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Energetic Particle-induced Geodesic Acoustic Mode

G.Y. Fu∗

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543

(Dated: September 4, 2008)

Abstract

A new energetic particle-induced Geodesic Acoustic Mode (EGAM) is shown to exist. The

mode frequency, mode structure, and mode destabilization are determined non-perturbatively by

energetic particle kinetic effects. In particular the EGAM frequency is found to be substantially

lower than the standard GAM frequency. The radial mode width is determined by the energetic

particle drift orbit width and can be fairly large for high energetic particle pressure and large

safety factor. These results are consistent with the recent experimental observation of the beam-

driven n=0 mode in DIII-D. The new mode is important since it can degrade energetic particle

confinement as shown in the DIII-D experiments. The new mode may also affect the thermal

plasma confinement via its interaction with plasma micro-turbulence.

∗fu@pppl.gov
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Understanding of energetic Particle physics in tokamaks is of fundamental importance

for burning plasmas. Recent experimental results [1-3] indicated energetic particles can

drive an n=0/m=0 mode unstable with frequency comparable to that of Geodesic Acoustic

Mode (GAM) [4]. Here it is shown analytically and numerically that energetic particles can

indeed excite a new GAM-like mode via free energy associated with velocity space gradient in

energetic particle distribution. More importantly, it is shown that both the mode frequency

and mode radial structure is determined non-perturbatively by energetic particle kinetic

effects. Thus, the new mode, to be called EGAM (for Energetic particle induced GAM), is

intrinsically an energetic particle mode. As such, EGAM is qualitatively different from the

Global Geodesic Acoustic Mode (GGAM)[1,2] which is a pure MHD mode. EGAM also is

qualitatively different from the usual GAM observed in the edge region of tokamak plasmas

[5]. While the usual GAM is nonlinearly driven by plasma micro-turbulence and is highly

localized near the edge of plasmas [5], the EGAM is linearly driven by energetic particles

and is located in the tokamak core with a much wider radial width. It should also be noted

that the kinetic effects of thermal ions on stable GAM had been studied in previous work

[6-11]. In contrast, this work considers the energetic particle excitation of the new EGAM.

The new mode is important since it can degrade energetic particle confinement as shown

recently in the DIII-D experiments [3]. The new mode may also affect the thermal plasma

confinement. Finally, the new mode could be excited in burning plasmas since auxiliary

heatings such as neutral beam heating can produce highly anisotropic energetic particle

distribution.

The model for EGAM starts from the linearized momentum equation:

ρ
∂

∂t
δv = −∇ · δP + δJ × B + J × δB (1)

where ρ is plasma mass density, B and J is the equilibrium magnetic field and plasma current

respectively, δv, δP, δJ, δB is the perturbation of plasma velocity, plasma stress tensor,

plasma current and magnetic field respectively. Now take cross product with B/B2, take

divergence and then take a flux surface average, Eq. (1) becomes

∂

∂t
< ∇ · ρ

δv ×B

B2
>

= < ∇ · (
B×∇ · δP

B2
) > + < ∇ ·

(J × δB) × B

B2
> (2)

where the bracket <> denotes the flux surface average. For simplicity, the electrostatic
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approximation is assumed for the n=0 mode. This is valid for the n=0 mode with GAM-like

frequency in low beta plasmas. After some algebra, Eq. (2) can be written as

∂

∂t
<

ρ|∇r|2

B2
> Er = − < G(r, θ)(δP‖ + δP⊥) > (3)

G(r, θ) = −
BφR

JB3

∂B

∂θ
(4)

where Er is the radial electric field, Bφ is the toroidal magnetic field, J is the Jacobian of the

flux coordinates (r, θ, φ) with r being the radial flux variable (or minor radius). In deriving

the above equation, the ideal Ohm’s law E + δv ×B = 0 is used along with the CGL form

of the perturbed stress tensor δP = δP⊥I + (δP‖ − δP⊥)bb.

A hybrid model is used for the stress tensor response, namely, fluid model for thermal

plasmas and kinetic model for energetic particles. Thus for thermal plasmas, δP⊥th =

δP‖th = δPth and

∂

∂t
δPth = −γ∇ · δvPth = 2γG(r, θ)PthEr (5)

with the subscript th denotes the thermal species and γ is the coefficient of specific heat.

For energetic ions, the drift kinetic equation is used. For n = 0 mode, the linearized drift

kinetic equation can be written as

dδf

dt
= −

dE

dt

∂f

∂E
= −(mv2

‖ +
1

2
mv2

⊥)
∂f

∂E
G(r, θ)Er (6)

where δf is the perturbed particle distribution function and f = f(Pφ, E, µ) is the equilib-

rium distribution as function of constant of motion Pφ the toroidal angular momentum, E

the particle energy, and µ the magnetic moment. Note that there is only dE/dt term in Eq.

6 because dPφ/dt = 0 for axisymmetric modes.

Once δf is obtained, the perturbed pressure can be computed as

δP‖h + δP⊥h =
∫

d3v(mv2

‖ +
1

2
mv2

⊥)δf (7)

where the subscript h denotes energetic particle species.

Equation (3-7) form a self-consistent kinetic/fluid hybrid model for EGAM including

kinetic efforts of energetic particles.

The drift kinetic equation can be solved by integrating along the unperturbed orbit and

the solution is given by

δf = −E
∂f

∂E

∑

p

Hσ
p (r̄) exp(−iωt + ipωbt

σ(θ))

ω − pωb
(8)
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with

Hσ
p (r̄) =

1

τb

∫

dt′K(Λ, r′, θ′)Er(r
′) (9)

K(Λ, r′, θ′) = (2 − ΛB)G(r′, θ′) sin(pωbt
′) (10)

where r̄ is the particle orbit average of r, τb is the particle orbit period (transit period for

passing particles and bounce period for trapped particles), ωb = 2π/τb is the orbit frequency,

Λ = µB0/E is the particle pitch angle with B0 being the mangetic field strength at the

mangetic axis, σ is the sign of parallel velocity, p is an integer representing orbit harmonics,

and tσ is the orbit time integral given by tσ(θ) = σ
∫

(J/v‖)dθ for passing particles.

By combining Eq. (3-8), the following integral eigen-equation is obtained for n=0 elec-

trostatic modes with effects of energetic particles:

ω2 <
ρ|∇r|2

B2
> Er =< 4γG2(r, θ)Pth > Er −

<
∑

p,σ

∫

d3vE2
∂f

∂E

2ω2Hσ
p (r̄)

ω2 − p2ω2

b

K(Λ, r, θ) > (11)

where p sums over positive integer. Note that because orbit integral in Eq. (9), Eq. (11)

is an integral equation which couples different flux surfaces due to finite orbit width of

energetic particles.

In the limit of zero orbit width for energetic particles, the integral mode equation becomes

the local dispersion relation defined on each flux surface as

ω2 = ω2

GAM +
< P‖h + P⊥h >

B2
0R

2
0 < ρ|∇r|2/B2 >

Qh(
ω

ωb0

) (12)

where

ω2

GAM =
< 4γG2(r, θ)Pth >

< ρ|∇r|2/B2 >
(13)

Qh = −
∑

p,σ

2
∫ ∂f

∂E
E3dEdΛτb(H̄

σ
p )2 ω2

ω2−p2ω2

b
∫

fE2dEdΛτb < 2 − ΛB >
(14)

H̄σ
p =

1

τb

∫

dt′(2 − ΛB)B0R0G(r, θ′)sin(pωbt
′) (15)

where Qh is an order of unit kinetic integral depending only on ω/ωb0 and details of energetic

particle distribution function. Here ωb0 ∼ v/(qR) is the orbit frequency at Λ = 0. For large

aspect ration low beta tokamak equilibria with circular flux surfaces, J ∼ rR, |∇r| ∼ 1,

G(r, θ) ∼ − sin(θ)/(B0R0). Then the GAM frequency given by Eq. (13) reduces to the well
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known formula ωGAM =
√

2γPth/ρ/R0 for q >> 1. Also in this limit, the p = 1 term is

dominant over other terms.

For energetic particles, ωb0 is typically comparable or larger than ωGAE. This allows wave

particle resonances. Depending on details of particle distribution function, the real part

of Qh can be either positive or negative for energetic particles. Thus, energetic particles

can often contribute negatively to the mode frequency. Also, more than one mode can

exist. Up to three modes have been found. Finally, for an anisotropic distribution, energetic

particles can destabilize the GAM mode due to ∂f/∂E > 0. This has been demonstrated

by numerical solution of the dispersion relation as shown below.

The following anisotropic slowing-down distribution function is used for energetic particles

in this study:

f =
1

v3 + v3
crit

exp[−
Pφ

e∆Ψ
− (

Λ − Λ0

∆Λ
)2] (16)

where f has peaked distribution in Pφ with ∆Ψ being the width, a slowing-down distribution

in velocity and a peaked distribution in the pitch angle Λ with ∆Λ being the width. Figure

1 shows the real part (top) and imaginary part (bottom) of Qh for an anisotropic pitch

angle distribution function with ∆Λ = 0.2 and Λ0 = 0.5. The results are obtained at

ǫ = r/R = 0.16 of an tokamak equilibrium with circular flux surfaces at R/a = 3. The

results show Re(Qh) < 0 for 0.23 < ω/ωb0 < 0.72. Thus in this frequency region, the

energetic particle effects actually reduce the mode frequency. Furthermore, Imag(Qh) > 0

for 0.0 < ω/ωb0 < 0.49 for this case. Thus, the energetic particles can destabilize the EGAM

due to anisotropic distribution (i.e., driven by ∂f/∂E > 0). The dispersion relation can be

solved perturbatively when the fast ion pressure is much smaller than the thermal pressure.

When the energetic particle pressure is comparable to the thermal pressure, the dispersion

relation has to be solved non-perturbatively. The real and imaginary part of the frequency

are given approximately by the following two equations:

Z2

Y
ω̄2

r −
Y

4Z2ω̄2
r

(Imag(Qh))
2 −

1

Y
= Re(Qh(ω̄r)) (17)

2
Z2

Y
ω̄rω̄i = Imag(Qh(ω̄r)) (18)

where Z = ωb0/ωGAM is the ratio of particle orbit frequency and the GAM frequency,

Y =< P‖h + P⊥h > /2γPth is the ratio of energetic particle pressure and thermal plasma

pressure, and ω̄ = ω/ωb0 is the normalized mode frequency.

5



Figure 2 plots the real part (top) and imaginary part (bottom) of eigenmode frequencies

as a function Y at Z = 1.0 for the parameters of Fig. 1. The corresponding results for

Z = 1.8 are plotted in Fig. 3. It is observed that, for small energetic particle pressure (i.e.,

small Y), only one mode (red squares) can exist and this mode transits smoothly to the

conventional GAM as Y approaches zero. Furthermore, these results show that there is a

critical energetic pressure fraction above which two new modes emerge (black diamonds and

blye circles). The mode frequencies and the stability of the new modes depend critically on

the value of Z. In fact, it is found analytically and numerically that there exists a critical

threshold Z = Zcrit (Zcrit = 1.4 for parameters of Fig. 1) such that for Z < Zcrit, the new

modes start at the mode frequency well below the GAM frequency ωGAM(see black diamonds

and blue circles in Fig. 2). On the other hand, for Z > Zcrit, the new modes start at the

mode frequency well above the GAM frequency(see Fig. 3). Interestingly, the value of Z is

also critically important for the mode which starts from the conventional GAM frequency

(red squares in Fig. 2 and 3). The mode frequency of this mode increases with increasing

Y for Z < Zcrit (see Fig. 2). For Z > Zcrit, the mode frequency decreases with increasing Y

(see Fig. 3). Finally, it is found that there exists only one unstable mode for the parameters

of Fig. 1. For Z < Zcrit, one of the new modes is unstable (blue circles) when energetic

particle pressure exceeds a threshold (i.e., ωi > 0 for Y > 0.26 in Fig. 2). For Z > Zcrit, the

GAM mode can be destabilized by the energetic particles (see red squares in Fig. 3).

It is important to relate these local results to the experimental situation. First, the

importance of the parameters Z has been shown above. It can be estimated as Z2 ∼

Eh/(2.75q2T ) where Eh is the energetic particle energy, q is the safety factor and T is the

plasma temperature. For typical parameters of neutral beam-heated reversed shear plasmas,

Z is comparable to Zcrit. Second, the unstable mode’s frequency is always below the GAM

frequency regardless of the value of Z. When the energetic particle pressure is comparable

to the thermal pressure (i.e., Y ∼ 1), the unstable mode frequency is substantially below

GAM frequency and the growth rate can be very large. These results are consistent with

the recent experimental observations in DIII-D [3].

Now consider the case where effects of finite orbit width of energetic particles are retained.

In general, the integral equation given by Eq. 11 can only be solved numerically. To make

analytic progress, the particle orbit width is assumed to be much smaller than the mode

radial width. In this limit, a Taylor series expansion can be made for Er(r
′) in Eq. (9) as
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Er(r
′) = Er(r̄) + (∂Er/∂r̄)δr + 0.5 ∗ (∂2Er/∂r̄2)(δr)2 where r′ = r̄ + δr with r̄ being the

orbit-averaged radius and δr being the drift orbit deviation from r̄. Then, another Taylor

expansion can be made in Eq. (11) using r̄ = r − δr. Note that the flux average in Eq.

(11) is to be performed at fixed r. After some algebra, the following eigenmode equation is

obtained:

d

dr
[
< P‖h + P⊥h >

ρR2
(qρh)

2W (
ω

ωb0

)]
d

dr
Er

= −(ω2 − ω2

EGAM)Er (19)

where ω2

EGAM is given by the RHS of Eq. 12, ρh is the Larmor radius of the energetic

particles, W is an order of unity kinetic integral and is a function of ω/ωb0. Note that qρh

is approximately the drift orbit width of the energetic particles. Depending on details of

particle distribution, W can be either positive or negative. For W > 0, the mode propagates

in the region of ω > ωEGAM and for W < 0, the mode propagates in the region of ω < ωEGAM .

Near ω2 − ω2

EGAM = 0, the solution of Eq. (19) is given by Airy function. Thus, the radial

width of EGAM scales as

∆r ∼ (βh/βth)
1/3L1/3

ω (qρh)
2/3 (20)

where Lω is the radial scale length of ωEGAM . Note that the radial orbit width is mainly

determined by the drift orbit width ∼ qρh of the energetic particles and can be fairly large

for DIII-D reversed shear plasmas.

Analysis of Eq. (19) indicates the existence of a global EGAM with radial scale length

given by Eq. (20). Hybrid simulations have been carried out using Eq. (3-7). In the

simulations, the perturbed thermal pressure is evolved using Eq. (5) and the perturbed

energetic particle pressures are evolved according to Eq. (6) and (7) using PIC simulation

method. The parameters of Fig. 1 are used along with central safety factor q(0) = 5.0, the

minimum q = qmin = 4.0 at r/a = 0.4, plasma pressure profile Pth = Pth(0)(1 − Ψ)2 with Ψ

being the normalized poloidal flux. The plasma density profile is uniform. For parameters

of energetic particles, ρh/a = 0.016, Z = ωb0/ωGAE(0) = 1.42, Y ∼ 1, and ∆Ψ = 0.3.

Only counter passing particles are included. Figure 4 shows the eigenmode structure of

the perturbed radial electric field of an unstable global EGAM obtained from the linear

simulation. The calculated mode frequency and growth rate are ωr/ωGAE(0) = 0.63 and
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ωi/ωr = 0.5. The calculated mode is clearly global. This result confirms the existence of

global EGAMs. Details of simulation results will be presented elsewhere.

In conclusion, a new Energetic particle-induced Geodesic Acoustic Mode (EGAM) is

shown to exist. The mode is driven by velocity space anisotropy in the energetic parti-

cle distribution function. The mode frequency and mode structure are determined non-

perturbatively by energetic particle kinetic effects. In particular it is found that the EGAM

frequency is substantially lower than the standard GAM frequency. The radial mode width

is mainly determined by the energetic particle drift orbit width and can be fairly large for

high energetic particle pressure and large safety factor. These results are consistent with

the recent experimental observation of the beam-driven n=0 mode in DIII-D [3].
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FIG. 1: Real (top) and imaginary (bottom) part of Q as function of mode frequency.
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FIG. 2: Real and imaginary part of the eigenfrequencies as function of Y =< P‖h + P⊥h > /2γPth

for Z = 1.0.
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FIG. 3: Real and imaginary part of the eigenfrequencies as function of Y =< P‖h + P⊥h > /2γPth

for Z = 1.8.
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FIG. 4: The perturbed radial electric field versus radius of a global EGAM.
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