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Energies and 2-expansion coefficients for the D states in the 
helium sequence 

Paul Blanchardt and G W F Drake$ 
t Department of Physics, Tufts University, Medford, Massachusetts 02155 
$ Department of Physics, University of Windsor, Windsor, Ontario, Canada 

Received 10 July 1973 

Abstract. Non-relativistic variational energies for the ls3d('>jD) states of the helium iso- 
electronic sequence are calculated with a 50-term correlated basis set for Z = 2-  10, where 
Z is the nuclear charge, and the corresponding Z-expansion coefficients found through 
sixth order by fitting the energies to a series in Z - ' .  A variational-perturbation calculation 
of these coefficients through eleventh order (with the same basis set) is presented for com- 
parison, and agreement is satisfactory. The 3d energies obtained by summing the Z- 
expansion perturbation series are found to yield excellent approximations to the variational 
values. The calculations are extended to the ls4d(lB3D) states to furnish variational energies 
for neutral helium and perturbation energies for the higher sequence members. All of these 
results are the most accurate yet reported, 

1. Introduction 

The present work is an off-shoot of an earlier, unpublished study of the 1 ~ 3 d ( ' , ~ D )  
energies in the helium sequence undertaken to provide estimates of the coefficients E,  in 
the Z-expansion series 

E(Z) = Z 2 E o + Z E l + E 2 + Z - ' E 3 +  . . ,  

where E ( 2 )  is the non-relativistic total energy and Z is the nuclear charge. Here, E ,  is 
trivial and E ,  may be found exactly (Layzer 1959). The correlated, two-electron co- 
efficients E2(3 lq3D) are required in the calculation of three-electron ls23d energies 
through second order in Z- ' ,  and preliminary values of E2 furnished by our previous 
work were used in this connection by Horak et a1 (1969). We are now able to report more 
accurate and extensive values of the energies and E, coefficients for the ls3d states, 
together with results for the ls4d states. 

The higher-order Z-expansion coefficients may be found in two ways. In the first 
method (that used in our earlier work), calculated energies E(Z) are fitted to a series of 
the form (1) through the differencing technique of Scherr et a1 (1962). To obtain the 
coefficients to high order, however, one requires E(Z) values known to many significant 
figures, and the resulting E ,  are good approximations to the exact non-relativistic 
values only if the energies are also highly accurate. Previously reported ls3d energies 
(Green et a1 1965, Weiss 1967, Brown 1968) are inadequate in one or both respects. We 
have obtained improved 3d energies through Z = 10 by direct variational calculations 
with a 50-term correlated basis set and are able to estimate the coefficients E,-E, by the 
series-fit method. 

2495 



2496 Paul Blanchard and G W F Drake 

The E ,  may also be calculated directly to high order by the variation-perturbation 
method of Scherr and Knight (1963) and Dalgarno and Drake (1969). The latter authors 
obtained the 3d coefficients E,-E, using a 40-term basis set. With the 50-term basis we 
have determined the perturbation-theory Ek(3lS3D) more accurately through k = 11 and 
find satisfactory agreement with the series-fit values. Although the latter more closely 
approximate the exact non-relativistic values, a summation of series (1) with the E,  
furnished by perturbation theory yields strikingly good approximations to the variational 
energies. 

Encouraged by this finding, we have performed similar but less extensive calculations 
for the ls4d(ls3D) states. Variational values of E(Z)  are presented for helium only; for 
Z 2 3, we list approximations to E ( 2 )  obtained by summing the Z-expansion series (1) 
with the E, furnished through k = 9 by perturbation theory. These results are slightly 
more accurate than those previously reported (Green et a1 1965, Brown and Cortez 
1971). 

2. Calculations 

The correlated basis set is of the Hylleraas type described by Drake et d(1969), in which 
the basis functions are symmetrized combinations of terms of the form e-ar1-Br2 r1r2r12 

multiplied by angular factors. Here r 1  and r2 are the radial coordinates of the two 
electrons, r12 is the interelectronic separation, and a, p are non-linear variational para- 
meters. In the direct variational calculations, we found that departures of c1 from the 
value Z (corresponding to a hydrogen-like 1s core) had very little effect upon the total 
energy minimum and a was set equal to Z here. Much effort was expended, by trial and 
error, in selecting those basis functions that yielded the lowest 3d energies for optimum 
choices of p. The 50-term set adopted contains 36 functions with sd angular-momentum 
dependence, the remainder being pp' states. For best results, we found it necessary to 
include many sd functions involving high powers of r 2 .  

In the usual approach, one first orthonormalizes the basis set and then diagonalizes 
the hamiltonian matrix to obtain the complete spectrum of eigenvalues. As only a 
single eigenvalue is desired here, we have employed a variation of the 'power method' 
which yields the eigenvalue closest to any initial guess both rapidly and accurately. 

Energies are given in atomic units (au) throughout. 

3. Results and discussion 

3.1. The 3d states 

We first treated the case of neutral helium to investigate the convergence of the 3d 
variational energy eigenvalues with increasing basis set size and the results appear in 
table 1. The 20-, 30-, and 40-term subsets of the full 50-term basis are those found to 
yield the lowest energies for the indicated numbers of terms, with the parameter p 
optimized for each. The experimental results are taken from a recent compilation of He 
term values by Martin (1973) and suggest an absolute accuracy of a few parts in 10' for. 
the 50-term calculation. The 3 lD  energies converge more rapidly, but the 33D energies 
are less sensitive to the choice of basis and appear to be more accurate. Our 50-term He I 
values are 6 x au lower than the best configuration-interaction energies (Green et a1 
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Table 1. Convergence of the He I variational energies with increasing basis set size (in au) 

Number 
of terms E(3'D) E(33D) 
~~ ~~~ 

20 - 2,055617617 - 2,055634878 
30 - 2.055619734 -2,055635661 
40 - 2,055620049 - 2,055635881 
50 -2,055620115 - 2.055635968 
exp.t - 2,0556209 - 2.0556364 

t Martin (1973). 

1965, Brown 1968) and agree with the six figures quoted by Weiss (1967) for the results 
of a 52-term Hylleraas calculation. 

Table 2 presents the 50-term 3d( 's3D) variational energies for the helium sequence 
through Z = 10. The calculations were extended to 12 or 13 significant figures to 
permit a determination of the corresponding Z-expansion coefficients through E,. This 
level of numerical accuracy required a four-figure optimization of p, but the observation 
that the optimum values follow the series expansion B/Z = Bo + Bl/Z + Bz/Z2 + . . . 
(expected from simple scaling arguments) led quickly to  nearly-exact estimates for the 
higher sequence members. For Z 2 3, the most accurate energies previously reported 
are those of Brown (1968), who also presents a comparison with observation. As the 
observed energies contain relativistic contributions which increase rapidly with Z,  the 
appropriate comparison is that between different non-relativistic calculations. Our 3' D 
energies are lower than the corresponding Brown (1968) values by amounts ranging 
from 1 x lO-'au (2 = 3) to 5 x l ow5  au (2 = 10). The best previous 33D values are 
those of Weiss (1967), who gives results to five decimal places; our 33D energies are in 
agreement with these through Z = 7 but lower by 1 x 

In the first columns of tables 3 and 4 we list the higher-order E, coefficients found by 
fitting the E(Z) values of table 2 to a series ofthe form (1). Here, E,,(3ls3D) = - 5/9 au and 

au for Z 2 8. 

E1(31D) = 0.111 270 141 6 au 

E,(33D) = 0.110 775 756 8 au 

Table 2. 1 ~ 3 d ( ' , ~ D )  variational energies in the helium sequence (in au) 

Z E(3'D) E(33D) 

2 
3 
4 
5 
6 
7 
8 
9 
10 

-2,0556201 1467 
- 4,12238996527 
- 8.50021450157 
- 13.38909872662 
- 19,38905734362 
- 26.50010 13 1 50 1 
- 34.7222379801 1 
- 44.05547224610 
- 54.4998074641 

- 2,05563596801 
-4.72252648764 
- 8.50058187867 
- 13,38977109501 
- 19.39008298339 
- 26.501 5 1264274 
- 34.72405759390 
- 44,05771645075 
- 54.5024883784 
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Table 3. Z-expansion coefficients E,(3'D) determined two ways (in au) 

Variational energy Perturbation 
k series f i t  theory 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

- 0.0574822 -0.05747078 
0.006076 0,00597447 

- 003845 - 0,008 12158 
0,0060 0.00556448 

- 0002 -0.00231828 
OGOO8 1629 
0.0001 4593 

- 0,00066468 
0,00074237 

- 0.00071 843 

Table 4. Z-expansion coefficients E,(33D) determined two ways (in au) 

Variational energy Perturbation 
k series fit theory 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

- 0,0546 193 - 0,05461705 
- 0,0007 1 3 - 0.00073 180 

000002 0,00007374 
- 0~0000 -0.00008786 

0.0001 0.00017709 
0.0000697 1 

- 043l029496 
000009888 
0.00022 185 
0,00005668 

(Sanders and Scherr 1965). We determined the E, to higher order by applying a modifica- 
tion of the differencing procedure of Scherr et a1 (1962) as described in Appendix A. The 
error in the E ,  arising from uncertainties in the series fit is perhaps one unit (but at most 
two units) in the last digit quoted. To this accuracy, our second-order coefficients 

E,(3'D) = - 0.057 482 2 au 

E,(33D) = -0.054 619 3 au 

(2) 

(3) 
are upper bounds to the exact non-relativistic values. These are the best E2 estimates 
available and replace our preliminary results used in connection with the ls23d states of 
the lithium sequence (Horak et a1 1969; see this reference also for a summary of earlier 
estimates ofthe E ,  coefficients). It appears that E,(33D) < 0, with IE,(33D)I < 5 x 10- l 5  

au, but as the data do not allow a more exact determination we list this value as zero to 
four decimal places. 

In the second columns of tables 3 and 4 we present the higher-order E,(3'x3D) co- 
efficients calculated from variational-perturbation theory with the 50-term basis set 
used before. The values for k = 2-5 supersede those obtained by Dalgarno and Drake 
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(1969), who describe the procedure. There are no other estimates of these coefficients for 
k > 7. We consider the overall agreement between the two sets of coefficients satis- 
factory ; part of the discrepancy in the cases of the 33D coefficients E, and E, arises from 
their small magnitudes, a slight absolute difference leading here to a large fractional 
change in value. However, in the perturbation calculation one must set LY = 1 and 
b = 1/3 in order to reproduce the correct values of E ,  and E , ,  so that the additional 
accuracy to be gained by a variation of j is forfeited. Hence for k > 2 the perturbation- 
theory E,  do not approximate the exact non-relativistic values so well as the series-fit E,, 
as is clear from the higher E, coefficients. 

Where comparisons may be made, we note that the perturbation E,  are systematically 
higher than the series-fit values for even k but lower for odd k. As a result, the 3d perturba- 
tion energies are better approximations to the corresponding variational energies than 
the comparisons of tables 3 and 4 suggest. We do not tabulate these, as the variational 
results are to be preferred ; further, the perturbation energies are not necessarily upper 
bounds to the exact values except for sufficiently large Z. For Z = 2, the perturbation- 
series partial sums through k = 11 have not yet converged, and we can verify agreement 
with the He I variational energies only to five (3'D) and six (3jD) decimals. For Z > 3 
the convergence is satisfactory. The perturbation energies are lower than the table 2 
values by 4 x lo- '  au and 1 x lo-' au for the 31,3D states of Li 11 and by 5 x l ops  au for 
the 33D state of Be III. In all other cases the perturbation results lie above the variational 
values by amounts increasing with Z from 1 x au for the 3'D states 
and from 1 x au to 8 x lO-'au for the 33D states. Thus the 3d perturbation 
energies are at least as accurate as those of previous calculations and agree with the 
variational values within the estimated absolute error of the latter. 

au to 4 x 

3.2. The 4d states 

Here the same 50-term basis set was employed; however, as this set was chosen specific- 
ally to optimize the 3d variational energies, comparable accuracy cannot be expected in 
the 4d case. Our direct variational calculation for He I yields the values 

(4) 

( 5 )  

E(4'D) = -2.031 277 2 au 

E(43D) = -2.031 287 3 au 

compared to the best previous estimates of - 2.031 277 au, - 2.031 286 au (Green et a1 
1965) and the experimental values - 2.031 279 9 au, -2.031 288 9 au (Martin 1973) for 
the 4133D states, respectively. In the Z-expansion series (1) we now have E, = - 17/32 au 
and 

E1(4'D) = 0.062 582 034 au 

E1(43D) = 0.062 318 318 au 

(Sanders and Scherr 1965). The higher-order E,(4ls3D) obtained from the perturbation 
procedure (with LY = 1, b = 1/4) are listed through k = 9 in table 5. There are no previous 
estimates of these coefficients. The Z-expansion series converges more slowly here than 
in the 3d case and for He1 we can verify agreement with the values (4) and (5) only 
within one unit in the fifth decimal place. The 4d perturbation energies for Z 2 3 are 
given in table 6. Configuration-interaction energies for this sequence have been cal- 
culated by Brown and Cortez (1971) who also present a comparison with observation. 
We obtain agreement with the Li 11 4,D energy of Brown and Cortez (1971), but in all 
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Table 5. Z-expansion coefficients Ek(4ll3D) from perturbation theory (in au) 

-0,03212168 
0,00244471 

- 000263634 
0,00064430 
0,0010258 1 

-0.00153298 
0.00 15 53 3 1 

- 0 4 "  14809 

- 0.03067137 
- 0.00066606 

0,00043907 
- 0.0003439 1 
- 0.00039242 

0,00182846 
- 0.00066390 
-0.00155556 

Table 6. ls4d('s3D) perturbation energies in the helium sequence (in au) 

z E(4'D) E(43D) 

3 -4,625072 - 4,625 15 1 
4 - 8.281 334 -8,281543 
5 - 13,000072 - 13.000448 
6 - 18.78 1292 - 18,781862 
7 - 25,625000 - 25.625780 
8 - 33.53 1200 - 33,532202 
9 -42,499893 - 42.501 126 
10 -52.531082 - 52,532551 

other cases the energies of table 6 are lower by amounts ranging from 1 x 
2 x l op6  au for the 4 l D  states and from 1 x 

au to 
au to 4 x au for the 43D states. 

3.3. The case Z = 1 

We obtain a useful check on the Z-expansion coefficients by summing the series (1) 
with Z = 1 to find the d-state energies of the H-  ion. As it is very unlikely that these 
states are bound, we should obtain - 0.5 au in all cases (the energy of a 1s hydrogen atom 
and a free electron). Convergence is poor, but the partial sums fluctuate with decreasing 
amplitude about the expected value. For the 3d states, we find convergence to 

- 0.5000 -i- 0.0003 au 

with the perturbation-theory E, and to -0.500 au with the less extensive series-fit E,. 
For the 4d states, with the E, of table 5, we find the value - 0.500 f 0.001 au. A similar, 
oscillatory approach to -0.5 au has been noted for Z = 1 by Sanders and Scherr (1969) 
in the 21,3P cases in their perturbation study of helium-sequence s and p states. 

3.4. Further remarks on the 3d states 

We may draw tentative conclusions as to the exact nonrelativistic Ek(3lV3D) values by 
comparing the 40-term perturbation values of Dalgarno and Drake (1969), the present 
50-term perturbation values, and the E,  found from the variational-energy series fit ; 
these results form a sequence of increasing absolute accuracy. The E2 coefficients 
appear to be converging to values near those ofequations (2) and (3), and the convergence 
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of the E,('D) coefficient is also satisfactory. In general, however, our best estimates of 
the higher-order E, do not yet provide adequate approximations to the exact values. For 
example, the E,(") values furnished by the above calculations are -0.000 76, 
- 0.000 732, and -0.000 713 au, respectively, exhibiting only one-digit convergence. 
The convergence of the small-magnitude 33D coefficients E ,  and E ,  is even worse and 
precludes any exact-value estimates. It seems clear that even more elaborate calculations 
than those presented here are required to determine the higher-order E, to acceptable 
absolute accuracy, although the improvements in total energy would be expected to be 
slight. 

4. Conclusions 

Because of its accuracy and economy, the perturbation procedure of Dalgarno and 
Drake (1969) appears to be worthy of further refinement and application; a minimal 
value of E ,  could serve here as a criterion for the choice of basis functions. As convergence 
is apt to be unsatisfactory for Z = 2, however, accurate variational results for neutral 
helium will continue to be of interest. 
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Appendix A. The differing technique 

We describe in this appendix a modification of the differencing technique of Scherr et a1 
(1962) used to obtain the higher order energy coefficients from the variational eigen- 
values. After subtracting the zero- and first-order contributions, which are known 
exactly, the eigenvalues are expanded in a series of the form 

30 

A(Z) = akZ-k  ('4.1) 
k = O  

with a ,  = E ,  etc. Suppose that A(Z) is known for several values of its argument 

2 = z o , z o + 1 , .  . . ,ZO+N.  

Then the nth order difference function A, (Z)  is defined by 

1 
n !  

A,(Z) = -Afl(Z"A(Z)) 

where A" is the nth order differencing operator defined by 

A"f (2)  = A"- 'f(Z + 1)- A"- if(Z) 

AOf(Z) = f(4 
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for an arbitrary function f(Z). It can be shown that 
m 

where 

1 
n .  

Since C,k(z)  is o(z-k) for large Z(k 3 n + I), then 

c,k(z) = I A ~ ( Z " - ~ )  (k n f l ) .  ('4.5) 

&(Z) = a,  + O(Z-,- ') for large 2. ('4.6) 
For n = 0 we recover the original series A(Z), but for n 2 1 the contaminations due to a, 
through a, have been removed. Thus the sequence A,(Z), A,(Z), . . . provides in principle 
a sequence of increasingly better approximations to a,, at least for large 2. A practical 
limit on the accuracy attainable is set by the value of N (which limits n)  and by the number 
of significant figures in the A(Z)-values being differenced (which limits the accuracy of the 
calculated values of A ,  for large 2). 

In the 'standard procedure' of Scherr et a1 (1962), one differences first the values 
A ( Z )  to find a,, then the values Z(A(Z) - a,) to find a , ,  and so on. Experience shows 
that this procedure leads to accurate values for the first few coefficients ak when their 
magnitudes decrease steadily with k, and particularly when they are all of the same 
sign. When such is not the case, however, the initial approximations A,(Z) to a, converge 
more slowly, and a ,  is not so well determined ; at the same time, the values obtained 
for the higher-order coefficients become markedly sensitive to the a,  value adopted, 
so that these are even less reliable. (We remark that the best value of a ,  is not necessarily 
that which yields the most concordant estimates of a,.  The influence of higher-order 
terms may conspire with inaccuracies in the data to lead one into a polynomial approxi- 
mation to A(2)  instead of an independent estimate of the higher-order coefficients.) 

To avoid this difficulty we formulate an 'alternate procedure' which yields estimates 
of the higher-order coefficients directly from the data when such values are known to 
sufficient numbers of significant figures. For 1 < n < N ,  we note that the quantities 

may be calculated from the known A,(Z) values of equation (A.2). On the other hand, 
it can be shown that 

l n  i m  

and 

B,(Z) = a,+O(Z-')  for large Z. (A.9) 

Thus the B,(Z) provide approximations to a, directly. Further, for large Z, the 
deviation of a, from B,(Z) becomes a series in 2-' so that the values B,(Z) may 
themselves be differenced to yield better approximations to a,, at least for large Z. A 
variant of this alternate procedure provides a consistency check on any coefficient a, 
(and sometimes a better value) if an approximate value a;+ , for a,, can be first found 
directly. Then the bulk of the effect of an+ , upon B,(Z) may be subtracted off; from 
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equation (A.8) we see that the terms on the left-hand side of the relation 

\ j = o  I 

(A. 10) 

provide better approximations to an than the B,(Z) alone. Greater accuracy is of course 
achieved if the main effects of two or more higher-order coefficients can be eliminated 
in this way. In practice, one compares estimates of the ak from both the standard and 
alternate procedures to find the most precise values consistent with the accuracy of the 
data. 

In applying the foregcing procedures to the variationally calculated 3d energies 
E(Z)  of the helium sequence (2 6 Z d lo), we subtract away the known contributions 
of Eo and El to form the series 

A ( Z )  = E(Z)-Z2Eo-ZEl  = E2+Z-’E,+Z-’E4+ . . .  
putting ak = E k + 2  with Z ,  = 2, N = 8. Scherr et a l ( l962)  have shown that an analysis 
in powers of (Z+o)-’  where o = -E1/2E0 can be expected to give more accurate 
results than an analysis in Z-’.  In the present case, however, this approach produced 
no significant increase in accuracy, perhaps because of the small value of o(o - 0.1). 

Note added in proof. The experimental 3d and 4d He I energies given here are based on 
the Martin (1973) He I term values and the non-relativistic 1s  ionization energy of 2au 
for He 11. 
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