

))
(7.2)

The strain energy density of the solid phase is modeled as neo-Hookean as in (6.3).
By applying (2.6) and (2.10), we find the chemical potential and flux of the fluid phases:

η0i = −RT
(

3

2
log

(
3

2
RT

)
− log (ρiξi)

)
(7.3)

qi = −φikiRT∇ρi (7.4)

The volume fraction of the solid phase is fixed. Consequently, the unknown variables of system are F , Pi0
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Figure 14. Pore pressure vs. distance at different times.

and φi. Therefore, the balance of mass for the fluid phases and the relation between fluid densities can be
found using (2.19):

d

dt
PiJ = J div (kiRTφi∇ρi) (7.5)

P1

φ1
=
P2

φ2
(7.6)

We assume a porous medium with porosity φ0f = 0.2, and relation between the viscosity of two fluids is
γ1 = 2γ2, and the geometry and boundary conditions are shown in Fig. 15. The properties of fluids and
soil are given in Table 3.

At the beginning of the injection (t = 0), the domain is saturated with gas 1; we then begin injecting
gas 2 with the flux q2 = 0.44 kg/m2 s

(
2.225× 102 L/m2 s

)
at the injection point. Fig. 16 shows the pore

pressure distribution of both gases around the injection point at t = 550 s. Fig. 16 (left) shows that the
injection of gas 2 into the porous medium causes the density of gas 1 (P1) to decrease around the injection
point, and therefore the pore pressure of gas 1 decreases in this region. Further, Fig. 16 (right) shows the
increase of the pore pressure due to gas 2 in regions close to the injection point.

Property Value
Solid phase Lame modulus, λ 57.7 MPa
Solid phase Lame modulus, µ 38.6 MPa

Hydraulic conductivity, k̃1 0.1 m/s

Hydraulic conductivity, k̃2 0.2 m/s

Gas constant, R 8.32 m3.Pa/K.mol

Table 3. Properties of solid and fluid phases.
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Figure 16. Pore pressure distribution of gas 1 (left) and gas 2 (right) at t = 550 s.

Due to the compressibility of fluids, the volume fraction of each gas changes with time and distance from
the injection point. Fig. 17 shows the variation of volume fraction of each gas with vertical location below
the injection point, at time (t = 550 s). After 550 s from the start of the injection, the volume fraction of gas
1 close to the injection point decreases to 0.001 and the volume fraction of gas 2 increases to 0.199. Since
the medium initially is saturated with gas 1, we find that the volume fraction of gas 1 tends to 0.2 far from
the injection point.

8. Unsaturated Medium with an Incompressible Fluid

In this section, we discuss an unsaturated porous medium consisting of a compressible solid phase, incom-
pressible fluid (liquid) phase, and a compressible fluid (gas) phase, motivated by experimental approaches
such as [DPS93].
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Using the ideal gas model for the compressible fluid phase, the total energy density can be written as:

W0(F , P0g, P0l) = φsW0s(F )− P0gRT

(
1 +

3

2
log

(
3

2
RT

)
− log

(
P0gξ

J(1− φs)− P0l
ρl

))
(8.1)

Using (2.6), the chemical potential of gas and liquid can be derived as:

η0g = −RT

(
3

2
log

(
3

2
RT

)
− log

(
ρ0gξ

J(1− φs)− P0l
ρl

))
(8.2)

η0l =
ρgRT

ρl
=

PgRT

(1− φs − φl)ρl
(8.3)

Further, the flux of gas and liquid can be written as:

qg = −φgkgRT∇ρg (8.4)
ql = −φlklRT∇ρl (8.5)

The geometry is the same as Section 7, and the properties of the solid and gas phases are listed in Table
4. We consider a porous medium with initial solid volume fraction φ0s = 0.9, saturated with the ideal gas
(φ0g = 0.1 and pg = 3300 Pa at t = 0). We then inject the liquid with the flux ql = 200 L/m2 s.

Fig. 18 shows the volume fraction distributions for the gas and liquid phases. As expected, injecting
the liquid into the porous medium with gas causes the liquid to displace the gas in the pore spaces, and the
volume fraction of gas decreases in the vicinity of the injection point. Also, the pore pressure distribution
due to the liquid injection is shown in Fig. 19; we see that the highest value of pore pressure is in the vicinity
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Property Value
Solid phase Lame constant, λ 57.7 MPa
Solid phase Lame constant, µ 38.6 MPa

True permeability, κ 1.8× 10−7 m2

Gas constant, R 8.32 m3.Pa/K.mol

Gas viscosity, γg 1.8× 10−5 Pa s

Liquid density, ρl 1000 kg/m3

Liquid viscosity, γl 0.001 Pa s

Table 4. Properties of the solid and fluid phases.

of the injection point, and tends gradually to the far-field pressure of the gas.

Figure 18. Volume fraction of liquid (left) and gas (right) around the injection point at t = 200 s.

9. Concluding Remarks
In this study, we have proposed a variational energy-based continuum mechanics framework in the large
deformation regime to model coupled fluid transport and deformation in a porous deformable medium. The
free energy density function of the porous medium is defined as additively composed of the free-energies of
the solid and fluid phases of the medium. The variational structure provides for the standard use of the Finite
Element Method to solve the proposed model; in general, variational approaches can provide important
advantages for numerical solution [OR12].

The proposed formulation was tested on two benchmark problems, namely Terzaghi’s 1-d and Mandel’s
2-d consolidation problems. Further, the model enabled the modeling of porous media containing a single
(gas-liquid phase transforming) and multiple immiscible fluid phases. Furthermore, the method was used to
model the behavior of an unsaturated porous medium. As a specific application of the proposed model, we
investigated fluid injection into soil.

An important advantage of the variational formulation, that we are currently investigating and will be
reported in the future, is in enabling an overall variational structure to the problem of combining a physics-
based approach with a data-driven approach through a Bayesian framework. In addition, plastic effects
are important in many realistic situations; it would therefore be useful to extend this model to incorporate
powerful variational models for plasticity that have been proposed, e.g. [WMO06, OP04].
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Figure 19. The pore pressure distribution around the injection point at t = 200 s.
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