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Energetic-Statistical Size Effect in Quasibrittle Failure at 

Crack Initiation 

by Zdenek P. Bazant and Drahomfr Novak 

The size ifftct on the nominal strength if quasibrittle structures fail

ing at crack initiation, and particularly on the modulus if rupture if 

plain concrete beams, is analyzed. First, an improved deterministic 

formula is derived from the energy release due to a boundary layer if 

cracking (initiatingfracture process zone) whose thickness is not neg

ligible compared to beam depth. To fit the test data, a rapidly con

verging iterative nonlinear optimization algorithm is developed. The 

formula is shown to give an excellent agreement with the existing test 

data on the size ifftct on the modulus if rupture if plain concrete 

beams. The data range, however, is much too limited; it does not cover 

the extreme sizes encountered in arch dams,foundations, and retain

ing walls. Therifore, it becomes necessary to extrapolate on the basis 

if a theory. For extreme sizes, the Weibull type statistical ifftct if ran

dom material strength must be incorporated into the theory. Based on 

structural analysis with the recently developed statistical nonlocal 

model, a generalized energetic-statistical size ifftct formula is devel

oped. The formula represents asymptotic matching between the deter

ministic-energetic formula, which is approached for small sizes, and 

the power law size ifftct if the classical Weibull theory, which is 

approached for large sizes. In the limit if irifinite Weibull modulus, 

the deterministic-energetic formula is recovered. Data fitting with the 

new formula reveals that, for concrete and mortar, the Weibull mod

ulus m z 24 rather than 12, the value widely accepted so far. This 

means that,for extreme sizes, the nominal strength (modulus ifrup

ture) decreases,for two-dimensional similarity, as the -1/12 power if 

the structure size, and for three-dimensional similarity, as the -1 /8 

power (whereas the -1/4 power has been assumed thusfar). The coif

ficient if variation characterizing the scatter if many test results for 

one shape and one size is shown not to give the correct value if 

l/1!ibull modulus because the energetic size ifftct inevitably intervenes. 

The results imply that the size ifftct at fracture Initiation must have 

been a signiji"cant contributingfactor in many disasters (for example, 

those if Malpasset Dam, Saint Francis Dam, and Schoharie Creek 

Bridge.) 

INTRODUCTION 
There are basically two simple types of the deterministic

energetic size effect in quasibritde materials, obeying different 

laws (Bazant and Chen 1997; Bazant and Planas 1998; Bazant 

1997a,b, 19~)9): 1) the size effect in structures with notches or 

large cracks formed before the maximum load (Bazant 1984), 

typical of reinforced concrete structures; and 2) the size effect 

in structures failing at the initiation of fracture from a smooth 

surface, typical of the modulus of rupture test (Hillerborg et al. 

1976; Bazant and Li 1995). This study is concerned only with 

the latter, which is important; for example, for safe design of 

very large unreinforced concrete structures such as arch dams, 

foundations, and earth-retaining structures. 

Prior to the 1990s, it was commonplace in design to assume 

the maximum load of such structures to be governed by the 

strength of the material, and sometimes the possibility of a 

purely statistical, classical size effect of Wei bull (1939) was 

admitted, but no attention was paid to the possibility of a deter

ministic size effect. More than two decades ago, however, the 

finite element calculations with the cohesive (or fictitious) 
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crack model by Hillerborg et al. (1976) revealed the necessity 

of a strong deterministic size effect engendered by stress redis

tribution within the cross section due to softening inelastic 

response of the material in a boundary layer of cracking near 

the tensile face. A detailed finite element analysis of the size 

effect on the modulus of rupture with the cohesive crack model 

was presented by Peters son (1981). He numerically demon

strated that the deterministic size effect curve terminates with 

a horizontal asymptote and also observed that, for very deep 

beams, for which the deterministic size effect asymptotically 

disappears, the classical Weibull-type statistical size effect must 

take over. 

As test data accumulated, various empirical formulas were 

proposed (for example, Rokugo et al. 1995). A simple deter

ministic formula giving good agreement with test data was 

theoretically derived in Baiant and Li (1995) and refined in 

Baiant and Li (1996a). Bazant and Li (1996b) rederived this for

mula by energy arguments of fracture mechanics that made it 

possible to capture the structure geometry effect on the coeffi

cients in terms of the energy release function. 

Because concrete is a highly random material, the statistical 

size effect must, of course, get manifested in some way. An early 

study of the stress analysis in presence of random strength was 

published by Shinozuka (1972). Sophisticated numerical simu

lations by finite elements, discrete elements, and random lattice 

models followed (for example, Breysse 1990; Breysse and 

Fokwa 1992; Breysse et al. 1994; Breysse and Renaudin 1996; 

and Roelfstra et al. 1985). These simulations usually assumed 

random strength following the normal or lognormal 

probability distribution. 

Prediction of failure and size effect, however, calls for 

extreme value statistics using the Weibull probability 

distribution that is the basis of Weibull's classical theory 

(1939). This theory has been extremely successful for fatigue

embritded metals, but for quasibritde materials characterized 

by significant stress redistribution with the consequent energy 

release before the maximum load, this theory is inapplicable 

(Bazant et al. 1991; Bazant and Planas 1998; Planas et al. 1995). 

A nonlocal generalization, which was originally developed only 

for specimens with notches or structures with large cracks 

formed before the maximum load, is required (Bazant and Xi 

1991; Baiant and Planas 1998). 

A recent study of Baiant and Novak (200oa,b) resulted in a 

statistical structural analysis model that takes into account the 

postpeak strain softening of the material and calculates the fail

ure probability from the redistributed stress field using the 

nonlocal Weibull approach of Bazant and Xi (1991), represent

ing an extension of deterministic non local damage theory 

(Pijaudier and Bazant 1987; Bazant and Planas 1998). They 
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demonstrated a good agreement with the existing test results 

on the modulus of rupture of concrete. Their model, however, 

is numerical and not reducible to a simple formula for the size 

effect on modulus of rupture incorporating both the determin

istic-energetic and the statistical causes. Development and ver

ification of such a formula is the principal objective of this 

study. 

ENERGETIC SIZE EFFECT DUE TO LARGE 
FRACTURE PROCESS ZONE 

The modulus of rupture of plain concrete beams of a rec

tangular cross section is defmed as 

(1) 

where Mu = maximum (ultimate) bending moment; D = char

acteristic size of the structure, chosen to coincide with the 

beam depth; and b = beam width.fr would represent the value 

of the actual maximum stress in the beam if the beam was elas

tic up to the maximum load. The beam is not elastic, however, 

and th~s, fr represents merely the nominal strength, fr = C1N ' 

whIch IS a parameter of the maximum load having the dimen

sion of strength. 

A fracture process zone, represented by a boundary layer of 

distributed cracking that has a certain non-negligible thickness 

[[' may b: assumed t~ devel?p at the tensile face of beam before 

the maxImum load IS attamed. Under this assumption, and 

assuming further the cross sections to remain plane and the 

postpeak softening stress-strain diagram of a characteristic 

volume of the material to be linear, Bazant and Li (1995) calcu

la~ed the stress redistribution in the cross section caused by 

thIS boundary layer. 'This led to the following approximate formula 

(2) 

where D = beam depth; and .t; = standard direct tensile 

strength, assumed to coincide with the modulus of rupture of 

very deep beams. 

A more general and fundamental derivation of (2), which 

automatically gives also the structure geometry (shape) effect, 

can alternatively be given on the basis of energetic aspects of 

fracture mechanics. Using the approach of equivalent linear 

elastic fracture mechanics (LEFM), one can approximate a 

cracked structure with a large fracture process zone by a struc

ture with a longer sharp crack whose tip is placed approxi

mately in the middle of the fracture pressure zone (the exact 

location being determined by the condition of compliance 

equivalence). 

At first, one might think that fracture mechanics cannot be 

applied when the actual crack length ao = o. It can be applied, 

however, because the equivalent LEFM crack length a= a + c 

having its tip in the middle of the fracture process zone (boouniC 

ary layer of cracking), is nonzero. Notations: ao = notch length 

or traction-free crack length (here, ao = 0); and c = effective 

length of fracture process zone (roughly 1/2 of the actual 

length). 

As shown previously (in detail, Bazant 1997a; BaZant and 
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Planas 1998), equivalent LEFM, in general, yields for the nom

inal strength aN of the structure the general expression 

a -N-
rv _ aD 
"'0 -

D 

(3) 

in which E = Young's ~odulus; Gj ~ fract.ure e~ergy of the 

materIal; D = structure sIze (characterIstIc dImensIOn); and g = 
nondimensionalized energy release function characterizing the 

structure geometry (shape). The function g should be suffi

ciently smooth to allow expansion into a Taylor series in terms 

of c/ D, which represents an asymptotic expansion 

(4) 

It is important to realize that Eq. (4) describes not only the size 

effect, but also the shape effect. The shape effect is embedded in 

the LEFM function g(a); g(a) = [k (a)J2 where k (a) is the 

d.ime~sion~ess stress intensity factor that is available for many 

SItuatIOns m handbooks (Tada et al. 1985; Murakami 1987) and 

textbooks (Bazant and Planas 1998), and can be easily obtained 

by linear elastic finite element analysis. 

For failures at crack initiation, as is the case for the modu

lus of rupture test, ao = o. Because the energy release rate for 

a zero crack length is zero, that is, g(o) = 0, the first term of the 

series expansion in (4) vanishes and the series must be truncat

ed no earlier than after the third, quadratic term. This yields 

the asymptotic expansion 

in which the nominal strength aN is now represented by the 

(5) 

g'(O)C
f 

+fr g"(0)cJD-
1 + ~ gm(0)c~D-2+ ... 

modulus ofrupturefr, and 

!'.~ = 
EG

f --,-, 
cfg (0) 

(6) 

The interest herein is not merely in the large-size asymptotic 

approximation but also in a generally applicable approximate 

formula of the asymptotic matching type that has admissible 

behavior also at the opposite infinity (In D ~ -00, or D ~ 0) 
and provides a smooth interpolation between the opposite 

infinities. The asymptotic behavior of (5) for D ~ 0 is not 

acceptable because it yields an imaginary value. To get a prop

er asymptotic matching formula, (5) must be modified in such 

a manner that at least the first two terms of the asymptotic 

expansion of aN in terms of 1/ D remain unchanged. This mod

ification can be accomplished as follows. 

Equation (5) may be rewritten as 

[( )
-r/2 ]1/r 

!'=fr.~ I-x (7) 
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where r is an arbitrary positive constant (that is related to the 

third term in the expansion of function g( '1/ D)), and 

(8) 

Then, according to the binomial series expansion 

-r12 -r12 2 -r12 3 [ ( ) ( ) () ]'" f, = f,,_ 1 + 1 (-x)+ 2 (-x) + 3 (-x) +,.. (9) 

(10) 

[ ( ) ]'" r ql r + 2 2 1 2 1 
= f,_ l+--+r --ql --q2 -2 + ... 

. 2D 8 2 D 
(11 ) 

In contrast to (5), this formula is admissible for D ---7 0; it gives 

for J,. a real, rather than imaginary, limit value. The feature that 

J,. ---7 00 is shared by the widely used Petch-Hall formula for the 

strength of polycrystalline metals. One might prefer a finite 

limit for J,., but this does not matter because, in practice, D can

not be less than approximately three maximum aggregate sizes 

(as the material could no longer be treated as a continuum). 

The limit D ---7 0 is an abstract extrapolation. 

Keeping only the first two terms, one obtains from (11) the 

final deterministic-energetic size effect formula 

f = f 1+ rDb 
( )

1" 

, ',- D 
( 12) 

in which Db has the meaning of the thickness of the boundary 

layer of cracking 

D = / -Cfgll(O)) 
b \ 4g'(0) 

(13) 

In the last expression, the signs ( ... ), denoting the positive part 

of the argument, have been inserted [(X) = Max(X, 0)]. The 

reason is that g"(O)/ g'(o) can sometimes be positive, in which 

case there is no size effect, and this is automatically achieved by 

setting Db = o. In the modulus of rupture test, g"(O)/ g'(0) < 0 

and Db > o. 
Note that for uniform tension (zero stress gradient, as in the 

direct tensile test), there is no deterministic size effect accord

ing to Eq. (13) because g"(O) == 0 or Db = o. 
Formula (12) with (13) and (6) for r = 1 coincides with Eq. 

(2), but generalizes it by introducing, through function g(a), 
the effect of geometry. The special case of the present fracture 

mechanics derivation for r = 1 was presented first at a confer

ence (Bazant 1995) and in more detail in Bazant (1997a). The 

general form with r was proposed without derivation in Bazant 

(1999), and the fracture mechanics derivation for r = 2 was 

given in Bazant (1998). 

For r 1, (12) yields as a special case formula (4). 

For r= 2, 

1=0 =~A+~ , N 1 D 
(14) 
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in which 

EGfgll(O) 

2cf [g'(0)f 

(15) 

Formula (14) was proposed and used to describe some size 

effect data by Carpinteri et a1. (1994, 1995). These authors 

named this formula the multifractal scaling law (MFSL) and 

tried to justify it by fracture fractality using, however, strictly 

geometric (non-mechanical) arguments. This name, though, 

seems questionable because, as shown in Bazant (1997 b, c), the 

mechanical analysis of fractality leads to a formula different 

from (14) (this is the case whether one considers the invasive 

fractality of the crack surface or the lacunar fractality of micro

crack distribution in the fracture process zone). No logical 

mechanical argument for the size effect on ON to be a conse

quence of the fractality of fracture has yet been offered. 

EXPERIMENTAL VALIDATION OF ENERGETIC 
FORMULA 

To check the validity of formula (12) and calibrate its coef

ficients, 10 data sets obtained in eight different laboratories 

(Lindner and Sprague 1956; Nielsen 1954; Reagel and Willis 

1931; Rocco 1995 and 1997; Rokugo et a1. 1995; Sabnis and 

Mirza 1979; Walker and Bloem 1957; Wright 1952) were used. 

These data, consisting of 42 values summarized in Table 1, rep

resent all the relevant test data on modulus of rupture of plain 

concrete beams that could be found in the literature. The deter

ministic energetic character offormula (12) made it possible to 

adopt a simplified approach in which only the mean value of the 

measured J,. for each size was considered in checking the for

mula. This approach helped convergence and stability of the 

fitting algorithm; it also avoided the need of choosing different 

weights of data points to take into account different numbers of 

data points within various sets and different sizes, different 

numbers of sizes in each set, and different size ranges of vari

ous sets. The details of all the experiments were presented in 

Baiant and Novak's (20oob) study of a nonlocal Weibull theory. 

The efficient Levenberg-Marquardt nonlinear optimization 

algorithm was used with all the strategies of fitting. First, 

direct fitting of all data provided the values of parameters J,.,~, 

r, and Db of formula (12). The merit function to be minimized 

was considered in the form 

N n (!,i,j J,i,j)2 
<I> = L! ',formu~ "data = Min 

1=1 J=l Jr,; 

( 16) 

where N= number of all data sets (N= ~o); n·= number of all 
data points within data set number i; J,. = rhean value of all 
the data points (the mean of means is co~sidered herein for the 
sa~e of.sim,?licity) of data set i, The total number of all the data 
pomts IS L,;1 ni = 42. 

The result of this straightforward fitting is shown in Fig. 1. 

The optimum values of parameters obtained by this simultane

ous fitting of all the data are J,. ~ = 3.27 MPa; r = 1.30; and 

Db = 21.57 mm. Note that the optimum value of r differs from 

the value of 1 that resulted from the simplified analysis of 

Baiant and Li (1995), but is closer to 1 than to the value of 2 

used in Carpinteri's formula (14). 

The scatter of the data in Fig. 1, however, is high, with coef

ficient of variation ro = 0.2, and therefore, the result is 
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Table 1-Means of modulus of rupture for various test data 
used in study 

10 

2 

SizeD, mm Mean,MPa 

Reagel and Willis (1931), 4 -point bending 

101.6 5.94 

152.4 5.74 

203.2 5.45 

254 5.26 

Wright (1952), 3-point bending 

76.2 4.13 

101.6 3.82 

152.4 2.96 

203.2 2.76 

Wright (1952), 4-point bending 

76.2 3.21 

101.6 2.94 

152.4 2.60 

203.2 2.31 

- -

Nielsen (1954), 3-point bending 

100 3.57 

150 3.16 

200 3.30 

- -

- -
Lindner and Sprague (1956), 4-point bending 

-. 
-. 

"151 

152.4 

228.6 

304.8 

457.2 

-

....... 

... ~.,;: .. 

". 'W 

··'-'I::;! .• 

.. ~ .. Nielsen 1954 '~.'" t:~'-I-"" "+ 

...... 3point Wright 1952 9 .. --'. 
",6', 4point Wright 1952 

.. e·· linch WaIk&Bloem 1957 "\.~ .•... <> 
•• lI( •. 2inch Walk&Bloem 1957 .~ 

..•.. Reagel&Willis 1931 ". " 
A. • •.....• . . C3 .. Sabnis&Mirza 1979 _ 

··Q··RokugoI995 "A 
.. - .. Rocco 1995 

'0 

.. +- . Lindner 1956 
--Deterministic formula 

10 100 D[mm] 

4.48 

4.07 

3.93 

3.79 

-

1000 

Fig. I-Optimum fit if existing test data by various investigators on 

modulus if rupture fr versus beam size (depth) D by deterministic 
energetic formula (12). 

unconvincing. It must be realized that the individual test data 

sets are contaminated by different initial assumptions for size 

effect testing as well as other uncertainties. Consequently, a 

more suitable alternative approach to fitting should be adopt

ed. Furthermore, because the scope and range of each individ

ual data set is too limited, the data sets must be combined and 

analyzed jointly to extract more useful information from the 

data that exist. 

It is reasonable to assume that what varies most from one 

concrete or one testing approach to another are the values of 
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SizeD,mm Mean,MPa 

Walker and Bloem (1957), 4-point, d = I in. 

101.6 4.70 

152.4 4.50 

203.2 4.25 

254 4.27 

Walker and Bloem (1957), 4-point, d = 2 in. 

101.6 4.68 

152.4 4.34 

203.2 4.15 

254 3.74 

Sabnis and Mirza (1979), 4-point bending 

10 8.8 

19.1 6.9 

38.1 5.6 

76.2 4.8 

152.4 4.3 

Rokugo (1995), 4-point bending 

50 4.35 

100 4.04 

200 3.66 

300 3.46 

400 3.30 

Rocco (1997), 51-point bending 

17 7.04 

37 6.52 

75 5.60 

150 5.12 

300 4.67 

J,.~ and Db' while the exponent should be approximately the 

same for different concretes and test series. The following 

improved two-step iterative algorithm for optimizing the fit of 

the combined data sets, which considerably reduces the scatter 

by alternating the fitting of individual data sets with the fitting 

of overall data, has been devised: 

• An initial value of r is chosen (typically, r == 1); 

• Step I-The individual data sets are fitted separately by 

Eq. (12) using the same constant parameter r, optimizing only 

parametersJ,.,~ and Db' allowed to have different values for each 

data set; 

• Step 2-The combined set of all the data is then analyzed 

in one overall plot (Fig. 2) in which the logarithms of the nor

malized values, log(J,./ J,.,~), are plotted versus the values of 

log(D/ Db) of each data point. Different normalizing factors,J,.,~ 

and Db' as determined in Step 1, are used for the data points 

from each different set. With the help of the Levenberg

Marquardt algorithm, the fit of these normalized data is then 

in this plot optimized considering as unknown the overall val

ues of three parameters J,.,~, Db' and r for one overall size effect 

curve (Fig. 2). This yields the values of these three parameters, 

and especially an improved value of r, which is the whole pur

pose of the second step; and 

• Steps 1 and 2 are then iterated always using, in Step 1, the 

last improved value of r as fixed, and optimizing only the 

values ofJ,.,~ and Db separately for each data set. The iterations 

are terminated when the change of the r value from one itera

tion to the next becomes negligible (according to a chosen 

tolerance). 

The iterative algorithm converged rapidly. In the fourth 

iteration, the change of r from the previous iteration was less 

than 0.001. The results are shown in Fig. 2 in which the data 

points of each set are plotted using the values J,.~ of Db 

obtained in Step 1 individually for that data set. The corre

sponding optimum overall parameter values are J,.~ == 

2.98 MPa, r == 1.47, and Db == 28.49 mm. The normalized means 

of the individual data sets are now very close to the fitted 

curve. The coefficient of variation of the errors of the formula 

curve, compared to the data points, is very low; 0) == 0.0269. 
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• 3point Wright 1952 
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• Reagel& Willis 1931 
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o Rokugo 1995 

• Rocco 1995 
+ Lindner 1956 

10 100 

Figure 3 further shows the plots of each individual data set 

using the overall optimum exponent r = 1.47, but the values of 

parametersir,~ and Db optimized separately for each data set. It 

is this figure, rather than Fig. 2, that should be seen as a visu

al check on the goodness of fit of the present formula. The opti

mization of the fit in Fig. 2 is necessary to obtain the overall 

optimum value of r, although visually, this figure conveys an 

exaggerated impression of the quality of fit. 

AMALGAMATION OF ENERGETIC AND 
STATISTICAL SIZE EFFECTS 

The large~size asymptote of the deterministic energetic size 

effect formula (12) is horizontal;ir1ir = = 1. The same is true 

of all the existing formulas for the modulus of rupture; refer to, 

for example, Bazant and Planas (1998). But this is not in 

agreement with the results of Bazant and Novak's (2000) non

local Weibull theory as applied to modulus of rupture in which 

the large-size asymptote in the logarithmic plot has the slope -

nl m corresponding to the power law of the classical Wei bull 

statistical theory (Weibull 1939). 

Fig. 2--optimumfit if existing test data by various investigators on 

modulus if rupture fr versus relative size D1Db by deterministic 

energeticformula (12). 

In view of this theoretical evidence, there is a need to 

amalgamate the energetic and statistical theories, despite the 

fact that the agreement in Fig. 2 is excellent and looks very 

convincing. Such amalgamation will be important, for example, 
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C'J) = 0.039 

1 ~-~I-~I_~I~I~ 

4 6 8 
1.3.--:::":"7.:--.......,.,=--~:-- 2 .------~~--~ 
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Fig. S-Optimum fits if individual data sets by deterministic formula (12). 
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for analyzing the size effect in vertical bending fracture of arch 

dams, foundation plinths, or retaining walls. 

A statistical generalization offormula (12) may be deduced 

as follows. According to the deterministic-energetic model, 

t1r= U/.f,.=)' - rD/D = 1, which is the value of the large-size 

horizontal' asymptote. From the statistical viewpoint, this dif

ference, characterizing the deviation of the nominal strength 

from the asymptotic energetic size effect for a relatively small 

fracture process zone (large D), should conform to the size 

effect of Wei bull theory D-n1m where m = Weibull modulus, and 

n = number of spatial dimensions (n = 1,2, or 3; in the present 

calculations, 2). Therefore, instead of t1 = 1, one should set 

t1 = (D1Dbtnlm. This leads to the following Weibull-type sta

tistical generalization of the energetic size effect formula (12) 

D mm D 

[ 

I 

]

lh 
fr = fr.= (; ) + r Db 

(17) 

or 

( 

D )nlm[ (D )l_mlm]lIr 
• = f' _b l+r _b 

Jr Jr.= D D 

( 18) 

where .f,..=, Db' and r are positive constants representing the 

unknown empirical parameters to be determined by experi

ments. Because in all practical cases, rnlm < 1 (in fact, « 1), 
formula (17) satisfies three asymptotic conditions: 

1. For small sizes, D ~ 0, it asymptotically approaches the 

deterministic energetic formula (12) 

(

D )lh 
fr = fr.]l/r; oc D-lir (19) 

2. For large sizes, D ~ 00, it asymptotically approaches the 

Weibull size effect 

(

D )nlm 
f' .f b ex: D~n/m 

Jr=Jr·=V 

(20) 

3. For m ~ 00, the limit of (17) is the deterministic 

energetic formula (12). 

Equation (17) is, in fact, the simplest formula with these 

three asymptotic properties. It may be regarded as the asymp

totic matching of the small-size deterministic and the large

size statistical size effects. 

Based on the conclusions ofZech and Wittmann (1977), the 

value of Weibull modulus was, at first, fixed as m = 12, which 

implies the final asymptote to have the slope -nl m = -1/6 

(because n = 2 for most of the data). The same iterative algo

rithm of nonlinear optimization, as already described for the 

deterministic formula, was used, although the convergence was 

very slow this time. The optimized parameters are 

.f,.,= = 3.8 MPa, Db = 8.2 mm, and r = 0.9. The corresponding 
optimized data fit with the energetic-statistical formula (17) is 

shown in Fig. 4. The coefficient of variation of errors of this fit 

is 0) = 0.0275, which is low and only slightly higher than 

before. 

Zech and Wittmann (1977), however, based their conclu

sions on a very limited data set, and therefore, the question of 
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the value of m for concrete has been reopened. These authors 

obtained the value m = 12 in the standard way, which was from 

the coefficient of variation of strength values measured on 

specimens of one size and one shape. Numerical calculations, 

however, show that for m = 12, the size effect for larger sizes is 

unrealistically strong. The value of m is crucial, for it has a 

large effect on the size effect plot. Taking higher values of m 

increases the curvature of the logarithmic plot of (17) and 

decreases the downward slope of the large-size asymptote, 

which improves the fit of data. 

Figure 5 shows the best individual data set available to authors 

at present, and the optimized size effect curves for different 

choices of m. It is readily noticed that m = 12 is certainly not a 

good choice for this data set. To get the optimum fit of this 

individual data set, m needs to be approximately doubled. 

The optimum value of m, however, will differ for each indi

vidual data set. Therefore, it is appropriate to analyze all the 

data sets again jointly to determine the optimum common 

value of m. The same optimization algorithm as already 

described was used for various chosen m values, particularly 

m = 12, 16, 20, 25, 30, 40 and 00. The convergence improved 

significantly as m was increased and was excellent for m > 20. 

The coefficient of variation 0) of the optimized fits is plotted as 

a function of Wei bull modulus m in Fig. 6. The lowest values of 

0) are between 0.0226 and 0.0230, and occur in the range of 

mE (20, 25). The horizontal line in the figure represents the 

deterministic formula, for which 0) = 0.0269. 

Even though the changes of the coefficient of variation of 

errors seen in Fig. 6 are rather small, and the test data sets are 

contaminated by different uncertainties, a better assessment of 

Weibull modulus can be made than in previous works. From 

the joint analysis of all the data sets, and more clearly from the 

best existing individual data set (namely, that of Rocco (1995)), 

it transpires that the overall optimum value of the Weibull 

exponent is approximately 

m = 24 (21 ) 

Accordingly, the Weibull size effect for two-dimensional geo

metrical similarity is, in the logarithmic plot, a straight line of 

slope -nlm = -1/12 instead of the slope -1/6, generally con

sidered in most previous studies and shown in Fig. 4. 

In view of this conclusion, the nonlinear iterative optimiza

tion of data fits has been repeated using m = 24. The result is 

shown in Fig. 7. The corresponding coefficient of variation is 

0) = 0.023, and the optimum values of the parameters are 

J,.,= = 3.68 MPa, Db = 15.53 mm, and r = 1.14. The figure shows 

that the decrease of modulus of rupture with size is, for large 

sizes, much less than that seen in Fig. 4 for m = 12. The indi

vidual test data sets, fit with the energetic-statistical size effect 

formula for m = 24, are given in Fig. 8. The fitting of the ener

getic-statistical formula resulted in a smaller coefficient ofvari

ation in most cases, compared to sets with the deterministic 

size effect in Fig. 3; for seven of those data, the coefficient of 

variation is less than or equal to the coefficient of variation of 

deterministic formula, and for three, is greater. In the case of 

the data spanning a broad range of sizes, namely, those of 

Rocco (1995), Rokugo (1995), and Sabnis and Mirza (1979), the 

result of fitting is much better, which is the main evidence that 

the proposed energetic-statistical formula (17) works well. 

CORROBORATION BY NON LOCAL WEIBULL 
MATERIAL MODEL 

The existing experimental results are of a rather limited 

range and do not include extreme sizes that are of the greatest 

practical interest. The present theory, for example, has serious 
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implications for the nominal strength in bending failure of an 

arch dam, but the typical thickness of such dams, which is 

approximately 5 to 10 m on top, is way beyond the range 

explored experimentally. Therefore, it is important to check 

and verify the theory by other means. 

For this purpose, structural analysis based on the non local 

Weibull material model recently developed by Bazant and 

Novak (2000) is suitable because a good agreement with the 

existing limited test data, the same data as used herein, has 

been demonstrated. Numerical solutions of beams according to 

this model have now been used to obtain both the energetic

deterministic and the statistical asymptotic behaviors of size 

effect in the modulus of rupture tests of plain concrete beams. 

The Weibull integral for probability Pr of structural failure 

(Bazant and Planas 1998) was reformu1ated by Bazant and 

Novak in a nonlocal form. In this reformulation, the local 
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stresses are replaced by the non local (spatially averaged) 

strains multiplied by the modulus of elasticity, as proposed by 

Bazant and Xi (1991). Then the multidimensional generaliza

tion of the Weibull integral may be written as 

PI == 1-expf _j i(O'JX»)m dV(X)j 
1 V,=1 0'0 V, 

(22) 

where n == number of dimensions (1, 2 or 3); 0'0 == Wei bull scal

ing parameter; Vr == representative volume of material (having 

the dimension of material length); a, == principal stresses (i == 

1, ... n); and an overbar denotes non local averaging. The failure 

probability now does not depend on local stresses O',(x), but on 

the nonlocal stresses Cf,( x) that are the results of some form of 
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spatial averaging of strains; for details, refer to Bazant and Xi 

(1991), Bazant and Planas (1998), and Bazant and Novak 

(2000). In the case of an unreinforced, simply supported, sym

metric beam with a symmetric uniaxial stress field treated as 

two-dimensional, (22) becomes 

f LIZ DIZ [-( )]m ) 
Pf = l- expr ~ i L cr ;:Y dxdy (23) 

where L = span of the beam, and s = shift of the neutral axis of 

beam caused by distributed cracking. 

Because the most meaningful numerical simulations are those 

representing a combination of all the data sets rather than one 

particular data set, certain average values of material parame

ters, representing a certain average concrete, need to be adopt

ed. They have been chosen as follows: tensile strength 

;; = 3.:3 MPa; modulus of elasticity E = 35 GPa; postpeak soft

ening modulus E
t 
= 25 GPa coupled with material characteris

tic length I = 3d
a 

and maximum aggregate size 

da = 2:3 mm, Wei bull scaling parameter cro = 0.91/ and, as 

established herein, Weibull modulus m = 24. 

Three-point symmetric bending of a beam with a span

depth ratio LID = 3 is considered. The modulus of rupture is 

calculated for beam depths D spanning a very broad size range 

from D = 0.01 m (which is a hypothetical value, smaller than 

the maximum aggregate size assumed) to D = 10 m (which is a 

size of practical interest for arch dams, and not much 

larger than the thickness of some massive unrein forced foun

dation plinths or unreinforced retaining walls). The nonlocal 

0.95 r-~Ni;:-lc-;-lscn,----:1"'9-=-54:-----" 

Three point bending 

o 

o 
CD =0.041 

0.75 L--__ ----'-___ --' 

14 20 30 

averaging is carried out in the form found by Bazant and Novak 

(2000) as the most reasonable among several alternatives. It 
consists in spatial averaging of the inelastic strains over a char

acteristic neighborhood of the given point. The calculation of 

the median values (values corresponding to failure probability 

0.5) of the nominal strength (modulus of rupture) of the beam 

has been programmed and then used to fit the present ener

getic-statistical size effect formula (17). The medians of the 

modulus of rupture of the beam were obtained by iterating the 

solutions of the beam so as to obtain failure probability 0.5 with 

a prescribed accuracy. For details, refer to Bazant and Novak 

(2000). 

The result of nonlinear fitting of formula (17) by the 

Levenberg-Marquardt algorithm using the nonlocal solutions 

of failure probability (medians of modulus of rupture) of the 

beam is presented in Fig. 9. The corresponding parameters are 

.!,.= = 3.76 MPa, r = 1.28, and Db = 48.66 mm. To make the 

comparison visually clear, the bilogarithmic size effect curves 

from Fig. 7 and Fig. 9 are plotted together in Fig. 10. As can 

be seen, both curves are very close. 

This favorable comparison supports (but of course does not 

prove) the correctness of the present energetic-statistical size 

effect formula (17) as well as the nonlocal Weibull material 

model of Bazant and Novak (2000). 

COMMENTS ON ZECH AND WITTMANN'S 
ANALYSIS 

Zech and Wittmann (1977) used two methods to estimate 

Weibull modulus m: first, using the measured strength values 

for one shape and one size, they fit Wei bull probability distri-

o Test data (means for every size) 

Fitted energetic-statistical fonnula (r = 1.14) 

,-.., O. 7 '--;W:~iilla:r=-:IDiOOO7;B;rloem,=--;In2'!"'-' 2.5 .-----W-n-.gh-I,-19-52---. 

~ Four point bending 1ll= point bending 
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bution to the data (although they apparently performed no sta

tistical test to check whether the data sample has this distribu

tion). The fitting yielded the value of m as well as the scaling 

parameter; and second, using the strength values for different 

sizes, they fit to the data the Wei bull size effect in terms of 

specimen volume V that again yielded the value of m. 

When the energetic size effect is also present but is neg

lected, however, the resul t of the first method must be very dif

ferent for different specimen sizes, and the result of the second 

method must be very different for different limited size ranges. 

These limitations (which, of course, could not have been under

stood in 1977) are illustrated in Fig. 11, in which the numeri

cal results of the statistical non local model (Bazant and Novak 

2000b), spanning the size range almost 1: 1000, are divided into 

three groups for three different size ranges of breadth approx

imately 1: 10. Method 2 gives m = 24.2, 14.0, and 4.23 for the 

size ranges 2 to 10 m, 0.2 to 1 m, and 0.04 to 0.10 m, respec-
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tively, as is seen from the slopes of the lines in the logarithmic 

plot of Fig. 1 L The middle range is the normal laboratory test

ing range, and the value m = 14, found to fit the numerical 

results best, is quite close to Zech and Wittmann's value 

m = 12. 

As already mentioned, the Weibull modulus m has a signifi

cant influence on the shape of the size effect curve and the loca

tion of its asymptote. To illustrate this, the cases m = 12 and m 

= 24 may be compared. For small enough sizes, the case m = 12 

yields a higher values of modulus of rupture, but the large-size 

asymptote lies lower. With an increase of Tn, the overall slope 

of size effect curve generally decreases. 

This behavior can be explained by plotting what is called, 

in Weibull theory, the concentration function (for example, 

Bazant and Planas 1998), c(a) = (alaor (Fig. 12). Scale 

parameter ao = 4 MPa is assumed for this plot. Obviously, for 

m = 12, the concentration function has higher values for a:::;; ao, 
and lower values for a ~ ao. Consequently, in the small-size 

range, higher stresses are achieved, and thus, the effect of non

local strain averaging is stronger. Thus, the values of the con

centration function are smaller compared to the case m = 24 

(that corresponds to a smaller concentration of defects). This 

naturally leads to higher values of modulus of rupture. For 

large sizes, the situation is just the opposite. In particular, the 

influence of nonlocal strain averaging becomes negligible for 

very large sizes. Higher values of the concentration function 

for m = 12 lead to a steeper large-size asymptote than for 

m= 24. 

According to (20), the revised value m = 24 (instead of 

m = 12) means that the large-size asymptotic size effect is, for 

two-dimensional similarity, aN oc D- I
/

12 (rather than D-1
/

6
), 

and for three-dimensional similarity, aN oc D- 1
/

8 (rather than 
D-I/4). 

COMPARISON WITH DETERMINISTIC COHESIVE 
CRACK MODEL 

For the sake of comparison, the maximum loads for beams 

of various sizes have also been calculated with the cohesive 

crack model, in a similar way as Petersson (1991). The results, 

with model parameters set so as to optimize the fit of the pres-
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ent formula in the practical range, are shown in Fig. 13, in 

which the zone outside the practical size range is cross

hatched. The size effect curve of the cohesive crack model ter

minates with a horizontal asymptote and has a smaller slope 

than the present formula. The reason is that the statistical size 

effect is not captured by the cohesive crack model (capturing 

would not be easy-one would have to allow the cohesive crack 

to form at various random locations and, especially for small 

sizes allow simultaneous formation of several cohesive cracks 

until'localization instability leads to a single crack). 

REINTERPRETATION OF CAUSES OF SOME 
WELL-KNOWN STRUCTURAL CATASTROPHES 
The Malpasset Dam in French Maritime Alps, an arch dam 

of record-breaking slenderness built in 1954, failed catastroph

ically on its first complete filling in 1959, causing a.flood that 

wiped out the town of Frejus founded by the Romans (for 

example, Levy and Salvadori 1992). Almost 400 lives were lost. 

The failure, which started from vertical cracks due to flexural 

action in the horizontal plane, was attributed to the movement 

of rock in the left abutment, magnified by a thin, clay-filled 

seam. There can be no disputing that this explanation was cor

rect, but it was incomplete. 

From the perspective of this study, the size effect must have 

been a significant contributing factor. The energetic size effect 

was unknown in 1959, and the Weibull statistical size effect 

was not yet established for concrete. Considering that the wall 

thickness was D = 7 m (the minimum thickness of the dam, on 

its top) and that the tensile strength was estimated from the 

standard compression strength measured on specimens with 

D '" 15 cm, and assuming that r = 1.14 and Db = 10 cm for dam 

concrete, today one may conclude from (17) that the nominal 

tensile strength for flexural analysis of tolerable abutment 

movement must have been reduced to approximately 45% of 

the value considered. (If only the energetic size effect were con

sidered, it would be 64%, and if only the statistical one were 

considered, 73%.) The abutment movement that could have 

been tolerated to prevent the maximum flexural stress multi

plied by safety factor from attaining the tensile strength limit 

must have been correspondingly smaller than that estimated at 

that time by the investigating committee, which was unaware 

of size effect. 

Similar observations can be made about Saint-Francis Dam 

near Los Angeles, an arch-gravity dam that failed in 1928, 

causing a loss of over 500 lives. The primary cause also was an 
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excessive displacement in the rock abutment (Pattison 1998), 

but the size effect must have reduced the maximum tolerable 

displacement to only 40% of the strength theory prediction 

based on the tensile strength of normal laboratory specimens. 

Another example--an exception in the history of structur

al engineering disasters in the sense that, in this case, the inves

tigating committee did, in fact, recognize the size effect as a 

significant contributing factor-was the 1987 failure of the 

Schoharie Creek Bridge on New York Thruway, built in 1952 

(Levy and Salvadori 1992). A flood scoured the river bed to a 

depth of 5.5 m (18 ft) and bared approximately 1/2 of the 

length of an unreinforced foundation plinth of 6.7 m (22 f~) in 

depth, forcing it to act as a cantilever. Fracture of the plmth 

(analyzed by finite elements by Swenson and Ingraffea in 1991) 

caused the pier to sway, which in turn caused the precast pre

stressed beams to slip out of their bearings (five cars went 

down and 10 people drowned). Assuming Db = 0.05 m and r = 
1.14, today one may conclude from (17) that the nominal bend

ing tensile strength must have been reduced to 54% compared 

to the standard modulus of rupture J;. measured for D", 0.15 m. 

(If only the energetic size effect was considered, it would be 

77%, and if only the statistical one, it would be 73%.) 

Many other examples exist. Further catastrophes in which 

the size effect must have been a significant contributing factor 

could be cited for reinforced concrete structures (for example, 

Sleipner oil platform 1991; Hanshin viaduct, Kobe 1995; 

Cypress viaduct, Oakland 1989; bridge columns in Los Angeles 

earthquake 1994), although it was not concluded in the official 
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evaluations. The size effect in these structures is generally 

stronger because the load capacity of the structure is reached 

only after the development of a large crack. It obeys, however, 

a different law (Bazant 1984; Bazant and Chen 1997; Bazant and 

Planas 1998) with a negligible statistical contribution to the 

mean. Analysis of these disasters is planned for a separate 

paper. 

SUMMARY AND CONCLUSIONS 
I. A deterministic formula (12) for the size effect on the 

modulus of rupture in beam bending, or generally the size 

effect for failures at fracture initiation, has been derived from 

energy release caused by a large fracture process zone. Its spe

cial cases are the formulas previously proposed by Bazant and 

Li (1995, 1996b) and Carpinteri et al. (1994, 1995) (the latter 

called by Carpinteri the multifractal scaling law, MFSL). 

2. A rapidly converging iterative nonlinear optimization 

algorithm for fitting the formula to test data has been 

developed. 

3. The new energetic formula gives excellent agreement 

with the existing test data on the modulus of rupture of beams 

of various sizes. 

4. The range of these data, however, is much too limited. It 

does not (and hardly ever could) cover the extreme sizes 

encountered in arch dams, foundations, and earth-retaining 

structures, for which the size effect is of primary importance. 

Therefore, extrapolation to such sizes must be based on 

theory. 

5. As confirmed by recent structural analyses based on a 

new statistical non local material model, the energetic formula 

is inadequate for extrapolation to very large sizes because it 

terminates with a horizontal asymptote in the size effect plot. 

The theory must take into account the Weibull statistical size 

effect, which causes that the large-size asymptote in the 

logarithmic size effect plot must he inclined. 

6. For extrapolation to very large sizes, a new generalized 

formula (17) that amalgamates the energetic and statistical size 

effects for failures at crack initiation is developed. This new for

mula is of asymptotic matching type. Its asymptotic behaviors 

for small and large sizes conform to the energetic and statisti

cal theories, respectively, and its limit for an infinite value of 

Weibull modulus is the energetic formula. 

7. The correctness of the new energetic-statistical size effect 

formula (17) is supported by good agreement with structural 

analysis according to the recently developed statistical nonlo

cal material model. 

8. Minimization of the coefficient of variation of errors of 

the energetic-statistical formula compared to the bulk of the 

existing data indicates that, for concrete, the Weibull modulus 

m'" 24, rather than m = 12, which has so far been generally 

accepted on the basis of the limited small-size test results of 

Zech and Wittmann (1977). This means that the size effect on 

the m?dulu~ of ru~t~re ~t very larfie sizes is proportional, for 
two-dimensIOnal slmllanty, to D- I 12 (rather than D- I

/
6), and 

for three-dimensional similarity, to D- I / 8 (rather than D- I / 4 ). 

9. When the size effect has both statistical and energetic 

sources, which is the case for concrete, Wei bull modulus m 

could be determined in beam tests by the classical method (that 

is, from the coefficient of variation characterizing the scatter of 

many test results for one shape and one size) only if extremely 

large beams (several meters deep), which are not practically 

feasible, were used. For feasible beam dimensions, the smaller 

the size, the lower the m value obtained by the classical method. 

Likewise, estimation of m from size effect tests cannot be based 

on the classical Weibull formula for size effect unless such 

enormous beam dimensions could be used. For feasible dimen

sions of laboratory beams, the Weibull modulus must be deter

mined by fitting the present energetic-statistical size effect law 
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(17) to the measured nominal strength values. 

10. The results imply that the size effect at fracture initia

tion must have been a significant contributing factor in many 

catastrophic structural failures; for example, those of 

Malpasset Dam, Saint Francis Dam, and Schoharie Creek 

Bridge. 
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