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S U M M A R Y
The two-phase theory for compaction and damage proposed by Bercovici et al. (2001a,
J. Geophys. Res.,106, 8887–8906) employs a nonequilibrium relation between interfacial sur-
face energy, pressure and viscous deformation, thereby providing a model for damage (void
generation and microcracking) and a continuum description of weakening, failure and shear lo-
calization. Here we examine further variations of the model which consider (1) how interfacial
surface energy, when averaged over the mixture, appears to be partitioned between phases; (2)
how variability in deformational-work partitioning greatly facilitates localization; and (3) how
damage and localization are manifested in heat output and bulk energy exchange. Microphysical
considerations of molecular bonding and activation energy suggest that the apparent partition-
ing of surface energy between phases goes as the viscosity of the phases. When such parti-
tioning is used in the two-phase theory, it captures the melt-compaction theory of McKenzie
(1984, J. Petrol., 25, 713–765) exactly, as well as the void-damage theory proposed in a com-
panion paper (Ricard & Bercovici, submitted). Calculations of 1-D shear localization with this
variation of the theory still show at least three possible regimes of damage and localization:
at low stress is weak localization with diffuse slowly evolving shear bands; at higher stress
strong localization with narrow rapidly growing bands exists; and at yet higher shear stress it is
possible for the system to undergo broadly distributed damage and no localization. However,
the intensity of localization is strongly controlled by the variability of the deformational-work
partitioning with dilation rate, represented by the parameter γ . For γ � 1, extreme localization
is allowed, with sharp profiles in porosity (weak zones), nearly discontinuous separation ve-
locities and effectively singular dilation rates. Finally, the bulk heat output is examined for the
1-D system to discern how much deformational work is effectively stored as surface energy.
In the high-stress, distributed-damage cases, heat output is reduced as more interfacial surface
energy is created. Yet, in either the weak or strong localizing cases, the system always releases
surface energy, regardless of the presence of damage or not, and thus slightly more heat is in
fact released than energy is input through external work. Moreover, increased levels of damage
(represented by the maximum work-partitioning f ∗) make the localizing system release sur-
face energy faster as damage enhances phase separation and focusing of the porosity field, thus
yielding more rapid loss of net interfacial surface area. However, when cases with different
levels of damage are compared at similar stages of development (say, the peak porosity of
the localization) it is apparent that increased damage causes smaller relative heat release and
retards loss of net interfacial surface energy. The energetics and energy partitioning of this
damage and shear-localization model are applied to estimating the energy costs of forming
plate boundaries and generating plates from mantle convection.

Key words: geodynamics, lithospheric deformation, plate tectonics.

1 I N T R O D U C T I O N

Because of its high viscosity and creeping motion over geologi-
cal timescales, the lithosphere–mantle system is considered highly

dissipative. Thus, models of mantle convection generally assume
that convective work, or the release of gravitational potential en-
ergy, is completely dissipated as viscous or frictional heating. How-
ever, materials science has provided evidence since early in the 20th
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century (if not earlier) that not all deformational work is dissipated
as heat and that some such work is effectively stored as internal
energy associated with defects, microcracks and dislocations in the
material. In the 1920’s and 1930’s, G.I. Taylor performed experi-
ments on torsional deformation of metals and found that a fraction
of deformational work (termed ‘cold work’) was stored as internal
energy that later, upon heating and annealing, was released as latent
heat (Farren & Taylor 1925; Taylor & Quinney 1934). Few similar
analyses have been performed in the last 20 yr, for example the ex-
perimental work of A. Chrysochoos on thermometric measurements
of deformed materials (Chrysochoos & Martin 1989; Chrysochoos
et al. 1989, 1996).

The partitioning of deformational work between dissipation and
stored energy is now a common assumption in studies of dila-
tant plasticity, damage and shear localization in metals and in-
dustrial materials (e.g. ceramics) (Lemonds & Needleman 1986;
Povirk et al. 1994; Mathur et al. 1996; Hansen & Schreyer 1992;
Lemaitre 1992) as well as in fault dynamics (Lyakhovsky et al.
1997) and continental collision zones (Regenauer-Lieb 1999). Par-
titioning of work between heat, stored energy and seismic radia-
tion is also an important fundamental problem in the physics of
earthquake and is referred to as seismic efficiency (Mora & Place
1998).

In a similar fashion, the viscous two-phase damage theory pre-
viously proposed by us (Bercovici et al. 2001a; Ricard et al. 2001;
Bercovici et al. 2001b) to treat lithospheric strain localization and
plate boundary formation, has as its core assumption that a frac-
tion f of the deformational work is stored as energy on microcrack
surfaces, which is represented as interfacial surface energy. Three
aspects of energy partitioning and stored energy are thus further
explored in this paper.

First, in the two-phase damage theory, the stored energy is man-
ifest as surface energy on the interface between the two phases,
which themselves represent the host material (rock) and void-filling
material (fluid such as water). However, as with most two-phase or
mixture theories, neither the location of phase elements (pores of
void fluid and grains of host matrix) nor the interface between phases
is delineated. With mathematical averaging, the phases and interface
are treated as continuous entities, existing at all points in the domain
but in various concentrations. The fluid is represented as existing at
all points with a volumetric concentration of φ, otherwise known as
the porosity; the host matrix exists with volumetric concentration
1 − φ; and the interface exists with areal concentration (i.e. inter-
facial surface area per unit volume) α (Drew & Segel 1971; Ni &
Beckerman 1991; Bercovici et al. 2001a). The interfacial surface
tension force imparted to each phase is likewise mathematically
distributed over the domain and thereby treated as an effective body
force acting internally through the mixture volume and on each
phase. The surface energy is similarly distributed mathematically
and thus assumed to be carried volumetrically like an internal en-
ergy by each phase. How the surface tension and energy are assumed
to be effectively distributed between phases raises a separate par-
titioning assumption, i.e. how surface energy/tension is partitioned
between phases. Bercovici et al. (2001a) assumed that surface en-
ergy is, in effect, equipartitioned between the phases. However, in
this paper, we consider the microphysical relation between surface
energy and material properties of phases such as molecular bond
strength and viscosity. From these considerations we propose a pos-
sibly more realistic surface-energy partitioning assumption which
also improves the self-consistency of the theory and allows for an
exact correspondence with the two-phase melt-dynamics theory of
McKenzie (1984) and Spiegelman (1993a,b,c).

With this variation of our two-phase damage theory, we re-
examine some fundamental 1-D shear-localization cases and inves-
tigate the various aspects of deformational work partitioning. The
work partitioning fraction f was shown by Bercovici et al. (2001b)
to vary with at least dilation rate, the variability represented by the
parameter γ . The influence of both the maximum allowable parti-
tioning f ∗ = max( f ) and dilation-rate dependence γ are examined
for their influence on localization. As will be shown here, γ strongly
controls the sharpness and intensity of shear localization.

Finally, we examine how damage and energy partitioning are man-
ifest in the net measurable energy budget and exchange of energy
between deformational work, heating and interfacial surface energy.

2 B A S I C T H E O R Y

Since Bercovici et al. (2001a) derived the original two-phase dam-
age theory, we only briefly present the governing equations for the
purpose of referencing, but examine those equations being varied
in detail. Subscripts f and m refer to fluid and matrix phases, re-
spectively. All dependent variables are not, in fact, true microscopic
quantities but are averaged over the fluid or matrix space within
small but not necessarily infinitesimal control volumes. Moreover,
all equations are invariant to a permutation of subscripts f and m and,
implicitly, a switch of φ and 1 − φ, where φ is fluid volume fraction,
or porosity; this symmetry property is called ‘material invariance’
(see Bercovici et al. 2001a, for further discussion).

2.1 Mass conservation

The conservation of mass equations are fairly standard in two-phase
theories and remain unchanged here. There are two equations involv-
ing transport of the fluid and matrix phases:

∂φ

∂t
+ ∇ · [φv f ] = 0 (1)

∂(1 − φ)

∂t
+ ∇ · [(1 − φ)vm] = 0, (2)

where v f and vm are the fluid and matrix velocities. Eqs (1) and (2)
can be added to yield a continuity equation

∇ · v̄ = 0, (3)

where the average and difference of any quantity q are defined as

q̄ = φq f + (1 − φ)qm, �q = qm − q f , (4)

respectively.

2.2 Momentum conservation

The momentum or force balance equations involve surface tension
forces and are thus the first set of equations to be varied, so we will
present their derivation more thoroughly.

As shown in Bercovici et al. (2001a), the force balance on the
fluid phase, averaged over the fluid volume, leads to

0 = −∇[φPf ] + ∇ · [φτ f ] − ρ f φgẑ + h f , (5)

where Pf is the pressure averaged over the fluid volume, τ f is
the viscous stress tensor averaged over the fluid volume, ρ f is the
density of the fluid phase (assumed constant), g is gravity, and h f

is the interaction force which results from forces acting on the fluid
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across its interface with the matrix. A similar development for the
matrix results in

0 = −∇[(1 − φ)Pm] + ∇ · [(1 − φ)τm]

−ρm(1 − φ)gẑ + hm (6)

where Pm and τm are the average pressure and stress in the matrix,
ρm the matrix density (also constant) and the interaction force hm

results from forces acting on the matrix across its interface with the
fluid. The fluid and matrix deviatoric stresses are given by

τ j = µ j

[
∇v j + [∇v j ]

t − 2

3
(∇ · v j )I

]
(7)

where j = f or m, and µ j is the true viscosity of phase j (i.e. the
viscosity of the phase in its pure form); as discussed by Bercovici
et al. (2001a) and Ricard et al. (2001), we do not explicitly em-
ploy the bulk viscosity proposed by McKenzie (1984). Although
each phase in its pure form is assumed to have constant vis-
cosity (Bercovici et al. 2001a), the factors of φ and 1 − φ be-
fore τ f and τm , respectively, in the mixture force-balance eqs (5)
and (6) lead to an effective porosity-dependent viscosity; e.g. in
the limit of an inviscid fluid phase, the effective viscosity of the
two-phase medium in simple shear is (1 − φ)µm (Ricard et al.
2001).

The total force acting on the entire mixture is given by

0 = −∇P̄ + ∇ · τ̄ − ρ̄gẑ + ∇(σα) (8)

where barred quantities are averaged according to (4), σ is surface
tension and

α = αoφ
a(1 − φ)b (9)

is the porosity-dependent interfacial area per unit volume in which
αo is a constant with units of m−1, a and b are constants ≤1, and
dα/dφ is the average interface curvature (see Bercovici et al. 2001a,
for a discussion of the properties of the interface density).

As the sum of (5) and (6) must equal (8), we require that

h f + hm = ∇(σα), (10)

such that without surface tension the interaction forces of the two
phases are equal and opposite, i.e. h f = −hm . For a properly deter-
mined system (see discussion in Bercovici et al. 2001a), we write

h f = η + ω∇(σα) (11)

hm = −η + (1 − ω)∇(σα), (12)

where η is the component of the interaction force that in one phase
is equal and opposite to that in the other phase, and ω is the surface
energy partitioning function which is presumably between 0 and 1. In
Bercovici et al. (2001a), we assumed ω = φ, implying that since the
surface tension acts on the common interface between phases, once
homogenized by averaging over the mixture, its force acts on each
phase equally. Here we relax this heuristic assumption and allow
for a more general approach. (Note that we keep the partitioning
functions ω and 1 − ω outside the ∇ operators in (11) and (12)
since we assume the averaged surface tension forces acting on each
phase are parallel to each other, since the true force acts on their
common interface.)

As in Bercovici et al. (2001a), the simplest form of η is given by

η = c�v + P∗∇φ, (13)

where c is the interfacial drag coefficient (in the limit of µ f 
 µm

it is equivalent to the Darcy drag coefficient), �v = vm − v f , P∗ =
θ Pf + (1 − θ )Pm represents a common interfacial pressure, and θ

is some unknown weighting function. To estimate θ we substitute
(11)–(13) into (5) and (6), and take the limit of no motion (see
Bercovici et al. 2001a) which results in

(1 − θ )�P∇φ + ωσ∇α = 0, (14)

θ�P∇φ + (1 − ω)σ∇α = 0, (15)

(where �P = Pm − Pf ) which can both only be true if θ = 1 −
ω; this choice is further verified by the fact that both (14) and (15),
along with (9), become the Laplace static equilibrium surface ten-
sion condition

�P + σ
dα

dφ
= 0, (16)

as should be expected. The general momentum equations for each
phase (5) and (6) then become

0 = −φ[∇Pf + ρ f gẑ] + ∇ · [φτ f ] + c�v

+ ω[�P∇φ + ∇(σα)], (17)

0 = −(1 − φ)[∇Pm + ρm gẑ] + ∇ · [(1 − φ)τm] − c�v

+ (1 − ω)[�P∇φ + ∇(σα)]. (18)

2.3 Energy conservation and damage

Following the development of Bercovici et al. (2001a), the energy
equation is separated into two coupled equations representing (1)
the evolution of thermal (entropy-related) energy, and (2) the rate
of work done on the interface by pressure, surface tension, and
viscous deformational work. The interfacial surface energy and
the work done by surface tension on the mixture is assumed to
be partitioned by the same fraction ω as the surface tension force
in the previous section. With these assumptions we arrive at (see
Bercovici et al. 2001a) for a detailed derivation with the case of
ω = φ)

ρc
DT

Dt
− T

D̃

Dt

(
α

dσ

dT

)
− T α

dσ

dT
∇ · ṽ

= Q − ∇ · q + B

(
D̃φ

Dt

)2

+ (1 − f )� (19)

σ
D̃α

Dt
= −�P

D̃φ

Dt
+ f � − B

(
D̃φ

Dt

)2

, (20)

where T is the temperature (assumed the same in both phases),
−dσ/dT is the interfacial entropy per unit area (Desjonquères &
Spanjaard 1993; Bailyn 1994; Bercovici et al. 2001a),

ṽ = ωv f + (1 − ω)vm (21)

is the effective velocity of the interface, Q is an intrinsic heat source,
q is an energy flux vector (accounting for heat diffusion and possibly
energy dispersion (Bercovici et al. 2001a)), and

� = c�v2 + φ∇v f : τ f + (1 − φ)∇vm : τm (22)

(where �v2 = �v·�v) is the viscous deformational work, a fraction
f of which is partitioned into stored work (in this model stored
as interface surface energy) while the remaining part goes toward
dissipative heating (Taylor & Quinney 1934; Chrysochoos & Martin
1989); see Bercovici et al. (2001a) for further discussion of the
partitioning fraction f . The quantity B must be positive, has units
of viscosity and the term associated with it represents irreversible
viscous work done on pores and grains by the pressure difference
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�P during compaction or dilation (Bercovici et al. 2001a; Ricard
et al. 2001). Simple micromechanical models suggest that

B = K
(µm + µ f )

φ(1 − φ)
, (23)

where K is a dimensionless factor accounting for pore or grain
geometry and is typically O(1) (Bercovici et al. 2001a); see also
Sumita et al. (1996).

The average heat capacity per volume of the mixture is

ρc = φρ f c f + (1 − φ)ρmcm (24)

(where cf and cm are the heat capacities of the fluid and matrix), and
the material derivatives in (19) and (20) are defined as

D̃

Dt
= ∂

∂t
+ ṽ · ∇ = ω

D f

Dt
+ (1 − ω)

Dm

Dt
(25)

D

Dt
= 1

ρc

(
φρ f c f

D f

Dt
+ (1 − φ)ρmcm

Dm

Dt

)
(26)

in which

D f

Dt
= ∂

∂t
+ v f · ∇,

Dm

Dt
= ∂

∂t
+ vm · ∇. (27)

The one significantly new effect relative to what was proposed
by Bercovici et al. (2001a) is the third term on the left side of (19),
i.e. −T α(dσ/dT )∇ · ṽ. This term is analogous to adiabatic cooling
in compressible flows. That is, if the interface expands by dilation
(∇ · ṽ > 0) while keeping the interface entropy per area −dσ/dT
fixed, the apparent increase in net interfacial entropy will have to
be compensated by an entropy loss elsewhere; e.g. if the system is
held adiabatic, it will be compensated by a decrease in bulk entropy
(represented by the first term on the left of 19) and thus adiabatic
cooling of the mixture.

2.3.1 The damage equation and deformational work partitioning

Eq. (20) governs the rate that deformational work and the interpha-
sic pressure difference do work on the interface, effectively storing
reversible energy on the interface as surface energy; as this models
the growth of microcracks and defects by growth of interfacial area
it is termed the damage equation.

By inspection one can see that in regions between growth and
decay of porosity one can have D̃φ/Dt = 0 in which case the
terms in (20) only balance if f = 0 when D̃φ/Dt = 0. Bercovici
et al. (2001b) assumed the simplest possible form to satisfy this
mathematical constraint by writing

f = f ∗ (D̃φ/Dt)2

γ + (D̃φ/Dt)2
(28)

where f ∗ is the maximum permissible f , γ controls the variability
of f and f is assumed to depend on an even power of D̃φ/Dt since it
must be a positive number (and for simplicity we assume the lowest-
order such power). In this case, and assuming α = α(φ) as according
to (9), the damage equation becomes

σ
dα

dφ
= −�P + f ∗ D̃φ/Dt

γ + (D̃φ/Dt)2
� − K (µm + µ f )

φ(1 − φ)

D̃φ

Dt
. (29)

In the absence of motion, (20) recovers the Laplace equilibrium
surface tension condition (16). In the absence of damage and surface
tension ( f = σ = 0), (29) models isotropic compaction, although
its correspondence to the theory of McKenzie (1984) depends on
ω implicitly through the operator D̃/Dt , which will be discussed
further in Section 4.1.

3 S U R F A C E E N E R G Y P A R T I T I O N I N G

The weighting fraction ω controls the apparent partitioning of sur-
face energy between phases when it is averaged or homogenized over
the volume of the mixture. For simplicity, Bercovici et al. (2001a)
proposed a simple relation of ω = φ which assumes that the surface
energy is on the common, infinitesimally thin interface between the
phases, and thus its volume average is equipartitioned between the
phases (i.e. the surface energy is effectively spread uniformly over
the volume of mixture, and thus φ of it is in the fluid and 1 − φ in
the matrix).

However, surface energy as a quantity existing on an infinitesi-
mally thin interface is a mathematical idealization. Surface energy
is in fact the energy anomaly that exists near the surface of a material
(either solid or liquid), in a layer several molecules deep; because of
the imbalance of intermolecular forces near the exposed surface, the
molecular organization of this layer is disrupted relative to the equi-
librium structure in the interior of the material sample. This layer
is often referred to as the ‘selvedge’ (Prutton 1983). The amount of
the surface energy depends on the extent to which the free energy in
the selvedge differs from the free energy in the bulk structure; e.g.
if the selvedge has an anomalous free energy per unit volume, then
the integral of this anomaly over the thickness of the selvedge is the
surface energy (in units of energy per unit surface area).

Ideally, materials with larger bond energy have larger surface
energy (Guéguen & Palciauskas 1994). This bond energy is also
associated with the activation energy for moving a molecule out of
the potential well of the lattice in which it is embedded. For ex-
ample, creation of an exposed surface requires removing an entire
layer of molecules out of their potential wells and off to a distance
that is effectively infinity (such that the removed molecules are no
longer interacting with the molecules to which they were originally
attached). The work done to remove one molecule this way is eas-
ily shown to be equal to the activation energy or the ‘depth’ of the
potential well �G (with units of Joules per molecule). (A molec-
ular potential well is due to the sum of Coulombic attraction and
repulsion due to Pauli exclusion, both of whose potentials go as r−p

(see Guéguen & Palciauskas 1994) where r is intermolecular dis-
tance and p ≥ 1; thus, the work done to move a molecule from the
potential-energy well minimum to r = ∞ is simply �G, the poten-
tial energy at the well minimum.) The molecules freshly exposed
at the surface have dangling bonds, and ideally the energy anomaly
of the surface would exist only in this layer of molecules. However,
dangling bonds attract other chemical species, causing adsorption
on to the surface thus reducing the energy anomaly of the surface;
moreover, the underlying few layers of molecules are thrown out of
balance by the disruption of the lattice and also adjust their spacing
to smooth out and/or mitigate the energy anomaly, thus leading to the
selvedge (Prutton 1983). Nevertheless, these complexities aside, we
can assume that surface energy is related to the activation energy of
the material in which the surface is created; i.e. materials with large
activation energy require more work to create an exposed surface.
In particular, as the surface energy is defined as the work necessary
to make a surface of unit area, then this work is proportional to
n�G where n is the number of exposed molecules per unit area (or,
more precisely, n ∼ Nδ where N is the number of molecules per
unit volume in the selvedge and δ is the thickness of the selvedge).

The surface energy can also depend on the external material to
which the surface is exposed, e.g. through chemical adsorption.
However, if we assume little or no chemical interaction between
the two phases meeting at an interface, then the surface energy at
the interface would just be the sum of the energy anomalies of the
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two selvedges existing in each phase. If one phase has the larger
activation energy, then its selvedge has the larger energy anomaly,
and thus that phase contributes a larger fraction of the net surface
energy at the interface. In short, the material with larger activation
energy likely carries more of the surface energy (i.e. has a more
energetic selvedge) than the other phase.

Based on these considerations, we assume that when the surface
energy is averaged over the mixture, it is not equipartitioned between
phases but carried more by the phase with larger activation energy,
i.e. surface energy is partitioned between phases according to their
molecular bond strengths.

In simple viscous materials, the parameter that quantifies molecu-
lar activation energy or bond strength is the viscosity. For example,
for either subsolidus or liquid flow, the Eyring model of viscos-
ity predicts that viscosity depends on activation energy according
to µ ∼ e�G/kT where k is Boltzman’s constant (Bird et al. 1960;
Turcotte & Schubert 1982). (Only gases have a different viscosity
laws, but unlike solids and liquids, gases have neither regular molec-
ular structure nor surface energy.) However, we add the caveat that
representing activation energy as a simple function of viscosity is an
over-simplification since viscosity depends on other variables such
as temperature, composition, grain-size and/or dislocation density.
Nevertheless, in a viscous system, information about the activation
energy is contained primarily in the viscosity and thus we proceed
under the working assumption that they are simple monotonic func-
tions of each other.

We therefore assume that the surface-energy partitioning fraction
ω is determined by the phases’ activation energy, or alternatively
their viscosity. In the limit that the phases’ viscosities are equal we
assume that the averaged surface energy is equipartitioned, i.e. if
µ f = µm then ω = φ, for reasons stated by Bercovici et al. (2001a).
In general, the simplest relation for ω satisfying these various con-
straints is

ω = φµ f

φµ f + (1 − φ)µm
. (30)

3.1 The geologically relevant limit of ω
and the governing equations

The exact form of the relation for ω is probably not important for
many geological applications such as partial melts, and fluids perco-
lating through rock, for which µ f 
 µm . In these cases, regardless
of the relation for ω, we can assume ω ≈ 0, which leads to the
momentum equations for each phase

0 = −φ[∇Pf + ρ f gẑ] + c�v. (31)

0 = −(1 − φ)[∇Pm + ρm gẑ] + ∇ · [(1 − φ)τm]

− c�v + [�P∇φ + ∇(σα)]. (32)

Eqs (31) and (32) can be combined to give

0 = ∇[σα − (1 − φ)�P] + ∇ · [(1 − φ)τm]

− (1 − φ)�ρgẑ − c

φ
�v. (33)

The material derivative of φ moving with the interface is then related
to matrix mass conservation:

D̃φ

Dt
= Dmφ

Dt
= (1 − φ)∇ · vm (34)

and the damage eq. (29) becomes

�P = −σ
dα

dφ
+ f ∗ Dmφ/Dt

γ + (Dmφ/Dt)2
� − Kµm

φ(1 − φ)

Dmφ

Dt
, (35)

which can be used to eliminate �P in (33).

4 L I M I T I N G C A S E S

The assumption that surface-energy partitioning ω depends on phase
viscosity, as suggested in the previous section, can be benchmarked
by comparison to two independent limiting cases. One case regard-
ing simple melt transport (McKenzie 1984) does not involve surface
energy thus we can test our assumptions about ω even in the case
when surface energy σ is zero.

4.1 Melt transport and compaction: McKenzie (1984)

The application of two-phase physics to problems of magma dy-
namics is perhaps best known through the work of McKenzie (1984,
1985, 1987) (see also McKenzie & Holness 2000). Aside from dam-
age and interface thermodynamics, the greatest difference between
the theories of McKenzie (1984) and Bercovici et al. (2001a) is that
Bercovici et al. (2001a) adheres to material invariance and does not
invoke the McKenzie (1984) assumption of a matrix bulk viscosity.
Both Bercovici et al. (2001a) and Ricard et al. (2001) discussed
the correspondence and disagreement between these two theories.
We show here, however, that the correspondence between these two
theories becomes exact in the proper limits and given the above
considerations of the partitioning fraction ω.

The McKenzie (1984) theory assumes constitutive laws for each
phase of the form

σ f = −PI (36)

σm = −PI + η
(
∇vm + [∇vm]†

) +
(

ζ − 2

3
η

)
∇ · vmI (37)

where σ j is the full stress tensor of phase j; P is the fluid pressure; η
is the effective matrix viscosity; and ζ is the matrix bulk viscosity.
These constitutive laws allow a non-null solution in the case of
isotropic compaction, where each phase is exposed to a different
isotropic compressive stress, say −� f and −�m , such that

1

3
T r (σ f ) = −P = −� f (38)

1

3
T r (σm) = −P + ζ∇ · vm = −�m (39)

Thus

ζ∇ · vm = −��, (40)

which implies that if �m > � f the matrix is squeezed more than the
fluid and thus the matrix is compacted. Alternatively, if the entire
mixture undergoes uniform isotropic compressive stress such that
�m = � f , then there is no compaction (∇·vm = 0) which therefore
preserves the incompressibility of the mixture of two incompressible
fluids (i.e. both McKenzie 1984; Bercovici et al. 2001a, assume the
mixture is composed of constant density fluids).

With the bulk-viscosity approach it is necessary to assume that
ζ → ∞ as φ → 0 (Schmeling 2000; Ricard et al. 2001), otherwise,
with constant ζ , compaction is predicted to proceed even after φ =
0, which is nonphysical. Moreover, as discussed in Bercovici et al.
(2001a), it is not possible to extend the bulk-viscosity approach to
obtain a materially invariant theory.

The Bercovici et al. (2001a) theory, alternatively, obtains a ma-
terially invariant set of equations and avoids the bulk viscosity as-
sumption; however, the form presented by Bercovici et al. (2001a)
has certain failings of its own that we address here. In particular,
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the full stress tensors for each phase in the Bercovici et al. (2001a)
theory are given by

σ f = −Pf I + µ f

(
∇v f + [∇v f ]† − 2

3
∇ · v f I

)
(41)

σm = −PmI + µm

(
∇vm + [∇vm]† − 2

3
∇ · vmI

)
. (42)

In the same limit of isotropic compaction discussed above we obtain

1

3
T r (σ f ) = −Pf = −� f (43)

1

3
T r (σm) = −Pm = −�m, (44)

which leads to �P = ��. For consistency with McKenzie (1984),
we assume no damage or surface energy ( f = σ = 0), and µ f 

µm and obtain from (29)

�� = �P = − Kµm

φ(1 − φ)
[(1 − ω)(1 − φ)∇ · vm − ωφ∇ · v f ]

(45)

where, even though µ f 
 µm , we have momentarily retained the
general dependence on ω for the sake of discussion.

If φ is uniform, the choice of ω is irrelevant; in that case (3)
implies φ∇ · v f = −(1 − φ)∇ · vm and the dependence on ω

in (45) vanishes. However, if φ is not uniform, and we adopt the
assumption of Bercovici et al. (2001a) that ω = φ, we obtain the
non-intuitive result that compaction depends on fluid velocity even
though the fluid is assumed relatively inviscid (and the fluid can,
of course, obtain very high velocities relative to the matrix). Thus,
we can best assure a physical solution by assuming that ω → 0
as µ f /µm → 0. This inference of the behaviour of ω with phase
viscosity is deduced completely independently of the surface energy
considerations presented in Section 3 (since surface energy is zero
in the comparison to the McKenzie 1984 theory). Therefore we see
at least two separate lines of reasoning pointing to ω depending on
µ f and µm .

Thus, adopting the assumption that ω ≈ 0 in the limit µ f 
 µm ,
the compaction condition (45) becomes

Kµm

φ
∇ · vm = −��, (46)

which is a simpler, physically self-consistent condition that pre-
cludes compaction beyond φ = 0. Therefore, allowing for ω → 0
as µ f /µm → 0 exactly recovers the McKenzie (1984) theory (i.e.
compare 40 and 46) assuming that ζ = Kµm/φ which, as mentioned
above, is desirable anyway.

Therefore, accounting for a surface energy partitioning ω that de-
pends on phase viscosity (or activation energy) allows us to both pre-
serve the general material invariance of the Bercovici et al. (2001a)
theory while at the same time exactly recovering (and completing
the correspondence with) the McKenzie (1984) theory. That both
theories match at the relevant limit of µ f 
 µm provides them at
least some partial validation.

4.2 Void theory: Ricard & Bercovici (submitted.)

Ricard & Bercovici (submitted.) have proposed a variant of the two-
phase damage theory in which the pores are evacuated voids. In this
case, the pores have zero density, pressure and viscosity (ρ f = Pf =
µ f = 0). At the interface there is no interaction force between
phases (c�v = 0) and the interface itself is assumed to move with
the matrix. In this limit, as Ricard & Bercovici (submitted.) show,

the governing equations of mass, momentum and surface energy
(damage) are, respectively,

∂φ

∂φ
= ∇ · [(1 − φ)vm] (47)

0 = ∇[σα − (1 − φ)Pm] + ∇ · [(1 − φ)τm] − (1 − φ)ρm gẑ (48)

Pm = −σ
dα

dφ
+ f ∗ Dmφ/Dt

γ + (Dmφ/Dt)2
� − Kµm

φ(1 − φ)

Dmφ

Dt
(49)

(where � is as defined in 22 but with c�v2 = 0) which leads to a
simpler set of equations than the full two-phase theory since the fluid
velocity v f is eliminated. These equations are derived from integral
conservation laws independent of assumptions about surface energy
partitioning ω since there is no matter in the pores to which the
surface energy can be partitioned; the surface energy, by nature of
the ‘void’ assumption, must reside entirely in the matrix.

With the dependence of ω on viscosity proposed in Section 3
(and inferred independently in Section 4.1), the void limit (ρ f =
Pf = µ f = c�v = 0) leads to ω = 0, and we find an exact
correspondence between the void eqs (47)(– 49) and the two-phase
eqs (2), (33) and (35), assuming φ �= 0. This was not the case with
the original Bercovici et al. (2001a) version of theory in which
ω = φ.

Therefore, allowing a dependence of ω on phase viscosity permits
an exact correspondence between the general two-phase theory and
the McKenzie (1984) magma-dynamics theory in the limit µ f 

µm , as well as the Ricard & Bercovici (submitted.) theory in the
evacuated-void limit.

5 1 - D T H E O R Y F O R S H E A R
L O C A L I Z A T I O N A N D
D E F O R M A T I O N A L W O R K
P A R T I T I O N I N G

Here we examine one-dimensional (1-D) shear calculations similar
to those used in Bercovici et al. (2001b). We find that assuming
ω = 0 for µ f 
 µm , instead of ω = φ, has little overall effect on the
1-D calculations, although the resulting theory permits an improved
analytic understanding of the nonlinear results. We also use the 1-D
theory to further examine the role of partitioning of deformational
work between damage (energy stored on the interface as surface
energy) and dissipation.

5.1 1-D equations

Our domain is infinitely long in the x direction and is 2L wide, going
from y = −L to +L . The boundaries are impermeable and no slip
and move in the x direction with equal and opposite velocities of
magnitude V x; thus at y = ±L , vmx = v fx = ±Vx and vmy = v fy =
0. All dependent variables depend only on y and time t. Because
the system is 1-D and the boundaries at y = ±L are rigid (i.e.
vmy = v fy = 0 at the boundaries) the continuity eq. (3) becomes

φv fy + (1 − φ)vmy = 0 (50)

and thus if φ �= 0 we obtain

�vy = vmy /φ. (51)

In 1-D, matrix mass conservation (2) yields

∂φ

∂t
= ∂

∂y
[(1 − φ)vmy ] (52)
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which we use to define the effective dilation rate

� = Dmφ

Dt
= (1 − φ)

∂vmy

∂y
. (53)

Our layer is assumed to be in the horizontal x-y plane such that
gravity does not appear in the relevant force equations. We also
assume that µ f 
 µm and that the fluid macroscopic stresses are
negligible relative to other fluid forces; thus we neglect τ f but retain
interface force terms proportional to c�v. Given the formula for c
in the limit µ f 
 µm (McKenzie 1984; Spiegelman 1993a,b,c;
Bercovici et al. 2001a), we obtain

c = µ f φ
2

koφn
, (54)

where ko is a reference permeability; adopting the common and
simplifying assumption that n = 2 (which is really only valid for
small porosities), c = µ f /ko is a constant.

With the above assumptions the x component of the fluid force
eq. (17) yields c�vx = 0, which implies that v fx = vmx throughout
the medium. The x component of the matrix force eq. (18) becomes

0 = µm
∂

∂y

[
(1 − φ)

∂vmx

∂y

]
(55)

which allows us to define the effective shear rate

� = (1 − φ)
∂vmx

∂y
= const. (56)

The only equation necessary to describe the force balance in the
y direction is (33), which, with (51) and (53), becomes

0 = ∂

∂y

[
σα − (1 − φ)�P + 4

3
µm�

]
− c

vmy

φ2
. (57)

The final necessary equation is (35), which, with (22) and our as-
sumptions so far, becomes

�P = −σ
dα

dφ
− Kµm

φ(1 − φ)
�

+ f ∗�
γ + �2

[
c
v2

my

φ2
+ µm

1 − φ

(
�2 + 4

3
�2

)]
. (58)

Eqs (57) and (58) can be combined to eliminate �P and obtain

∂

∂y

[
σ (1 − φ)2 d

dφ

(
α

1 − φ

)
+ µm

(
4

3
+ K

φ
− f ∗ �2 + 4

3 �2

γ + �2

)
�

= c

[
vmy

φ2
+ f ∗ ∂

∂y

(
(1 − φ)�v2

my

φ2(γ + �2)

)]
. (59)

We must also treat the special case of φ = 0 (since, for example,
the final force eq. (59) is only valid for 0 < φ < 1). In this case, and
given our assumptions so far, (3) becomes �vy∂φ/∂y = ∂vmy /∂y.
However, since φ = 0 is the minimum value of φ, ∂φ/∂ y = 0 when
φ = 0, and thus ∂vmy /∂y = 0; also, with the rigid boundaries,
vmy = 0 when φ = 0. These two constraints on vmy lead to ∂φ/∂t =
0 (from 52). These relations would then replace (52) and (59) as the
relevant equations for the case φ = 0. Similar conditions exist for
the case φ = 1, assuming that our basic approximations (e.g. that
τ f is negligible) are applicable in this limit.

5.1.1 Nondimensionalization

Assuming σ is constant, and making the substitutions y = Ly′,
α = α0α

′(
�, �,

vmy

L
,
√

γ , 1/t

)
= σα0

µm

(
�′, �′,

w

L
,
√

γ ′, 1/t ′
)

(60)

our governing equations become (dropping the primes)

∂φ

∂t
= ∂(1 − φ)w

∂y
(61)

∂

∂y

[
(1 − φ)2 d

dφ

(
α

1 − φ

)
+

(
4

3
+ K

φ
− ν + 4

3 f ∗�2/γ

1 + �2/γ

)
�

= λ

[
w

φ2
+ f ∗ ∂

∂y

(
(1 − φ)�w2/γ

φ2(1 + �2/γ )

)]
, (62)

where

� = (1 − φ)
∂w

∂y
(63)

λ = cL2

µm
(64)

ν = f ∗�2/γ (65)

and now

α = φa(1 − φ)b. (66)

The parameter ν, as discussed by Bercovici et al. (2001b), represents
the amount of stored deformational work done by the shear stress
imposed on the layer.

6 L I N E A R S T A B I L I T Y A N A L Y S I S

The stability of the system to perturbations is in fact identical to that
presented by Bercovici et al. (2001b). To demonstrate this one sim-
ply substitutes for our dependent variables a constant background
state plus a perturbation

φ = φ0 + εφ1(y, t)

w = εw1(y, t)

� = ε�1 = ε(1 − φ0)
∂w1

∂y

(67)

where ε 
 1 and because of the rigid impermeable boundaries the
background state of order ε0 for w and � must be zero to conserve
mass. Placing these in the standard way into our governing eqs (61)
and (62), and assuming all terms of order ε1 go as eiky+st, then the
growth rate s of a perturbation of wavelength 2π/k is given by

s = G(φ0)k2

φ0(1 − φ0)[K + φ0(4/3 − ν)]k2 + λ
(68)

where

G(φ) = −φ2(1 − φ)2 d2α

dφ2

= φa(1 − φ)b{a(1 − a) + (a + b − 1)[2a − (a + b)φ]φ}.
(69)

As discussed in Ricard et al. (2001) and Bercovici et al. (2001b),
G(φ) > 0 for all porosities. Thus, the growth rate s is positive for
no shear or damage (ν = 0), which reflects the instability of the sys-
tem to surface-tension driven segregation of the two phases, termed
‘self-separation’; this effect is due to the tendency of surface ten-
sion to minimize interfacial area, thereby unmixing the two phases
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(much as oil floating on the surface of water). The influence of dam-
age and shear on the growth rate s is only evident in the parameter
ν. Damage and shear increase the growth rate as long as ν < 4/3 +
K/φ0 which suggest that damage accelerates phase separation into a
rapidly growing localization. Otherwise, for larger ν, damage effects
can cause negative growth rates which are interpreted as inhibition
of localization and distributed damage. Discussion of the linear sta-
bility results are discussed more fully in Ricard et al. (2001) and
Bercovici et al. (2001b).

7 N O N - L I N E A R S O L U T I O N S :
L O C A L I Z A T I O N A N D T H E E F F E C T O F
W O R K - P A R T I T I O N I N G V A R I A B I L I T Y

As shown in Ricard et al. (2001) and Bercovici et al. (2001b), spon-
taneous separation of the phases (self-separation) occurs when there
is no shear or damage (ν = 0). Non-linear solutions in this limit are
demonstrated in Fig. 1(a), showing smooth and well-rounded poros-
ity profiles collapsing in width and growing in amplitude with in-
creasing time. However, with damage and shear, a variety of effects
ensue, as discussed below.

7.1 An apparent singular point

Much of the localization effects occurring with damage can be un-
derstood upon inspection of the force eq. (62). In particular, for
�2/γ very small, eq. (62) has an apparent singular point (an irregu-
lar singular point, to be precise (Bender & Orszag 1978)) at values
of y where φ = K/(ν − 4/3). By definition, � itself would be sin-
gular at this point, thus leading to an infinitely fast growth rate in
φ and thus an extreme localization. (This is related to the apparent
infinite growth rate given by (68) in the linear analysis when φ0 =
K/(ν − 4/3); however, the existence of the apparent singular point
discussed here is relevant for all porosity fields, whereas the linear
analysis only applies to porosity fields that are constant to 0th order.)
We refer to this only as an ‘apparent’ singular point because, once
� grows toward a singularity, �2/γ is obviously no longer negli-
gible and the singular point, in effect, ceases to exist. The singular
point is, thus, only apparent as long as �2/γ is small, and there-
fore the singularity in �—and thus a singular localization in φ—is
self-limiting. Nevertheless, we can use the concept of the apparent
singular point to extract important information from the system.

7.2 Weak localization

Since φ can never exceed 1, the apparent singular point does not
exist if K/(ν − 4/3) > 1, or ν < K + 4/3. In this case, � can
never approach a near-singularity within the allowable range of φ.
Values of ν less than K + 4/3 therefore define the weak localization
regime—or what Bercovici et al. (2001b) referred to as the ‘acceler-
ated separation regime’. In this regime, shear and damage enhance
the generation of a high porosity weak zone (which occurs any-
way under surface-tension driven self-separation; Fig. 1a), but they
do not drastically sharpen the profiles in porosity φ or transverse
velocity w (Fig. 1b).

7.3 Strong localization

For ν > K + 4/3 the apparent singular point can exist and sharp-
ened profiles are allowed. This range of ν corresponds to strong
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Figure 1. Profiles of porosity φ for different times (values indicated) and
two values of ν. In all cases K = 1, f ∗ = 0.1, γ = 100, a = b = 0.5, λ =
0. With �2 = ν = 0 (a) there is no influence of shear and damage and the
fluid and matrix segregate by surface-tension driven self separation; this is
shown for the sake of comparison. For the ν = 2 (�2 = 2000) case (b), there
is influence from shear and damage both morphologically and in the rate of
separation of the phases; however, localization is weak since ν < K + 4/3
(see text for discussion).
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localization, or what Bercovici et al. (2001b) referred to as the ‘tear
localization’ regime. However, as stated above, the effect of the
apparent singularity is self-limiting; as � becomes large enough the
non-linear terms on the left of (62) mitigate the apparent singularity,
and thus preclude a truly singular �, and discontinuously sharp φ

(Fig. 2b).
Yet, in this regard, the role of variability in deformational-work

partitioning, represented by the parameter γ , is very important, in
particular the case with γ � 1. For large γ it is obviously more
difficult for the system to achieve the maximum partitioning of de-
formational work toward damage and creation of surface energy.
Thus, to achieve the same basic effect as with a smaller γ , one
must impose a larger shear stress �; i.e. to obtain the same growth
rates and apparent singular points, one needs to hold ν constant,
and thus increase f ∗�2 in proportion to γ . However, the larger γ

also suppresses the non-linear terms that mitigate the apparent sin-
gular point; i.e. � must become very large before the singularity is
mitigated, and can, in fact, become almost singular (obviously, in
the limit γ → ∞, � would need to become singular before having
any mitigating effect on the system, by which point it is too late to
do so). Thus, strong localization can only occur for ν > K + 4/3,
and is most pronounced for large γ (Fig. 2c). However, the growth
rates are still predominantly dependent only on ν (compare times
in Figs 2b and c), even if the morphologies of the localizations are
significantly different.

7.4 Distributed damage

As predicted by linear stability analysis (see 68), when ν is large
enough such that the entire porosity field initiates with φ > K/(ν −
4/3), then defocusing or distributed damage can occur, and porosity
anomalies decay away rather than localize (Fig. 3). This is inter-
preted by Bercovici et al. (2001b) to mean that once beyond this
critical state, the energy input from deformational work is too large
to be accommodated by a growing localization, and thus the entire
system is damaged.

However, to some extent, distributed damage solutions require
certain conditions which are best illustrated by taking the limit of
λ = 0, and integrating (62) in y to obtain[

4

3
+ K

φ
− ν +

(
4

3
(1 − f ∗) + K

φ

)
�2

γ

]
� = �

(
1 + �2

γ

)
(70)

where

� = � − (1 − φ)2 d

dφ

(
α

1 − φ

)
(71)

and � is an integration constant determined by the boundary con-
ditions w = 0 at y = ±1, or alternatively

∫ +1
−1

�

1−φ
dy = 0. (This

system is also very similar to that explored in the evacuated-void
limit by Ricard & Bercovici (submitted) and is discussed in more
detail there.)

When the entire porosity field satisfies φ > K/(ν − 4/3), as
many as three real roots to (70) can exist, in particular, two large |�|
roots (of opposite sign), and one small |�| root (Fig. 4). The large-
|�| solutions can be realized if the system is initiated with large
enough local dilation and compaction rates. In order that the system
satisfy mass conservation in the confined layer (i.e.

∫ +1
−1

�

1−φ
dy = 0)

a combination of the two large |�| roots (one positive and one
negative) is required so that dilation of the matrix in one part of
the layer is compensated by compaction elsewhere. Since the two
large |�| roots are not connected, the overall solution combining
the two entails a discontinuity in � which requires special matching
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Figure 2. Profiles of porosity φ and transverse velocity w for different
times (as indicated) and parameter values � and γ (also indicated). In all
cases K = 1, f ∗ = 0.1, a = b = 0.5, λ = 0. Evolution of the system for no
shear stress � = 0, and thus only surface-tension driven self-separation, is
shown for comparison (a). Frames (b) and (c) show the system for the same
value of ν = 5, but different values of γ as indicated (thus �2 is changed in
proportion to γ ). Since ν > K + 4/3 an apparent singular point is allowed, but
not necessarily realized since non-linear terms can mitigate the singularity if
γ is of order unity (b). However, if γ � 1 this mitigation effect is suppressed
leading to a nearly discontinuous profiles in velocity w (thus a nearly singular
� = (1 − φ) ∂w

∂y ) and a sharp localization in porosity (c).

conditions in numerical analysis. Such a system initiated with � <

0 for φ < φ∗ and � > 0 for φ > φ∗ (where φ∗ is the porosity at
which the discontinuity in � occurs) is unstable and will undergo
localization; i.e. regions with porosities less than φ∗ will compact
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Figure 3. Profiles of porosity φ and transverse velocity w for different
times (values indicated) and large ν. In this case �2 = 200, K = 1, f ∗ =
0.1, γ = 1, a = b = 0.5, λ= 0. Thus, the value of ν is 20. This figure shows the
behaviour of the system for ‘delocalization’ and distributed damage, wherein
shear and damage cause a porosity anomaly to decay, effectively mixing the
phases, even with an initial finite-amplitude porosity perturbation.
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Figure 4. Solutions of � versus φ from (70). Here ν = f ∗�2/γ is held
fixed at 20, although γ is varied as indicated. Otherwise, K = 1, f ∗ = 0.1,
a = b = 0.5, λ = 0. � is chosen so that an equilibrium solution � = 0 exists
at φ = 0.1; this requires—by (70) and (71)—that � = 0 at φ = 0.1, and thus
(given the values of a and b) � = 1.5.

and φ will decay to 0, while those with porosities greater than φ∗

will dilate and φ will grow to 1.
If the system is initiated at or near rest, then it will tend toward the

small |�| root since (for the situation in which φ > K/(ν − 4/3))
this is the only branch of solutions that contains the rest-solution
� = 0 (Fig. 4). The rest solution is stable because, if � = 0 at
φ = φ0, then portions of the layer with φ < φ0 have � > 0 and
undergo dilation to a state where φ = φ0, while portions with φ >

φ0 have � < 0 and will compact to φ = φ0 (see Fig. 4). Since this
solution involves forcing the system toward a uniform porosity it is
associated with distributed damage.

However, as illustrated in Fig. 4(b), the small |�| root does not
exist for all φ, and in fact exists for only a narrow range of φ if γ is
very small. In particular, the small |�| solutions correspond to the
condition �2/γ 
 1, which with (70) leads to

� ≈ �

4/3 + K/φ − ν
, (72)

however, (72) is in itself only consistent with �2/γ 
 1 if∣∣∣∣ �

4/3 + K/φ − ν

∣∣∣∣ 
 √
γ . (73)

As γ → 0 (holding ν fixed in order to keep the basic growth rate
constant), (73) is only satisfied for � close to zero; yet, since the
function � = 0 at only one porosity, say, φ = φ� (e.g. using 9, 71,
and a = b = 1/2, φ� = (1 + 4�2)−1), then (73) will only hold for
φ sufficiently close to φ� . Thus, in the end, there is only a narrow
range in φ over which the small-� solutions exist when γ 
 1
(Fig. 4b). If the system is initiated at or near rest with porosities
outside this range, the system will be forced toward a discontinuous
combination of the large |�| solutions which thus entails instability
and localization. (Alternatively, if γ → 0 but f ∗�2 is fixed, then
ν → ∞, thereby automatically satisfying (73) and allowing small-�
solutions to exist for nearly all φ > K/(ν − 4/3).)

Physically, the above analysis implies that distributed damage can
occur if the magnitude of the shear stress |�| exceeds a critical value
given by

�c =
√

γ

f ∗

(
4

3
+ K

φ

)
. (74)

For smaller work-partitioning variability γ , a smaller shear stress
is required to achieve the maximum work partitioning necessary to
cause such wide-scale damage. However as γ → 0 a vanishingly
small shear stress � can still cause distributed damage, but only in
the vicinity of porosities where normal stress and surface-tension
forces are precariously balanced, i.e. near where � = 0. Outside this
vicinity of porosities, the effect due to the difference between normal
stress and surface tension forces is more significant than damage
due to shear stress, and thereby either dilation of matrix with larger
porosities or compaction of matrix with smaller porosities occurs
(depending on the sign of �) leading to amplification of porosity
anomalies, localization and phase-separation instead of defocusing
and distributed damage. Therefore, as with the case with strong
and sharp localizations, a sufficiently large γ is required to allow
distributed damage.

7.5 Localization summary

The occurrence and intensity of localization can be summarized
rather succinctly by three regimes whose boundaries are primarily
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functions of ν, which represents the shear-work that goes into cre-
ating surface energy. In order of increasing ν, these regimes are as
follows: (1) for ν < K + 4/3 only weak localization can occur;
(2) for ν > K + 4/3, strong localization can occur but is most
pronounced for γ � 1; and lastly, (3) distributed (or unlocalized)
damage occurs for ν > K/φ0 min +4/3, where φ0 min is the minimum
initial porosity (see also other constraints on this regime stated in
the previous section).

8 H E A T G E N E R A T I O N A N D
E N E R G Y E X C H A N G E

The damage theory used here assumes a certain partitioning, rep-
resented by the parameter f , by which some fraction of deforma-
tional work is stored as surface energy on the interface. Here, we
examine the energy budget of our system to see how the presence
of damage is reflected in measurable quantities such as total heat
output.

To simplify the energy equation, we assume the heat capacity per
volume of the two phases are equal and constant such that ρ f c f =
ρmcm = ρc = const., and that internal heat sources, and energy
loss by diffusion and dispersion are negligible (i.e. q = Q = 0).
Finally, in keeping with our dimensionless equations, we define the
nondimensional temperature

ϑ = ρc

σαo
T . (75)

In this way, our thermal energy (entropy- or heat-related) eq. (19)
becomes

∂ϑ

∂t
= K

φ(1 − φ)
�2 + (1 − f )

(
λ

w2

φ2
+ �2 + 4

3 �2

1 − φ

)
(76)

where the advection term vanishes because of (50). We then use (63)
and the integral in y of (62) to obtain

∂ϑ

∂t
= �2

1 − φ
+ λ

∂

∂y

(
w

∫
w

φ2
dy

)

+
(

� − (1 − φ)2 d

dφ

α

1 − φ

)
�

1 − φ
(77)

where � is an integration constant similar to that in (70) and (71).
Finally, we integrate across the layer to obtain the total amount of
heating; defining

〈X〉 =
∫ +1

−1
X dy (78)

where X is any scalar, then from (77) we obtain

〈ϑ̇〉 = d〈ϑ〉
dt

= �2〈(1 − φ)−1〉 −
〈
�(1 − φ)

d

dφ

α

1 − φ

〉
(79)

where the terms proportional to λ and � vanish because w = 0 at
y = ±1. (Note, however, that with boundary conditions of w �= 0
at y = ±1 the term proportional to � would represent potentially
large deformational work imposed by normal stresses, while the
term proportional to λ would represent resistance to net extraction
or injection of fluid through the matrix.) We note that in the final
bulk heat eq. (79), the partitioning function f , internal dissipation
K, and compaction length λ do not appear explicitly; their effect is
implicitly in the nature of how they affect the porosity φ and dilation
rate �.

The last term on the right of (79) represents the rate of ei-
ther release or creation of surface energy since this term can be

either positive or negative. In particular, one can readily show
that〈
�(1 − φ)

d

dφ

α

1 − φ

〉
=

〈
G(φ)

φ2(1 − φ)
w

∂φ

∂y

〉
. (80)

When this quantity is negative, surface energy is being released and
eventually being dissipated as heat; if positive then surface energy
is being created and thus detracts from the net heat output since
it necessarily absorbs some of the deformational work. For cases
involving phase separation and localization, w and ∂φ

∂y are consis-
tently opposite in sign (i.e. 180◦ out of phase), as can be seen by
inspection of Fig. 2; thus, since G(φ) > 0, the quantity in (80) is
negative and surface energy is being released during localization,
although the rate of this release is modulated by damage and shear
as discussed below. In the case of distributed damage, w and ∂φ

∂y
are consistently of the same sign (i.e. in phase) as can be inferred
from Fig. 3, and thus surface energy is being created as the phases
become more thoroughly mixed; the net entropy production in (79)
is thus reduced, but necessarily remains positive since distributed
damage only occurs for large �2.

However, in this system (with rigid boundaries) � is at most a
1st order variable and the last term on the right of (79) is neces-
sarily 2nd order while the first term is 0th order, unless an unusu-
ally small � is used. (This can be seen by using the expansions
given by (67) in (79) and noting that the integral of terms O(ε1)
are zero.) Thus, the effect of surface energy release or creation on
net heat output is in fact extremely small and typically contributes
a term with magnitude of the order of 10−2 in the dimensionless
heating eq. (79). Indeed, as discussed below, the influence that a
changing porosity field has on net shear heating �2〈(1 − φ)−1〉 can
be a much more significant effect and overwhelm surface energy
release.

In Fig. 5 we display the net heating rate 〈ϑ̇〉 and net surface en-
ergy 〈α〉 for sample cases with various values of f ∗ to show the
effect of work-partitioning on the energy budget. For f ∗ = 0 there
is obviously no coupling between shear and surface-tension driven
separation; the heat generated is simply the sum of imposed defor-
mational work, and the release of surface energy by self-separation
as if there were no imposed shear. As f ∗ increases, shear and dam-
age have an increasing effect on the heat generation. Obviously,
the damage process involves transfer of deformational work to
interfacial surface energy, and thus one would nominally expect
less net dissipative heating in cases with larger maximum work-
partitioning f ∗. However, the effects of damage on heating and
energy exchange are somewhat convoluted and thus warrant some
discussion.

In all cases with phase separation and/or localization, with or
without damage, the system undergoes loss of net interfacial sur-
face area and energy (e.g. Fig. 5c). Thus even the localizing
cases with damage involve a net release—instead of storage—of
surface energy. (However, in de-localizing cases with distributed
damage, surface energy is increased since the phases desegre-
gate or mix, and thus interfacial area is increased.) In that re-
gard, one might expect cases with damage to retard the release
of surface energy and heat relative to cases with lesser or no
damage.

However, localizing cases with more damage (i.e. larger work par-
titioning f ∗) also evolve much faster, i.e. the phases separate and
the porosity field localizes toward a maximum value faster (Fig. 5a),
which causes both terms in (79) (both shear heating and the release
rate of surface energy) to become larger, not smaller, with increased
damage. Thus at any given time, the cases with larger f ∗ generate
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Figure 5. An example of heat generation for cases with �2 = 1000, γ = 100, and different f ∗ as indicated; also, for all cases K = 1, a = b = 1/2, and λ =
0. First three frames show for each case (a) peak porosity φmax versus time; (b) net heating from (79) versus time; (c) net interfacial surface energy 〈α〉 versus
time. Since the porosity field evolves on a different timescale for each case, we also depict net heating (d) and interface energy (e) versus peak porosity to show
these energies at comparable stages of development.

more heat (Fig. 5b) and have released more surface energy (Fig.
5c). It thus appears that an increase in partitioning of deforma-
tional work toward damage (creation of interfacial surface energy)
and away from viscous dissipation causes more, not less, viscous
heating.

However, because increased partitioning f ∗ changes the
timescale of evolution of the system, in particular making the
porosity field localize faster, cases with different f ∗ are not en-
tirely comparable, unless we compensate for their different devel-
opmental timescales. For example, at a given time, a case with
large f ∗ will have reached a larger peak φ than with smaller or
zero f ∗. This causes the amount of deformational work imposed
on the system �2〈(1 − φ)−1〉 to be larger; i.e. the shear stress �

is the same, but the integrated strain rate, or more simply the ve-
locity difference across the layer �〈(1 − φ)−1〉 increases with in-
creased peak porosity φmax. Thus while the amount of partitioning
is higher for larger f ∗ cases, the amount of deformational work in-
put into the system is higher, too, causing relatively more heating,
as well.

Thus, one should compare the cases with different f ∗ at equiva-
lent timescales, or more simply at comparable stages of development
in the porosity field. For example, when the cases are compared
at equivalent peak porosities, the interpretation of energy release
changes significantly. In particular, the cases with larger f ∗ gener-
ate less heat (Fig. 5d) and have released less surface energy (Fig. 5e)
at a given peak porosity φmax. This shows that at comparable stages
of development in the porosity field, cases with larger partitioning

do indeed cause less heating, and release less surface energy. Rela-
tive to the unforced system of f ∗ = 0, the f ∗ > 0 cases essentially
channel deformational work away from dissipative heating toward
surface energy creation (Fig. 6).

The heating and surface-energy for the strongly localizing case
(the f ∗ = 0.5 case in Fig. 5, which undergoes a near singularity
toward the end of its evolution much like that shown in Fig. 2),
appear to plateau with increasing porosity. Thus, the onset of the
near singularity appears to correlate with a saturation in heating and
surface-energy release.

Although it is not shown, the heating and net surface-energy
curves for the distributed damage case shown in Fig. 3 display a
simple reversal of curves like those shown in Fig. 5. In particu-
lar, the net heating rate simply decreases toward a final value of
2�2/(1 − φ0) where φ0 is the volume averaged porosity field.
The rate of change of surface energy (80) is of order 10−2 at
its largest and positive thus detracting from the net heat output;
the net surface energy 〈α〉 thus obviously increases to a final
value of φa

0(1 − φ0)b, since the surface area increases as this ex-
treme damage reverses the effect of self-separation and the phases
remix.

Finally, it is noteworthy that the measurable energy parti-
tioning appears to be significantly different from the imposed
deformational-work partitioning f . First, while the imposed par-
titioning f nominally controls the amount of deformational work
applied to the creation of surface energy, the rate of change of this
surface energy is in the end extremely small (whether positive or
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Figure 6. Relative heating and surface energy of cases in Fig. 5 with f ∗ > 0 to that with f ∗ = 0, versus peak porosity φmax. The quantities shown are percent
relative heating R(h) = (〈ϑ̇〉 f ∗ − 〈ϑ̇〉0)/〈ϑ̇〉0 × 100 and percent relative surface energy R(se) = (〈α〉 f ∗ − 〈α〉0)/〈α〉0 × 100 (where subscript 0 implies the
value at f ∗ = 0). These curves show that, relative to the undamaged system ( f ∗ = 0), cases with finite damage ( f ∗ > 0) generate less heat and more surface
energy at a given peak porosity.

negative) relative to the imposed deformational work shown in the
cases here. (An extremely small imposed shear stress � would per-
haps cause a different result, but would require an even smaller γ

which would then preclude any sharp-localization, as well as possi-
bly much of the distributed damage solutions.) The rate of change in
surface-energy is kept small by the internal dissipation term propor-
tional to K which effectively dissipates the release of surface-energy
back into heating. Second, while the influence of actual surface en-
ergy creation appears small, the largest effect on the net heat output
appears to be in how the localizing porosity field changes the applied
shear work �2〈(1 − φ)−1〉. In particular, cases with larger f ∗ local-
ize faster but generate a porosity field that leads to a smaller net shear
work than cases with smaller f ∗ and comparable peak porosity φmax

(e.g. see Figs 5d and 6). This suggests that the measured energy
partitioning is due more to the structure of the localized porosity
field than to the amount of energy being stored as surface energy.
In particular, one can compare the maximum net heating for curves
in Fig. 5(d) corresponding to no damage f ∗ = 0, with heating of
2264, and maximum damage f ∗ = 0.5, with heating of approxi-
mately 2235; the measurable partitioning of energy apparent from
this reduction in heating is very small, of order 0.01 (Fig. 6). Not
only is this measured partitioning much smaller than nominally ex-
pected (given f ∗ = 0.5) but it is also not at all due to surface energy
storage, which has only a negligible effect on the net heating. This
measurable or apparent partitioning is instead almost entirely caused
by the different values of �2〈(1 − φ)−1〉 for different f ∗. Thus, the
structure of the localization in φ creates an apparent energy parti-
tioning that has little to do with the amount of energy stored on the
interface.

9 D I S C U S S I O N

9.1 Earth-like parameters

The primary dimensionless parameters controlling localization and
energy exchange are the maximum partitioning fraction f ∗, parti-
tioning variability γ , and the fraction of shear deformational work
going toward creation of surface energy ν = f ∗�2/γ , where �

is dimensionless effective shear rate. Neither f ∗ nor γ are easily
estimated, although experiments imply that f ∗ > O(10−1) is typi-
cal (Chrysochoos & Martin 1989; Chrysochoos et al. 1989, 1996),
and our analysis above implies that strong localization is most pro-
nounced for γ ∼ O(103) (see Fig. 2c), which requires �2 ∼ O(104–
105), or � ∼ O(102). We can thus estimate the dimensional shear
stress σα0� (see eq. 60) required to cause a strong localization and
thus plate-boundary formation in the lithosphere. The parameter α0

is typically the inverse of grain size (Bercovici et al. 2001a; Ricard
et al. 2001), and grain size varies widely from on the order of 1cm
to 1 µm, thus leading to the range 102 m−1 ≤ α0 ≤ 106 m−1. The
surface energy σ of rocks is typically of order 1 J m−2, although
the effective fracture surface energy can be as high as 1000 J m−2

(Jaeger & Cook 1979; Cooper & Kohlstedt 1982; Atkinson 1987;
Atkinson & Meredith 1987); however, we assume that this effective
energy is due to an unmeasurable, perhaps fractal, property of frac-
ture surface roughness and really represents extremely fine grain
sizes. Thus we assume that the range in effective σ is actually due
to the range in α0, and we therefore use either the full range in α0 or
σ , but not both; here we choose to set σ = 1 J m−2 and use the range
of values of α0. In this case, the estimated shear stress to cause a
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localization is in the range of 104 Pa ≤ σα0� ≤ 108 Pa, or between
0.1 bar and 1 kbar, which is well within or less than the typical
range of tectonic stresses; therefore, the stress conditions for strong
localization via our proposed mechanism are readily available on
Earth. Other Earth-like dimensional scales, such as the timescale
for formation of localizations, are easily estimated using (60) and
have been discussed already in Bercovici et al. (2001b).

9.2 The cost of making plates

Although the theory and calculations shown here are still rather
idealized, they are motivated by the problem of generating plate-
tectonics, and more specifically plate boundaries on Earth (see re-
views by Bercovici et al. 2000; Tackley 2000). Thus, as we are con-
cerned here with the energy budget of localization, it is appropriate
to discuss the energy costs of making plate boundaries.

The cause for how plate boundaries localize and evolve across
the entire thickness of lithosphere is still not known. However,
it is likely that the damage process (cracking and microcracking)
is an important controlling mechanism. This is inferred because
of the extreme weakening that can occur with such mechanisms
and that is necessary to cause narrow boundaries (Bercovici 1998)
possibly facilitated by liquid water (which is probably unique to
Earth amongst the terrestrial planets); the prevalence of the micro-
cracking brittle–ductile regime across the lithosphere (Kohlstedt
et al. 1995; Evans & Kohlstedt 1995); and the tendency for
reactivation of old faults which thus require long-lived weak
zones (Gurnis et al. 2000). Thus, in considering general energy
partitioning in shear-localization by damage, we can also esti-
mate the energetics of making plate boundaries through similar
processes.

To get an idea of the energy scales necessary to make a plate
boundary, we can perform a rough calculation. Following our two-
phase damage theory, the energy to create a narrow, damaged and
thus high-porosity zone depends on the total amount of surface
energy created. The amount of surface energy Es per unit length !

along the damaged zone is

Es/! = σα0φ
a(1 − φ)b Dδ (81)

where D is the depth and δ the effective width of the damaged re-
gion. We assume the depth to be comparable to the depth of the
brittle–ductile zone, roughly 10 km (Kohlstedt et al. 1995), while
we assume the width to be effectively about 1 m thick, typical of
the sum of all gouge zones in a plate boundary region (Mora &
Place 1998); a thicker boundary region is certainly plausible, how-
ever, to be conservative we assume that if all the damaged region
were confined to a uniform zone of reasonably high porosity, it
would be of order 1m. One can also argue that with fully developed
faults, most deformation concentrates on the gouge region which is
in essence the manifestation of an extreme localization. The range
of values for the quantity σα0 is as discussed above in the previ-
ous section. Finally, we assume the localized high-porosity region
has φ ≈ 0.1. This leads to 3 × 105 J m−1 ≤ Es/! ≤ 3 × 109 J
m−1. A localized zone 1000 km long would require between 3 ×
1011 J and 3 × 1015 J of energy.

However, perhaps a more meaningful quantity is the energy pro-
duction rate which we can estimate from the velocity at which a
localized zone effectively propagates. New plate boundaries are gen-
erally formed quite quickly relative to other geological processes.
As an upper bound we can consider a rupture velocity V r, which

is of the order of shear-wave velocity, i.e. V r ≈ 3000 m s−1 in the
crust (chosen to be conservative). This leads to an energy produc-
tion rate EsV r/! between 109 W and 1013 W of energy. Although
this is clearly an upper bound, it gives an approximate scale for the
energy production rate. Considering the entire energy source for
mantle convection is of the order of the Earth’s net heat flux, i.e.
4 × 1013 W, it is clear that the energy to make one localized plate
boundary can range from being trivial (much less than the Earth’s
net heat flux) to extremely high (comparable to the net heat flux).
Obviously, given the crudeness of this calculation, the Earth sits
within this range since it has probably made many more than one
plate boundary at a time.

If the energy necessary to make a plate boundary is at the high
end of the range calculated, then this argues for the tendency to re-
activate plate boundaries (Gurnis et al. 2000) since to do otherwise
would be too costly in terms of available energy. It is also possible
that the requisite energy to make the boundary is not readily with-
drawn from the Earth’s entire gravitational energy release, (e.g. the
creation energy is too large and/or it only draws from the poten-
tial energy release of one plate, not the entire earth) and thus must
be accumulated through elastic storage. Moreover, one could also
surmise that since surface energy σ decreases with temperature,
the efficacy of plate boundary generation in the presumably hotter
Archaean would be greater, although the healing and annealing pro-
cesses would probably be faster also. If the energy to make plate
boundaries is at the low end of the range determined above, then
plate generation should be facile at any time, under any condition,
and on any planet, and reactivation less necessary, which is probably
not the case.

Of course, an obvious question is that if the creation of plate
boundary costs some net surface energy, relative to not making one,
then why should it occur at all. However, the shear-localization cal-
culations shown here demonstrate that it costs less net energy to
force localization than to not force localization. In particular, al-
though more surface energy is required (or in the calculations shown
here less is released) to drive extreme localization, the extreme lo-
calizations result in less dissipative heating and thus in less net work
required of the external forcing mechanism (Fig. 5). The concentra-
tion of a weak zone into a near singularity may cause extreme strain
rates, but also confines dissipation to an extremely narrow region
that in the end makes less contribution to the net dissipation and
energy requirements.

This essential result was also demonstrated by Bercovici (1995)
as an explanation for the cause of toroidal motion in a convecting
mantle. The result is also similar to that found in granular-flow
simulations which found that narrow gouge zones (well lubricated
by rolling grains) are necessary to explain the anomalously low heat-
flows along the San Andreas Fault system, otherwise known as the
heat-flow paradox (Mora & Place 1998).

Our analysis, however, is most applicable for the formation of
strike-slip boundaries and is not immediately applicable to the for-
mation of other plate boundaries. In particular, mid-ocean ridges and
subduction zones have the additional energy constraints of driving
vertical mantle motion (which pure strike-slip zones do not). For
example, while the formation of the weak zone necessary to ini-
tiate and maintain subduction is possibly analogous to our energy
estimate above, this does not account for the work involved with
bending a cold strong plate. Moreover, the localization of deforma-
tion at ridges is likely dominated by melting and focussing of melt
percolation, both of which entail significantly different mechanisms
than the one proposed here.
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1 0 C O N C L U S I O N

The work presented here in fact has three essential conclusions,
which we summarize below:

10.1 Surface-energy partitioning

As shown in Bercovici et al. (2001a) and here, in order to pose
a two-phase theory with interfacial energy, it is necessary to
homogenize the phases and interface into an effective mixture such
that the phases and interface and their properties exist at every point
in some concentration. Although surface energy actually exists only
on the interface, in the mixture approach it is effectively or math-
ematically distributed across the domain, and thus assumed to be
distributed or partitioned between the phases. In Bercovici et al.
(2001a) we assumed the surface energy is equipartitioned between
phases. However, here we show that this approach leads to some
minor inconsistencies (see Section 4.1) and that it is more plausi-
ble that the surface energy is effectively partitioned according to the
phases’ activation energy, parametrized by the phase viscosity. With
this assumption, we are able to completely recover, in the limit of
µm � µ f , the melt-dynamics theory of McKenzie (1984) as well
as the void theory of Ricard & Bercovici (submitted).

10.2 Localization and work-partitioning variability

Using this slightly adjusted theory, we examine cases of 1-D shear.
As before (Bercovici et al. 2001b) we find that the growth rates of a
localization are largely determined by the parameter ν = f ∗�2/γ ,
where f ∗ is the maximum partitioning of deformational work toward
creating surface energy, � is imposed shear stress and γ controls
the variability of deformational-work partitioning (the larger γ the
more slowly varying is the partitioning f ). However, we also find
that large values of γ are very important for generating sharp and
nearly singular localizations. Although an increased γ requires a
larger shear stress � to cause the same rate of localization (i.e. same
ν), it will also suppress the tendency for dilation to dissipate nearly
singular localization.

As found in Bercovici et al. (2001b), cases with very large ν (de-
pending on the initial or background porosity) can lead to distributed
damage and inhibition of localization of any kind (even stopping
surface-tension driven self-separation). However, this regime also
requires γ that are not too small, otherwise the range of solutions
for this fragile state becomes vanishingly small.

10.3 Energy exchange between damage and heating

Finally, we examine the result on the energy and heat budget of
the system for different maximum work partitioning rates f ∗. After
accounting for how the rate at which the system evolves depends
on f ∗, it is evident that the damage process causes the work input
to be shunted toward surface energy production as expected; in the
case of localization it slows down the release of surface energy,
while with distributed damage it generates more interfacial surface
energy. However, the more intense (i.e. narrow and faster growing)
a localization the less net work is required to deform the system
at a given stage of development (e.g. peak porosity), and thus less
net heat is generated in the process. Thus while damage-driven lo-
calization causes more surface energy to be generated (relative to
the situation with no damage), it also leads to a system with less
net dissipation, less energy requirements, and thus overall greater
efficiency.
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