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Energetics of vacancy and substitutional impurities in aluminum bulk and clusters
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We present a careful study of the energetics of vacancy and substitutional impurities in aluminum in both the
bulk and small cluster environments. The calculations are done within the framework of the local-density-
functional formalism and are based on the pseudopotential method with plane-wave expansion and periodic
boundary conditions. Both the ionic and electronic degrees of freedom are fully relaxed. The electronic
structure problem is treated with a preconditioned conjugate-gradient method that applies equally well to
insulators and metals, and is suitable for parallel computing. We have considered up to 216 atoms in the
supercell, and we show that reliable results can be obtained with 108-atom cells with properk-point sampling.
Vacancy-formation energy, heats of solution of the impurities and the relaxations near the defects are in good
agreement with available experimental data. The energetics of substitution in small clusters was found to be
rather different from bulk.@S0163-1829~97!07320-7#
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I. INTRODUCTION

Point defects and impurities are the simplest defects
solid. Nevertheless, a great number of physical and mech
cal properties are sensitive to their presence. A deta
knowledge of point defects is thus essential for understa
ing the atomistic as well as the macroscopic behavior
materials. In the past, it has been customary to study def
and impurities with empirical potential models,1,2 but in re-
cent years it has been increasingly popular to applyab initio
calculations to study these systems, especially for defect
mation energies in simple metals.3–8 Although first-
principles calculations are inevitably slower and far few
atoms can be handled than by empirical methods, there
still good reasons to useab initio techniques. One majo
reason is that whereas reliable empirical model interacti
may be available for one particular element in some part
lar physical or chemical environment, it is difficult to find
model potential that applies to all occasions. The situat
becomes even more intractable if the system contains m
than one component. For example, it would be rather d
cult to use an empirical or semiempirical technique to stu
the energetics of substitutional defects of Si in Al, ev
though Al on its own may be well described by embedd
atom-type interactions in the bulk, and Si in the bulk d
mond structure can be represented well using a simple ti
binding model. If we take on the more challenging task
studying the Si interaction with Al in very different environ
ments such as in bulk and small clusters, empirical poten
that were designed to work in the bulk will probably fail
the cluster environment. The first-principles local-densi
550163-1829/97/55~20!/13842~11!/$10.00
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functional method~LDA !, on the other hand, is sufficientl
accurate for multicomponent systems in drastically differ
chemical environments. Although LDA studies are curren
limited to a few hundred atoms, a lot of important resu
about the energetics of defect formation can already be
tained. In addition, the first-principles results can genera
large amount of information about the interatomic interact
on a microscopic scale that can used to fit, or at least
constraints on, simple interatomic potentials. It is difficult,
not impossible, to extract such information from expe
ments.

The last few years have witnessed great advances in
ability to calculate the structure and energy of solids by
use of density-functional theory within the LDA framework9

As far as the computation technique is concerned, an imp
tant milestone is the development of the Car-Parrine
method.10 This method treats the electronic degrees of fr
dom as classical entities, and puts the electronic and io
degrees of freedom on the same footing. By proper choic
the fictitious mass of the electronic degrees of freedom, fi
principles molecular dynamics can be performed. If w
freeze the ionic degrees of freedom, the electrons can
their ground state through an annealing process if the t
perature is reduced slowly, or through a steepest-decent
cedure if the problem is treated as molecular statics. Thi
not just a technical innovation, but actually opens up n
ways of thinking about total energy calculations, and h
stimulated the development of alternative ways of handl
the electronic structure problems. Another important dev
opment is the preconditioned conjugate-gradie
method,11–13which treats the electronic degrees of freedo
13 842 © 1997 The American Physical Society



rg
ifi
o
in
t
n
rm
fo

nc
he
e
c
re
e
ec
n
ty
rk
m
a
e
u
y t
as
ar
te
ut

c
al
e
n
s
-
e
ing
e

o
a
n
u
be
us
st
i
es
tro

th
le
u
g
.
ele
n
V

ty
r

s

th
tate
s.
is
me
t
by-
y
e
are
ize

ic
ll
not
of
e
za-
vec-
ur
tion

re.
be

ian
d.
now
pro-
een
ion
th a
a

nal
and
nd
pute
tion

p-
qual
ve
we
he

ts in
f-
nsi-
el,
ms,
ent
as

sys-
e
ass
an-
the

55 13 843ENERGETICS OF VACANCY AND SUBSTITUTIONAL . . .
as a problem of constrained minimization of the total ene
of the Kohn-Sham functional. Both methods have sign
cantly improved the capability and thus the applicability
local-density-functional methods to problems of practical
terest. These developments are further augmented by
rapid progress in parallel computing hardware a
techniques.13–16Using these methods, one can now perfo
calculations for systems containing hundreds of atoms
semiconductors.14,15

In the conjugate-gradient method, one minimizes a fu
tion of many variables by first computing the gradient of t
object function. The gradient is then used to construct a v
tor of change that is added to the original trial vector in su
an amount as to minimize the function. This process is
peated with each new vector being forced to be conjugat
the previous change vectors. The conjugate-gradient t
nique, with pre-conditioning, is applied by Teter, Payne, a
Allan11 to minimize the total energy of the local densi
functional in a band-by-band manner. This approach wo
well for insulators and semiconductors, but metallic syste
are not as easy to deal with. The occupancies for each b
are known for insulators and semiconductors, while th
must be determined for metallic systems. For semicond
tors, we only need to find the subspace that is spanned b
eigenvectors~i.e., linear combination of eigenvectors are
good as the eigenvectors when we need to know the ch
density and the sum of eigenvalues of the occupied sta!,
which offers more flexibility for an optimization scheme. B
for metals, knowing the sum of the eigenvalues~the trace of
the Hamiltonian within the subspace spanned by the oc
pied states! is not enough, we need to know the individu
eigenstates and eigenvalues before we can determine th
cupancy. In addition,k-point sampling is more demanding i
metallic systems, so that whatever method we use ha
have the capability of treating manyk points, and the sam
pling must be done adequately and be carefully monitor
Chettyet al.8 have shown that even for systems contain
more than 100 atoms, the calculated vacancy formation
ergy can have a wrong sign if only theG point is used.

In this paper, we will show that metals can be treated
an equal footing with semiconductors with some modific
tion of the original preconditioned conjugate-gradie
scheme. The calculations are centered around alumin
which is taken to be the prototypical simple metal and
cause of the importance of aluminum and its alloys in ind
trial applications. Aluminum is the world’s second mo
commonly used metal and there is a wide and varied fam
of aluminum alloys now used for a multitude of purpos
throughout the aeronautics, space exploration, and elec
ics industries.

This paper is arranged as follows. Section II describes
methods employed for achieving the ground state of the e
tronic and ionic degrees of freedom. In Sec. III, the calc
lated results for vacancy formation energies and the ener
ics of impurities of Si, Mg, and Li in Al will be presented
We also present results of substituting Al by the same
ments Si, Mg, and Li, but in a small cluster environme
instead of in bulk aluminum. A summary is given in Sec.

II. CALCULATION METHOD

Our calculations are performed within the local-densi
functional formalism9 using the Hedin-Lundqvist form fo
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the exchange-correlation potential17 and a plane-wave basi
set.

Calculating the vacancy formation energy involves bo
the relaxation of electrons to the self-consistent ground s
and the relaxation of the ions to their equilibrium position
Our method for relaxing the electronic degrees of freedom
a variation of the preconditioned conjugate-gradient sche
of Teter, Payne, and Allen.11 The original conjugate-gradien
method of Teter, Payne, and Allen is an iterative band-
band constrained minimization of the LDA total energ
functional. We instead iteratively minimize the sum of th
eigenvalues for a fixed number of bands. The trial vectors
varied, subject to orthonormal constraints, so as to minim
the sum of the eigenvalues for the lowestN bands for the
fixed Hamiltonian with a fixed input potential. For metall
systems, the numberN has to be large enough to cover a
the bands so that the fractional occupation number is
negligibly small. The set of vectors that optimize the sum
eigenvalues for a fixed number ofN bands spans the sam
subspace as theN eigenvectors, but a subspace diagonali
tion is needed to rotate the subspace to that of the eigen
tors and find the eigenvalues of the individual levels. In o
calculations of up to 108 atoms, the subspace diagonaliza
takes less than 5% of the computation time.18 This process is
a conjugate-gradient iterative diagonalization procedu
When the eigenvalues are known, the Fermi level can
determined~by assuming a particular value of the Gauss
broadening! and the occupation of the levels is then foun
The charge density can then be determined since we k
the eigenvectors and the occupation number. The whole
cess is then repeated until we reach self-consistency betw
input and output screening potentials. As for the relaxat
of the electronic degrees of freedom, we are operating wi
fixed Hamiltonian and the minimization procedure uses
simpler conjugate-gradient scheme than the origi
conjugate-gradient scheme proposed by Teter
co-workers11,13where the Hamiltonian changes as each ba
gets updated. In our approach there is no need to com
the change in the charge and potential as the optimiza
procedure goes through band by band andk point byk point.
In addition, the line minimization for the trial vector@corre-
sponding to Eq.~5.23! of Payneet al.13# is more straightfor-
ward for a fixed Hamiltonian. The advantage of this a
proach is that metals and semiconductors are put on an e
footing. The price we have to pay is that we have to achie
self-consistency between the charge and potential, but
have had no difficulty in reaching self-consistency in t
potential using a Broyden scheme19 for systems we have
treated here, including vacancies and substitutional defec
Al with fairly large unit cells. We note that attaining sel
consistency can be much more demanding for certain tra
tion metals with high density of states near the Fermi lev
and for systems with even larger unit cells. In those syste
it is inevitable that more computational effort has to be sp
in achieving self-consistency. This should not be regarded
a deficiency of the present method, but rather that some
tems are intrinsically more difficult than the others. If w
directly minimize the total energy, we apparently can by p
the self-consistency problem. However, there is no guar
tee, especially for metallic systems, that the passage to
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TABLE I. The unrelaxed vacancy-formation energy as a function of system size for a small set o
k points and a large set of 1300k points ~0.20-eV band energy smearing!.

Atoms per Equivalent Small set Equivalent Large set
supercell Structure k points energy~eV! k points energy~eV!

1 fcc 182 1300
4 sc 56 0.736 364 0.743
8 fcc 28 0.755 182 0.766
16 bcc 20 0.750 112 0.774
27 fcc 10 0.689 60 0.758
32 sc 10 0.678 56 0.756
64 fcc 6 0.644 28 0.732
108 sc 4 0.661 20 0.735
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final ground state is more efficient than the scheme we
ployed here.

In the relaxation of the ionic configurations, we employ
the force matrix method in which atomic positions are u
dated bydX5K21

•F, whereF are the Hellmann-Feynma
forces andK is the force matrix. For vacancy calculation
which involve radial displacements, there are only a few
grees of freedom and the elements of the force matrix
found initially using finite differences from small displac
ments of the atoms. It is further refined as the atoms
displaced using the Broyden method.19 We also employed a
conjugate-gradient scheme in relaxing the atomic positio
Although this conjugate-gradient relaxation takes more st
to relax the atoms, it is eventually preferred since it allo
the whole relaxation process to be fully automated.

We also note that it is not necessary to fully optimize t
electron trial wave functions before we update the elect
screening potential. Initially, when we have reasonably go
electron screening potentials~constructed from a superpos
tion of atomic charges! but poor wave functions, we perform
approximately six conjugate-gradient steps before we up
the potential. When the wave functions get better, only 2
conjugate-gradient steps are executed before updating
potential. It is also not necessary to fully relax the electro
degrees of freedom or wait until the potential becomes fu
consistent before proceeding to move the atoms. The erro
the forces due to the error in self-consistency can be
rected and the change in the potential due to the chang
the atomic positions can be predicted rather effectively b
recently proposed scheme.20

Most of the results reported here employ a simple-cu
supercell withL53a, whereL is the supercell dimension
anda is the lattice constant of fcc bulk aluminum. There a
108 atomic sites per supercell. Tests were done using u
216 atom cells to test for size effects. The Kleinma
Bylander-type pseudopotentials21 were generated accordin
to the coefficients presented by Stumpf and co-worker22

The d-wave component of the pseudopotential is set as
local potential and thes andp components were treated a
nonlocal potentials. The Bloch wave functions are rep
sented by a plane-wave basis using a 12.5-Ry cutoff for
plane-wave kinetic energy. The equilibrium lattice const
and cohesive energy are 3.97 Å and 3.96 eV, respectiv
for fcc Al, which compare well with experimental values
4.05 Å and 3.39 eV.23 The four specialk points in the 1/48
irreducible Brillouin zone provide a reasonable precision a
-
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moderate cost in the present supercell with 108 atomic s
This choice ofk points and system size are discussed in f
detail in a later section.

The present method relies on the efficiency of fast Fou
transformations and is suitable for implementation on m
sively parallel computers. Most of the computations p
sented here were performed on a machine with a para
architecture~nCube 2S!. The parallelization strategy bas
cally involves spreading real space and reciprocal sp
across the nodes.24 This divides both the CPU load and th
memory requirements equally among the nodes. Comm
cation between nodes is necessary during the transforma
between real and reciprocal space. This is handled usin
highly tuned three-dimensional fast Fourier transform~3D
FFT! algorithm that takes advantage of the fact that
reciprocal-space representation is localized to a sphere.
efficiency of the 3D FFT algorithm allows the problem to b
spread over twice as many nodes as the length of the sid
the mesh. Calculations involving multiplek points can also
take advantage of this higher level of parallelism by runn
eachk point concurrently on a subset of the available nod
For example, a typical 4-k-point calculation of aluminum on
a 64364364 mesh can run with 87% efficiency on 25
nodes by running eachk point on a 64-node subset where th
distributed 3D FFT operates with high efficiency.

III. RESULTS AND DISCUSSIONS

A. k-point sampling, supercell size, and pseudopotentials

Since we are handling metallic systems, which are usu
more demanding on the system size andk-point sampling
than semiconductors or insulators, we first studied the effe
of the system size, the number ofk points used, and the
Gaussian band smearing25 on the calculated vacancy forma
tion energy. Chettyet al.8 have emphasized that a larg
k-point set must be used to accurately calculate the de
energies in Al, even when large supercells are used to en
that the defects are very far apart. This is in opposition to
common practice of using a singlek point in Car-Parrinello-
type simulations. As an example, they find that if only o
k point is used, a 108-atom cell would give a vacancy f
mation energy with the wrong sign, and even a 256-atom
would give unacceptable results.

We have tested the effects of the system size on the
relaxed vacancy formation energy using up to 216 atom
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TABLE II. The unrelaxed vacancy-formation energies~in eV! as a function of cell size and band energ
smearing. Thek points for all runs are equivalent to a 182k-point set.

Atoms per Equivalent Band energy smearing~eV!

supercell Structure k points 0.05 eV 0.20 eV 0.75 eV 1.6 eV 3.2 eV

1 fcc 182
4 sc 56 0.737 0.736 0.743 0.749 0.748
8 fcc 28 0.752 0.755 0.770 0.778 0.752
16 bcc 20 0.753 0.750 0.761 0.746 0.739
27 fcc 10 0.655 0.689 0.763 0.780 0.751
32 sc 10 0.651 0.678 0.759 0.770 0.747
64 fcc 6 0.640 0.644 0.746 0.772 0.751
108 sc 4 0.691 0.661 0.748
128 bcc 5 0.656 0.651 0.771
216 fcc 2 0.640
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various supercell geometries and differing number of spe
k points in the irreducible Brillouin zone~IBZ!. Table I
shows the unrelaxed vacancy-formation energy of Al w
cells containing up to 108 atoms for two sets ofk points; the
‘‘small’’ and ‘‘large’’ sets being equivalent to 182 and 130
k points, respectively, in the IBZ of fcc~primitive unit cell!
Al. The Gaussian broadening factor25 is fixed at 0.2 eV. We
observe that there is remarkably little change in the vacan
formation energy when the ‘‘large’’ set ofk points is used.
The unrelaxed vacancy-formation energy is relatively c
stant at 0.75 eV, varying by only 0.025 eV over the ent
range from 4 atoms up to 108 atoms. However, if we use
smaller set ofk points, the formation energy has observab
changes as the system size increases. More importantly,
is a noticeable difference in the calculated energy for
108-atom cell between the small~4! and large~20! sets of
k points. Since the results of the largek-point set are settled
to the order 0.01 eV from 32 to 108 atoms, there is go
reason to believe that this is the converged result, wh
would imply that a 4-k-point sampling with Gaussian smea
ing of 0.2 eV is still inadequate for supercells as large as
atoms. These results indicate that a 108-atom cell, or e
smaller, is already good enough for the point defect calcu
tion, but the system with the vacancy is still a metal th
requires adequatek-point sampling to give accurate result
A supercell of the order of 100 atoms is needed to allow
proper level of relaxation of the atoms near the defects du
the effects of the periodic boundary conditions.

We will now show that the stringent requirement f
k-point sampling can be alleviated by using larger Gauss
broadening when the so-called ‘‘entropy correction’’ due
al
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n

the smearing is taken into account as suggested by De
and Gillan.26 All the calculated energies reported in this p
per are computed with this correction. With this formulatio
the error introduced by the Gaussian broadening is at m
third order in the Gaussian smearing factor, so that fo
fixed large set ofk points the result of using large smearin
is almost the same as using very small smearing. On
other hand, rapid convergence with respect to the numbe
k points is expected at large smearing, so that we may
able to obtain good results for metals with a smaller set
samplingk points if we use a large Gaussian broaden
factor, as long as the entropy correction is taken into acco
properly. In Table II, we show the unrelaxed vacanc
formation energy using the smallk-point set~equivalent to
182k points in the IBZ of the primitive cell! using Gaussian
broadening factors ranging from 0.05 to 3.2 eV. The resu
indicate that with large broadening, the results do appro
those with the larger set ofk points. For example, with a
108-atom supercell, a sampling of 4k points and a smearing
of 0.75 eV gives a calculated relaxed vacancy-formation
ergy of 0.748 eV, which compares favorably with the 0.7
eV obtained with 20k points and 0.2-eV smearing. If we us
4 k points but a smearing of 0.2 eV, the result is 0.66
instead. These tests indicate that a larger Gaussian sme
can compensate for using fewerk points for the case of Al
defect calculations.

However, care must be taken in choosing an appropr
level of smearing and an appropriate number ofk points
since there is a direct effect on the computational load
memory requirements. As the band energy smearing is
creased, more bands need to be used in the calculation. M
y
TABLE III. The unrelaxed vacancy-formation energy~in eV! for Al16 as a function of band energ
smearing and the number ofk points.

Number of Band energy smearing
k points 0.05 eV 0.20 eV 0.75 eV 1.6 eV 3.2 eV

1 24.346 24.054 23.123 29.356 26.162
4 20.088 0.033 0.359 0.308 0.692
8 0.968 0.961 0.861 0.754 0.742
20 0.753 0.750 0.761 0.746 0.739
112 0.777 0.774 0.768 0.746 0.741
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TABLE IV. Unrelaxed vacancy-formation energies comparing the pseudopotential method using
and 0.75-eV band energy smearing to an all-electron calculation by Mehl and Klein~Ref. 6! ~all using a
lattice constant of 4.05 Å!.

Number of Number of All-electron Pseudopotential Pseudopotentia
atoms k points calculation~Ref. 6! ~eV! ~0.05-eV smearing! ~0.75 eV smearing!

~eV! ~eV!

4 56 0.856 0.856 0.862
8 28 0.860 0.860 0.876
16 20 0.855 0.851 0.858
27 10 0.781 0.784 0.863
27 60 0.862 0.876 0.861
p

v
in
hi
o
th
o
3
e
g

te

ni
f

e
h

si

f

t
e
g
i
r
ev
t

0.

f
t
cy

th
e
y
rc

a
n
he
en
ctor
er
eed
s
efi-
o

bly
of

ergy
ergy
am-
e-
f Al
ccu-
gle
pt-
have
can
etter

ize,
e
ion
rge
rs
ice
d-
des
lly

er

are
als,
ote
ies

ome
o-
re-
e

bands require more storage space and increase the com
tional load. Table II shows that the smaller set ofk points
reproduces the unrelaxed vacancy formation energy
0.7560.02 eV range of the larger set when a moderate le
of 0.75 eV smearing is used. This level of smearing
creased the number of bands required by about 20%, w
is a very small cost when compared to the cost of using m
k points. Higher levels of smearing cannot reduce
k-point sampling much further, but do increase the cost
the calculation greatly. Increasing the smearing to 1.6 or
eV required many additional bands so that the increas
computational cost defeats the original purpose of usin
high level of smearing.

Table III shows the vacancy-formation energy calcula
for a cell with 16 Al sites as the number ofk points are
varied over a broader range. At a small Gaussian broade
of 0.05 eV, the results depend strongly on the number ok
points used as expected, and a very large number ofk points
are needed to obtain reliable results. At the other extrem
using a large 3.2-eV broadening, the results converge wit
few as 8k points. When the set ofk points is reasonably
large, the results are rather independent of the Gaus
smearing factor. In fact, the results of the bottom row~112
k points at various Gaussian broadening! and the results of
the last column~large broadening at variousk points! are
rather similar. This fact allows us to use a smallk-point set
with large broadening to obtain results similar to those o
largek-point set and small broadening~which is the correct
result we are looking for!. However, we should point out tha
if the k-point set is too small, in the limit of using just on
k point as shown in Table III, the vacancy-formation ener
is still hopelessly wrong no matter how much smearing
used. In this limit, there is simply insufficient information fo
a meaningful answer. In addition, we note that the high l
els of 1.6- and 3.2-eV Gaussian broadening are almos
costly in the computation as using morek points, so little is
gained. However, moderate levels of smearing, such as
eV, can provide high accuracy with fewerk points without
adding much to the cost of the calculation.

The level of band energy smearing and the number ok
points used affects the accuracy of the forces between
atoms in a manner similar to how the unrelaxed vacan
formation energies are affected. The 4-k-point set with mod-
erate smearing of 0.75 eV produces interatomic forces
are very close to thek-point converged forces. Lowering th
number ofk points or reducing the level of band energ
smearing can cause deviations in the magnitude of the fo
uta-
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by up to 40%. However, it is interesting to note that even
sampling with only theG point and very small Gaussia
smearing was able to find the equilibrium positions for t
atoms to within 0.014 Å or 0.5% of the bond distance. Ev
though the forces may have been off by as much as a fa
of 2, the atomic relaxation could still proceed to a rath
accurate atomic configuration in this case. In short, we n
a very careful sampling ofk points to determine quantitie
such as vacancy-formation energy for metals, which by d
nition requires the comparison of the total energy of tw
different systems~one with the vacancy and one without!.
Thek-point sampling must be adequate to give a reasona
good representation of the change of the local density
states about the defects before a reliable difference in en
can be established. The forces are gradients of the en
surfaces, and we found that they also require a good s
pling. Equilibrium positions of the atoms in a system corr
spond to extremum of the energy surfaces. In the case o
defects, we found that even though the forces are not a
rate and the vacancy-formation energies are bad with sin
k-point sampling, the relaxed atomic positions are acce
able. This means that even though the energy surfaces
inaccurate absolute values and gradients, the extremum
be at more or less the same position as in the case with b
sampling of the Brillouin zone.

With the effects of band energy smearing, system s
and choice ofk points now understood, the optimal choic
for accurately investigating the relaxed vacancy format
energy can now be made. A system of 108 Al atoms is la
enough to allow for the relaxation of 4 shells of neighbo
around the vacancy which should prove adequate. A cho
of the 4k points from the small set combined with the mo
erate level of 0.75 eV smearing of the band energy provi
a high level of accuracy and proves to be computationa
very efficient.

We note in passing that this technique of using larg
broadening to compensate for fewerk points works well for
simple metals, at least for the case of Al. However, c
should be exercised before applying to transition met
which have more structured density of states. We also n
that earlier calculations of vacancy-formation energ
showed some variations in the results6,28,26 that have some-
times been attributed to the use of pseudopotentials in s
of the calculations. In Table IV we show that our pseudop
tential results can accurately reproduce the all-electron
sults of Mehl and Klein6 if we use exactly the same lattic
parameter~4.05 Å! and the same set ofk points when a small
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Gaussian broadening of 0.05 eV is used, and can repro
the k-point converged results when a moderate smearin
0.75 eV is used.

B. Vacancy-formation energy

The vacancy in aluminum has been used as a proto
system for point defects in simple metals, as well as a ben
mark for computational methods. There have been many
vious calculations of the vacancy-formation energy us
methods ranging from pair potentials to local-densi
functional methods, including both plane-wave pseudopo
tial and linear augmented plane-wave methods. LDA-ba
calculations employed periodic boundary conditions and e
lier calculations have used relatively small supercells~16 to
32 atomic sites!.3,4,6,26 Since the relaxation surrounding
point defect in a supercell is constrained by the perio
boundary conditions, a sufficiently large unit cell should
used to model an isolated defect. Our use of 108 atomic s
in a simple cubic supercell puts the nearest distance betw
two single defects at about 12 Å and allows 4 shells of ato
to relax around the defect. Also, the availability of oth
theoretical and experimental results made this an ideal
for testing our approach to dealing with metallic systems

The vacancy-formation energy is obtained from the d
ference between the total energy of the defect supercell
N21 atoms and that of the perfect crystal withN atoms:

Ev5E~N21,V8!2
N21

N
E~N,V!. ~1!

We start from a perfect lattice consisting of 108 atoms
108 lattice sites, remove one of the atoms to form the
cancy, and fully relax the positions of the ions. The latt
parameter of the cell is then varied followed by another co
plete relaxation of the ions. This is repeated to find the lat
constant and ionic configuration that produces a minimum
the total energy.

Using the 4-k-point set and 0.75-eV smearing of the ba
energy that was determined to be optimal for this proble
the fully relaxed vacancy-formation energy for 108 Al sit
came out to be 0.66 eV. This is in good agreement with
experimental value of 0.6760.03 eV.27 The vacancy-
formation energy in Al has been studied carefully with lar
supercells by Chettyet al.,8 who got basically the same re
sult ~0.66 eV! using a larger set ofk points. Previous results
with smaller supercells range from 0.52 to 0.84 eV.6,28,26

Volume relaxation turns out to have only a small effect
the vacancy-formation energy as long as we allow for ato
relaxations around the vacancy site~this is not the case if
relaxation is not allowed!. If we fix the 108-atom cell at the
equilibrium volume of Al, the vacancy-formation energy i
creases by only about 0.01 eV. This shows that atomic
laxation is much more important and the energetics of
defect formation is largely decided by the atomic configu
tions close to the vacancy. If no atomic relaxations w
allowed, the vacancy-formation energy would be about 0
eV.

A vacancy-formation volume of 0.86V0 was found using
the definition of

VF5V82~N21!V0 ,
ce
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whereV0 is the volume of one atom in the perfect lattice a
V8 is the relaxed volume of the supercell with a vacancy. W
note that Chettyet al.8 obtained a value of 0.67V0, while De
Vita and Gillan,26 using a smaller 16-atom cell, found 0.7
V0.

Figure 1 shows the lattice relaxation around the vaca
defect. Only the first four shells are completely free to mo
in response to the vacancy. The other shells are affe
slightly by a small amount of contraction of the supercell b
are at points equidistant between the defect and one o
periodic images and therefore cannot fully relax as th
could around an isolated defect. It is mainly the first sh
atoms that move inward by about 2% of the bond length
compensate for the vacancy. The fourth shell also sho
significant displacement, more than the second and t
shells. The first and the fourth shell atoms correspond to
face centered position and the positions diagonal across
face of the cubic cell. Therefore the lattice relaxation
volves mainly a radial shift of the atoms along the face
agonals inward toward the vacancy site, as illustrated in F
2. The other atoms remain in position aside from a slig

FIG. 1. The radial displacement for the atoms around a vaca
in aluminum. Shells 1 and 4, the face-center and face-diago
move inward while the other atoms remain roughly in place.

FIG. 2. Radial relaxation inward along the face diagonal fo
vacancy defect in aluminum.
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FIG. 3. The difference in elec-
tronic charge density in a vacanc
defect in aluminum.
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contraction of the supercell. A constant volume relaxati
where ionic and electronic relaxations are performed a
volume matching the bulk volume, produced very simi
results since there is relatively little overall contraction of t
system. The lattice relaxations we obtained closely ma
those of Chettyet al.8 The Harris-functional local-orbital re
sults of Caro, Drabold, and Sankey,29 who also used up to
108-atom cells, found that the first shell of atoms mov
inward by about 4% of the bond length~twice as big as
ours!, and the next two shells move outwards from the v
cancy. However, these calculations did not allow for volu
contraction and the lack of self-consistency in the Har
functional approach may also contribute to the difference

The plot in Fig. 3 shows the electronic charge dens
transfer that occurs when a vacancy is initially added to
bulk system. The figure shows the difference in charge d
sity between the electronically relaxed system and the
tem of overlapping atomic charges for 107 aluminum ato
at the lattice sites. Clearly there is a flow of electrons into
vacancy site, which in turn provides the electrostatic fo
that pulls the neighboring ions in toward the vacancy.

C. Impurities in bulk aluminum

Li, Mg, and Si form important binary and ternary alloy
with Al. It is therefore of practical interest to study the e
ergetics of these elements embedded in an Al host. Since
conjugate-gradient method allows us to study systems w
more than 100 atoms, the structural properties and the h
of formation of these elements in Al can be studied in
dilute limit. The heat of formation for a substitutional defe
is defined here as the total energy of the two-compon
system minus the total energy of the same number of at
of the constituent elements in the bulk environment:

H5Ehost1impurity2Ei2
N21

N
EAl ~N! . ~2!

N is the number of sites in the unit cell,Ehost1impurity is the
total energy of the unit cell containing (N21) host atoms
and one impurity atom,Ei is the chemical potential of the
impurity atom, which is taken to be the equilibrium bu
,
a
r

h

d

-
e
-

y
e
n-
s-
s
e
e

he
th
ats
e

nt
s

energy of the impurity, andEAl(N) is the energy ofN Al
atoms in the bulk environment. The bulk energy of the
host is calculated with a 108-atom cell, with exactly the sa
k-point sampling and Gaussian broadening as the defect
culation to minimize systematic errors. We will consider L
Mg, and Si as substitutional impurities, and a negative h
of formation indicates that the impurity is soluble in the lo
concentration limit, while a positive heat of formation ind
cates that the impurities will segregate. We employ a p
odic cubic unit cell of 108 atoms, with 107 Al and one im
purity atom. Both the volume and the atomic positions a
fully relaxed. As in the case of vacancy calculations, we u
4 specialk points in the irreducible Brillouin zone, and
Gaussian smearing of 0.75 eV. As a check, the heat of s
tion of Si in Al ~without lattice and volume relaxation! with
20k points and a Gaussian smearing of 0.2 eV is found to
0.395 eV. With only 4k points and 0.2-eV smearing, th
result is 0.896 eV, which is obviously unacceptable. Ho
ever, with the same 4k points but a larger 0.75-eV Gaussia
broadening, the heat of solution is found to be 0.400 e
which is almost the same as that of the largerk-point set. In
other words, what we have learned aboutk-point sampling in
the vacancy-formation energy calculations is also applica
to the substitutional defect calculations.

The calculated heats and volumes of formation are lis
in Table V. From these calculated heats of formation, we
that Li gains energy by substituting one Al atom in the
host. On the other hand, the heats of formation of Mg and
are positive. These results are consistent with available
perimental information. The formation volume of the imp
rities is defined here asVF5V82VAl(N) , whereVAl(N) is the
equilibrium volume of the Al host withN atoms, andV8 is
the total volume of a unit cell with (N21) Al atoms and one
substitutional impurity. The formation volume is found to b
positive for Mg and negative for Si and Li. According t
published values of ‘‘atomic and ionic radii,’’23 the sizes of
the atoms decrease in the order Li.Mg.Al.Si. Thus, the
trend we find is consistent with the atomic sizes for the c
of Mg and Si. Since the heats of substitution are positive
these two elements, we may say that Mg and Si do not
with Al in the dilute limit, and the volume expansion o
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TABLE V. Single vacancy and substitutional defect formation energies for Li, Mg, and Si in
aluminum.

Formation Formation
Defect energy~eV! volume Chettyet al. ~Ref. 8! Experiment~Ref. 27!

Li 20.496 20.107V0

Mg 0.038 0.372V0 0.07 eV 0.0620.20 eV
Si 0.377 20.134V0 0.37 eV 0.51 eV
Vacancy 0.664 0.857V0 0.6660.03 eV 0.6760.03 eV
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ia
contraction should largely be determined by atomic sizes.
on the other hand, dissolves in Al. The binding between
Li and the Al host draws the host metal atoms in and cau
a contraction although bulk Li has a bigger atomic volum
than Al. The lattice relaxations around the impurity a
shown in Figs. 4~a!–4~c!, for Li, Mg, and Si, respectively.
For all three cases, the lattice relaxations are found mainl
the first shell of the Al atoms around the impurity site. T
atoms in the first shell relax outward for Mg, and inward f
Si and Li, which is consistent with the changes in the form
tion volume that Mg causes an expansion in the Al latti
while Si and Li cause volume contractions. Our results
the lattice relaxation around a Si impurity agree well w
those of Chettyet al.8 The results of Caroet al.29 agree
qualitatively with ours, but their relaxations are substantia
larger than the values we obtained.

D. Aluminum clusters

In the previous section, we have seen that it is energ
cally favorable for Li to substitute for Al in a bulk environ
ment, but not so for Mg and Si. We will show that the sit
ation can change quite a bit if we consider the sa
substitution in a small cluster environment.

All the calculations involving clusters were performe
with an fcc supercell of lattice parametera520 Å, and a
plane-wave cutoff of 12.5 Ry. By increasing the lattice p
rameter to 30.5 Å, we found that the total energy of
Al13 cluster changed by less than 1 meV, indicating that t
supercell is large enough so that our results should be c
to those of isolated clusters. Our calculations are not s
polarized~except for the atomic reference energy used
low, where the spin polarization energies are calculated
an all-electron atomic Herman-Skillman type code!, but the
error of ignoring spin polarization should be small in cluste
containing up to 13 atoms, especially when our attention
focused on clusters with ‘‘magic’’ numbers of electrons.

For the Al13 cluster, it is well known from theoretica
calculations that the icosahedral cluster is lower in ene
than the cubo-octahedral cluster,30–34 although the reported
energy differences varies from 0.6 eV~Ref. 31! to 1.6 eV
~Ref. 32!. Figure 5 shows both the icosahedral and cu
octahedral clusters, with the center atom shaded darker.
find that ideal icosahedral Al13 (I2Al13), with an optimized
bond length of 2.76 Å and distance to center atom of 2.62
is 1.02 eV lower in energy than cubo-octahedral A13
(O2Al13), which has an optimized bond length of 2.68
Yi, Oh, ,and Bernhole31 used a plane-wave pseudopotent
Car-Parrinello scheme to find that idealI2Al13 is 0.6 eV
i,
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l FIG. 4. The radial displacement for the atoms around a~a! Li,
~b! Mg, and~c! Si substitutional defect in aluminum.
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lower thanO2Al13. This difference is due to the fact tha
Yi, Oh, and Bernhole used a much smaller 4-Ry plane-w
cutoff, which they estimated would lead to an error of 0.
eV per atom, while we used a highly converged plane-w
cutoff of 12.5 Ry. Cheng, Berry, and Whetten32 reported a
much larger difference of 1.6 eV using anXa discrete varia-

FIG. 5. ~a! Icosahedral and~b! cubo-octahedral clusters with 1
atoms showing a different atom in the center.
e

e

tional method. Our result agrees well with that of Pederso34

who found an energy difference of 1.1 eV using an a
electron cluster code.

We now consider the change in binding energy when
Al atom is substituted by another atom, which is equivale
to the following substitution reaction:

Al131X→Al12X1Al. ~3!

X is Li, Mg, or Si, and is assumed to substitute the Al ato
in the center of the icosahedral cluster. The icosahedral s
metry is maintained for both the Al13 and the Al12X clusters.
Although these clusters may gain more energy by Ja
Teller distortions, the energy gain is expected to be ab
0.02 eV/atom,31 which will not affect our results as discusse
below. We found that the above interaction is highly end
thermic for the case of Si, which gains an energy of 2.9
~Gong and Kumar33 find a difference in binding energy o
3.2 eV!. We also found that the interactio
2Al131Si2→2Al12Si1Al2 produces a gain of 2 eV, which
further indicates the stability of the Al12Si cluster. On the
other hand, the reaction is unfavorable for the case of
and Li, where the energy goes up by 3.5 and 2.6 eV, resp
tively. For an Al13 cluster, it is therefore energetically favo
able for Si to substitute for an Al atom, but not so for th
case of Li and Mg. The important point to note is that t
trend is different from that of bulk behavior, where we foun
that it is favorable for Li to substitute Al, but not for Mg an
Si. The distances of the Al atoms from the center impur
atom in the icosahedral clusters are 2.57, 2.59, and 2.6
for Li, Si, and Mg, respectively. In Al13, the distance of the
surface atom to the center atom is 2.62 Å. Mg thus cause
expansion of the Al cluster, while Si and Li cause contra
tion. This trend is consistent with the trend we found f
substitution in the bulk.

The above results also hold for cubo-octahedral clust
For example, Al131Si→Al12Si1Al gains 2.2 eV when both
Al13 and Al12Si are cubo-octahedral, while using Mg or L
instead of Si the energy goes up by 3.5 and 2.8 eV, resp
tively. 2Al131Si2→2Al12Si1Al2 produces a gain of 1.3 eV

These results are therefore qualitatively the same as
the icosahedral and cubo-octahedral clusters, although t
two forms have different structural characteristics. The o
served trend in the energetics can be explained usin
simple jellium model.30,33Al13 has 39 valence electrons, so
is one electron short of forming a closed shell of 40 electro
in the jellium sphere models.35,36 This extra electron can be
provided by substituting one Al by Si, but not by Mg or L
accounting for the stability of Al12Si. Since the stabilizing
factor is electronic in origin, it is not surprising that we s
the same trend for icosahedral and cubo-octahedral clus
as long as they are both reasonably spherical. As the m
cluster size becomes bigger, and eventually grows into
bulk limit, the molecular energy levels are broadened in
energy bands, and the highest occupied–lowest unoccu
molecular orbital gap will disappear. The contribution due
atomic relaxation to accommodate the defect becomes
creasingly important and it will become more difficult t
predict the trends of energetics. Whether an impurity at
will favorably substitute for the host in the bulk depends
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factors such as size mismatch and chemical bonding, w
can in turn be attributed to the change in the electronic st
ture. It is quite difficult to predict these energetics based
simple arguments without doing a careful calculation. Ev
for the case of small clusters, the icosahedral cluster is
characteristically simple because of its high symmetry.
general, the problem can be very difficult even for a clus
of one component since the cluster may have a very com
potential energy landscape.

IV. SUMMARY

Using a preconditioned conjugate-gradient method,
have performed first-principles calculations to obtain
vacancy-formation energy of a single vacancy in alumin
and the energetics of Li, Mg, and Si substitutional impurit
in bulk aluminum and small Al13 clusters. The calculated
vacancy-formation energy and heats of solution are in g
agreement with available experimental information. In t
bulk point defect calculations, a supercell of about 100 ato
is found to be adequate for simulating isolated defects. H
ever, k-point sampling needs to be done carefully and
equately for metallic systems. A higher level of band ene
ev
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smearing was found to be beneficial by allowing the cal
lation to be performed with fewerk points without sacrific-
ing accuracy. We found that the energetics of substituting
Al atom is rather different in the bulk and small cluster e
vironments.
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