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Abstract The discrete modelling and understanding of the
particle dynamics in fluidized bed apparatuses, mixers, mills
and others are based on the knowledge about the physical
properties of particles and their mechanical behaviour dur-
ing slow, fast and repeated stressing. In this paper model
parameters (modulus of elasticity, stiffness, yield pressure,
restitution coefficient and strength) of spherical granules
(γ-Al2O3, zeolites 4A and 13X, sodium benzoate) with dif-
ferent mechanical behaviour have been measured by single
particle compression and impact tests. Starting with the elas-
tic compression behaviour of granules as described by Hertz
theory, a new contact model was developed to describe the
force-displacement behaviour of elastic-plastic granules. The
aim of this work is to understand the energy absorption dur-
ing compression (slow stressing velocity of 0.02 mm/s) and
impact (the impact velocity of 0.5–4.5 m/s) of granules. For
all examined granules the estimated energy absorption dur-
ing the impact is found to be far lower than that during com-
pression. Moreover, the measured restitution coefficient is
independent of the impact velocity in the examined range
and independent of the load intensity by compression (i.e.
maximum compressive load). In the case of repeated load-
ing with a constant load amplitude, the granules show cyclic
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hardening with increasing restitution coefficient up to a cer-
tain saturation in the plastic deformation. A model was pro-
posed to describe the increase of the contact stiffness with the
number of cycles. When the load amplitude is subsequently
increased, further plastic deformation takes place and the
restitution coefficient strongly decreases.

Keywords Granules · Energy absorption · Elastic-plastic
behaviour · Restitution coefficient · Contact model

List of symbols

d1 Diameter of the granule (m)
dk,pl Diameter of plastic deformed contact area (m)
E∗ Average modulus of elasticity

of contact partners (N/m2)
E Modulus of elasticity (N/m2)
F Normal force (N)
FB Breakage force (N)
Fcyc, FU Maximum force during a loading cycle (N)
kn Contact stiffness in the normal direction (N/m)

of contact partners (N/m2)
e Restitution coefficient
eeq Equivalent restitution coefficient
k∗

n The median contact stiffness
in normal direction (N/m)

m1 Mass of the granule (kg)
pF Plastic micro-yield strength of granule

contact (N/m2)
R∗ Median radius of contact partners (m)
R1 Radius of the granule (m)
rk Radius of the contact area (m)
s Displacement (m)
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16 S. Antonyuk et al.

t Time (s)
v1 Impact velocity (m/s)
v1,F Minimum impact velocity which corresponds

to the yield point (m/s)
vB Stressing velocity during compression test (m/s)
W Loading energy (J)
Wkin Kinetic energy (J)

Greek letters

κA Elastic-plastic contact area coefficient
ν Poisson ratio
� Impact angle (deg)
ρ1 Density of the granule (kg/m3)
ρ f Air density (kg/m3)
σmax Strength of dominantly plastic granules (N/m2)
ωR Angular velocity of the granule after rebound ( rad/s)

Subscripts

B Breakage
el Elastic
el-pl Elastic-plastic
F Yield point, flow
L Loading
max Maximum
n Normal
R Restitution, rebound
pl Plastic
t Tangential
tot Total
U Unloading
z Current number of the cycle
1 and g Granule
2 and w Wall

1 Introduction

Many products, e.g. catalysts, adsorbents, fertilizers, tablets
etc., are often produced as granules. Obvious advantages of
the granules in comparison to powders are higher packing
density, better flow behaviour as well as less dust formation.
Due to granulation some technological problems, like long
time consolidation or segregation of the bulk materials in
bunkers and transport containers can be avoided. Moreover,
desirable properties such as a regular shape, chemical com-
position, narrow particle size distribution, porosity, internal
surface can be obtained.

During the processing sequence, transportation and han-
dling the granules are exposed to a lot of mechanical stressing
due to granule-granule and granule-apparatus wall impacts
(Fig. 1). Stressing intensity and frequency can be set equiva-
lent to the conditions occurring in processing apparatus like
dryers, conveyors, granulators or mixers.

The mechanical interactions of the granular assembly
during a process can be studied by numerical simulation
with the discrete element method (DEM) or discrete particle
method (DPM). In the last ten-fifteen years, these methods
found many applications in the mechanics of bulk materials,
i.e. flow behaviour and discharge of silos [8,49,50], filling
and packing [111], shearing [25,35,47,61,103], heap forma-
tion [13,36,65], bed configuration and loading conditions
in fall mills [63,69,105], compression behaviour [68,78],
mixing and transportation [12,27,44,52,54,107], fluidised
bed processes [31,40,41,58,66,90,102,104,110,112], heat
exchange processes [41,50].

In these simulations, the mechanical interactions between
particles as well as between particle and apparatus walls
are calculated. These include the force and stress distribu-
tions within the bulk material, velocities and trajectories of
individual particles. From the simulation, important process
parameters are determined, like e.g. the residence time of a
material in the apparatus during filling and discharge of bun-
kers as well as mixing or drying. Based on the special contact
models the complicated behaviour of the cohesive and wet
bulk materials can be predicted [25,103]. These simulations
provide physical knowledge about the micro-macro interac-
tions of particles and macroscopic particle bed behaviour,
which can be used to achieve understanding and solution of
frequently occurring breakdowns in the process due to flow
disturbances and unstable mass flows.

Through DEM, the individual granules can be modelled as
a realistic mechanical system of primary particles which are
bonded by adhesion forces [6]. Hence, the important influ-
ences of the microstructure concerning porosity, density, pri-
mary particle distribution, stiffness of the primary particles,
their elasticity or plasticity as well as binder properties of
the granule on deformation and breakage behaviour can be
examined. Many interesting results of single granule simu-
lations have been reported in the literature [6,26,78,82,95].
A new stage of modelling should be the simulation of an
assembly of granules subjected to different stressing condi-
tions. Hassanpour et al. [29] describe the deformation and
breakage of an agglomerate within a bed of particles, sub-
jected to shearing. Grof et al. [24] performed the simulations
of uniaxial compression tests of needle-shaped agglomer-
ates within a random packed bed. However, no simulation
of a bed with granules containing many primary particles in
micrometer size range has been provided. This is because
of the large computational effort that is needed to simu-
late a very high number of small particles. The time step
of DEM calculations that ensures numerical stability is pro-
portional to the mass of the smallest particle in the sys-
tem [6]. Therefore in the DEM/DPM-models the granules
are usually represented as homogeneous particles [31,40,58,
66,67,78,110] and the influence of their microstructure is
neglected.
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Energy absorption during compression and impact of dry elastic-plastic spherical granules 17

Fig. 1 Typical stressing of
particles during agglomeration
in a rotated drum (a),
granulation in fluidized bed (b),
transportation (c) and discharge
(d)

Fig. 2 Different loading modes of a granule: a impact on the one target,
b compression between two tools with two contacts

Based on the assumption of a continuous matter, contact
theory and continuum mechanics can be used to describe the
mechanical behaviour of a granule without breakage through
experimentally observed mechanical parameters like modu-
lus of elasticity, yield point, contact stiffness. In our previ-
ous publications [5,6] as well as in numerous experimental
studies of other authors [10,21,64,71,78,84], it was shown
that the granules, similar to the solids, have different con-
tact behaviour from dominantly elastic to dominantly plastic
which is often time and deformation rate dependent and is
related to adhesion effects.

In this work, we consider the behaviour of spherical gran-
ules by slow compression (vB = 0.02mm/s) and rapid
impact stressing (vB = 0.5–4.5 m/s) in normal direction
(Fig. 2). It is assumed that the granule is homogeneous and
isotropic.

One objective is to describe the different force-displace-
ment behaviour obtained by compression tests to determine
the mechanical properties concerning the contact stiffness,
modulus of elasticity, yield point as well as the restitu-
tion coefficient. The second objective is to compare the
energy absorption of granules during slow compression
and impact where the period of wall-granule interaction
is very short. If the energy absorption in both stress-
ing modes, at the same energy input, is nearly equal
the data observed by simple compression test could be
applied to modelling of impact stressing. The results will
be used for the selection of an adequate contact model
and for its following implementation in DPM for the mod-
elling of particle collision and agglomeration in fluidized
beds.

This paper is organized as follows: first, the contact mod-
els for elastic, elastic-plastic and plastic spherical particles
by slow compression and impact are described. Based on
these approaches the energy balance of granule loading is
defined. In this work the dissipation energy in this balance
is estimated using the restitution coefficient. Therefore, first
the experimental methods and devices to measure this ener-
getic parameter are described. Then, the different effects,
which can influence the restitution coefficient, are discussed
and a classification of the models to predict these effects is
carried out. In the third chapter the materials and experimen-
tal setups used in this work are described. The experimen-
tal part consists on compression (slow loading) and free-fall
tests (rapid stressing) which give the physical understand-
ing of the energy absorption of the granules with different
material behaviour. Due to compression tests the important
effect of the repeated loading on the material parameters of
granules is obtained. Concluding the experimental results
the energy absorption of granules during compression and
impact is compared.
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Fig. 3 Characteristic pressure distribution p(rk ) in a wall-granule
contact during elastic deformation

2 Theoretical approaches

2.1 Characteristics of elastic contact deformation
according to Hertzian theory

During uniaxial loading of a comparatively soft spherical
granule with a smooth stiff wall (flat surface), the contact area
deforms as a circle (see Fig. 3). The contact radius, force and
internal pressure distribution depend on the granule radius,
stiffness and deformation behaviour (elastic, elastic-plastic
or plastic) of the two contacting materials.

The pioneering work of Hertz [30] describes the elliptical
pressure distribution pel(rk)in the circular contact area of a
radius rk,el (Fig. 3):

(

pel

pmax

)2

= 1 −
(

rk

rk,el

)2

, rk ≤ rk,el . (1)

The tensile region at the perimeter of the contact pressure
distribution is responsible for bending [89]. Therefore, the
radius of the totally deformed area is larger than the contact
radius: rk,max ≥ rk,el (Fig. 3).

Hertz also found that the maximum contact pressure in
the centre of the contact area is given by:

pmax =
3Fel

2πr2
k,el

, (2)

with a radius:

rk,el =
(

3R∗Fel

2E∗

)1/3

. (3)

The effective modulus of elasticity E∗ of contact partner
(E2 >> E1, E2 → ∞) is given as:

E∗ = 2

(

1 − ν2
1

E1
+

1 − ν2
2

E2

)−1

≈
2

1 − ν2
1

E1, (4)

where ν is Poisson ratio. Note that we use index 1 for the
granule and index 2 for the wall.

The median radius of contact partners R∗ is a character-
istic radius of contact surface curvature:

R∗ =
(

1

R1
+

1

R2

)−1

≈ R1. (5)

The relation between elastic contact force and displacement
in normal direction is non-linear as found by Hertz [30] for
the point loading (Fig. 2a):

Fel =
2

3
E∗

√

R∗s3 ≈
4

3

E1

1 − v2
1

√

d1

2
s3, (6)

where d1 is the granule diameter. s is the full elastic dis-
placement composed of the contact and of the whole sphere
[30]:

s = r2
k,el/R∗. (7)

Due to the parabolic curvature F(s), the median contact stiff-
ness in normal direction increases with increase in displace-
ment s and granule diameter d1 [97]:

k∗
n,el =

dFel

ds
= E∗√R∗s ≈

√
2

1 − v2
E1

√

d1s. (8)

By impact stressing the median contact stiffness k∗
n,el equals

the granule stiffness kn,el,g since the granule is much softer
than the wall (kn,el,w):

k∗
n,el =

(

1

kn,el,g

+
1

kn,el,w

)−1

≈ kn,el,g. (9)

During compression with two plates (Fig. 2b) two contact
areas are formed. In this case the force-displacement rela-
tionship for the compression can be given in analogy with
Eq. (6) as:

Fel,w−g−w =
1

6
E∗

√

d1s3 ≈
1

3

E1
(

1 − v2
1

)

√

d1s3. (10)

Here, the displacement s is the sum of the displacements of
both contacts and of the whole granule (s := s/2).

The average elastic stiffness of this wall-granule-wall-sys-
tems results from sequence contacts, in Eq. (11). Hence, the

mean contact stiffness
(

k∗
n,el,w−g−w

)

, usually measured by a

compression test, equals half the stiffness of granule (kn,el,g):

k∗
n,el,w−g−w =

dFel,w−g−w

ds

=
1

4
E∗√d1s ≈

1

2
(

1 − v2
1

) E1

√

d1s. (11)
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Using Eq. (6) the work of elastic deformation during the
impact can be written as:

Wel =
s

∫

0

Felds =
4

15
E∗

√

R∗s5 =
2

5
Fels. (12)

The law of energy conservation during the elastic impact is
given as:

m∗

2

(

ds

dt

)2

+
4

15
E∗

√

R∗s5 =
m∗

2
ν∗2, (13)

where m∗ is effective mass of both contact partners and v∗ is
their relative impact velocity.

m∗ =
(

1

m1
+

1

m2

)−1

. (14)

The maximum of the force Fel,max and overlap sel,max, which
are reached at zero relative velocity, as well as the time of
impact tel , i.e. duration of contact, can be derived from the
energy balance in Eq. (13) [56]:

sel,max =
(

225

64

m∗2ν∗4

E∗2 R∗

)1/5

, sel,max ∼ V ∗ 4/5, (15)

Fel,max =
(

125m∗3 E∗2 R∗ν∗6

144

)1/5

, Fel,max ∼ V ∗ 6/5,

(16)

tel = 3.78

(

m∗2

ν∗ R∗E∗2

)1/5

, tel ∼ V ∗−1/5. (17)

The Hertzian contact theory of the elastic spheres has cer-
tain restrictions regarding description of a dynamic collision
[33]. The first condition of this theory can be formulated
as follows: the contact pressure must increase slow enough
to consider the quasi-static conditions. Secondly, the impact
time must be longer than the propagation time of released
elastic waves along the whole length of each body impacted,
Eq. (18) [48]. In this case, their effect on the stress state is
negligible.

tel

tw
>> 1. (18)

If expression (18) does not hold, the stress state is a result of
advancing elastic or elastic-plastic waves [1,108]. The prop-
agation time of the elastic wave into a contact partner i along
the normal impact can be given as:

tw =
di

vw

= di

(

ρi

Ei

)1/2

, (19)

where vw is wave propagation velocity.
Substituting the impact time according to Eq. (17) and the

propagation time according to Eq. (19) into Eq. (18) gives
the relative critical impact time:

tel,cri t =
tel

tw
= 3.78

(

m∗2

ν∗ R∗E∗2

)1/5
(

Ei

4R2
i ρi

)1/2

, (20)

where ρi is the density of the contact partner i.

2.2 Description of elastic-plastic contact deformation

Because of the high pressure within the granule contact area
(100–700 MPa, see experiments described below) the yield
limit of the granule can be reached before the breakage. The
plastic deformation starts when the maximum pressure in
the centre of the contact reaches the micro-yield strength
(p = pmax = pF ). Because of a confined stress field the
micro-yield strength pF is higher than the macroscopic yield
stress for tension σF,t (Molerus 1975; Pisarenko 1986). The
value pF was found by Davis [17] as 1.59×σF,t . We assume
for our granules that the pressure pF within the plastic contact
area is a constant and that is deformation rate independent,
i.e. the hardening effect is neglected.

When the granule diameter decreases, the contact pressure
increases (see Eqs. 2 and 3). Thus at constant force the smaller
granules behave softer than larger particles. The force-
displacement curves measured in this work confirm the elas-
tic-plastic behaviour of the granules beyond the yield point.
In this case, neither the elastic nor the plastic contribution to
the total deformation can be neglected.

The schematic representation of the applied mechanical
model and the corresponding force-displacement curve in
Fig. 4 explain the elastic-plastic behaviour. From the begin-
ning of loading up to the yield point (F < FF ) the force-
displacement curve shows a nonlinear elastic deformation
of sphere according to Hertz law. When the yield point
is reached(F ≥ FF ) plastic deformation follows, which
is additionally affected by continuous elastic deformation
(Fel,y in Fig. 4a). The resulting normal contact force during
elastic-plastic deformation is represented as superimposed
spring and slider elements (Fig. 4a):

F = Fel,y + F
pl

= Fel . (21)

The plastic deformation is close to the contact centre of the
circular contact area (rk ≤ rk,pl in Fig. 5) and elastic defor-
mation is generated at the limit of the contact (ring rk > rk,pl)

where the pressure is smaller than the yield point.
Both areas increase with increasing deformation during

the loading. An elastic-plastic contact area coefficient κA

represents the ratio of plastic contact deformation area Apl

to total contact deformation area AK = Ael + Apl , see Tomas
[97]:

κA =
2

3
+

1

3

Apl

Ak

, (22)
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Fig. 4 Schematic of elastic-plastic contact model (a) for point loading
in normal direction and corresponding force-displacement curve b

Fig. 5 Characteristic pressure distribution p(rk) in a wall-granule
contact during elastic-plastic deformation

which after substituting the corresponding contact areas may
be written as:

κA = 1 −
1

3
3

√

sF

s
, (23)

where sF is the contact displacement at yield point. Eq. (23) is
applicable to describe both compression and impact loading
modes.

The ratio Apl/Ak is 0 for perfectly elastic (Apl → 0) and
1 for perfectly plastic deformation (Ael → 0). Thus the area
coefficient κAlies in the range between 2/3 for ideally elastic
behaviour to 1 for ideally plastic contact deformation.

The force-displacement relationship for elastic-plastic
deformation (s ≥ sF ) during the point loading of the gran-
ule can be derived from the model of Tomas [97,103] by
neglecting the adhesion in the contact (κp = 0 in [97]):

Fel−pl = πr2
k pFκA. (24)

Substituting Eqs. (7) and (23) into Eq. (24) we obtained the
following expression:

Fel−pl = π R1 pF

(

1 −
1

3
3

√

sF

s

)

s. (25)

The force-displacement curve at yield point (s = sF ) changes
from the elastic curve to elastic-plastic yield limit. Therefore,
the Eqs. (25) and (6) should give equal values of the force
at the yield point: Fel(sF ) = Fel−pl(sF ). Hence, the micro-
yield strength and the displacement at yield point can be
derived [94,96]:

pF =
E∗

π

√

sF

R1
, (26)

sF =
π2 R1 p2

F

E∗2
. (27)

The force at yield point can be found, substituting Eq. (27)
into Eq. (6):

FF =
2π3 R2

1 p3
F

3E∗2
. (28)

From Eqs. (3) and (28) the contact radius at the beginning of
plastic yielding (s = sF ) may be written as [94]:

rk,F =
π R1 pF

E∗ . (29)

The stiffness during the elastic-plastic displacement is pro-
portional to the radius of the granule and micro-yield
strength:

k∗
n,el−pl =

dFel−pl

ds
= π R1 pF

(

1 −
2

9
3

√

sF

s

)

. (30)

The elastic-plastic stiffness increases with increasing the
displacement s. Due to change in the force-displacement
curve from the elastic to the plastic range the stiffnesses of
elastic and elastic-plastic displacement in the yield point are
not equal. Their ratio at the beginning of yielding may be
obtained from Eqs. (10), (25), (26) and (30), as follows:

k∗
n,el−pl (sF )

k∗
n,el (sF )

=
(

1 − 2
9

)

π R1 pF

E∗ (R1sF )
1
2

=
(

1 − 2
9

)

E∗ (R1sF )
1
2

E∗ (R1sF )
1
2

=
7

9
. (31)

In the case of uniaxial compression, the half of the total
displacement must be considered in Eqs. (25) and (26) to
calculate the micro-yield strength from the measured force-
displacement curve:

Fel−pl,w−g−w = π R1 pF

(

1 −
1

3
3

√

sF

s

)

s

2
. (32)

2.3 Dominantly plastic contact deformation of granules

For dominantly plastic granules, the elastic range is much
smaller in comparison with the plastic displacement. Thus,
it can be assumed that the whole contact area deforms plasti-
cally and no surface deformation outside of the contact zone
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Fig. 6 Contact geometry by perfectly plastic deformation of the spher-
ical granule

occurs. In case of point loading (Fig. 6a), the contact radius
is given by:

r2
k,pl = R2

1 − (R1 − s)2 = 2R1s − s2 ≈ d1s. (33)

Assuming that the plastic displacements at the two contacts
are equal (sK ,1 = sK ,2, s = sK ,1 +sK ,2, and rk,pl,1 = rk,pl,2

in Fig. 6b), the contact radius by compression may be
obtained as:

r2
k,pl,w−g−w = R1s. (34)

To model the plastic behaviour only a slider element is usu-
ally used [113]. The repulsive force against plastic displace-
ment of the compressed granule is calculated as:

Fpl,w−g−w = pF AK = πr2
k,pl pF = π R1 pF s (35)

The contact stiffness is constant for a perfectly plastic yield-
ing material:

k∗
n,pl,w−g−w =

dFpl,w−g−w

ds
= π R1 pF . (36)

2.4 Energy balance of granule loading

Based on the considerations for the deformation behaviour
of a compressed granule given before, the energy balance of
the loading can be written in the general form as:

WL = Wel,el + Wel−pl + Wdiss,add = Wel,el + Wel,el−pl

+Wpl,el−pl + Wdiss,add, (37)

where WL is the full deformation work or energy absorption
during the compression. Wel,el is the elastic strain energy
done up to yield point. Wel,el−pl and Wpl,el−pl are elastic
and plastic strain energy contribution, respectively, occurring
during elastic-plastic deformation. Wdiss,add is the energy
loss due to friction which is mostly converted into heat.

The individual terms of Eq. (37) can be obtained by inte-
grating the corresponding force-displacement relationships
in Eqs. (10) and (32):

Wel,el =
SF
∫

0

Fel,w−g−wds =
1

15
E∗

√

d1s5
F, (38)

Wel−pl =
s

∫

sF

Fel−pl,w−g−wds

=
1

8
πd1pF

[

s2-
3

5

(

1 +
2

3

(

s

sF

) 5
3
)

s2
F

]

, (39)

where sF is the displacement in yield point and s is the current
displacement.

If the yield point is very low (sF → 0) in comparison to
the applied force, it can be assumed that plastic deformation
starts from the beginning of loading and the full deformation
work transforms in plastic deformation (WL = Wpl) irre-
versibly. The dissipative energy is obtained by integrating
Eq. (35):

Wpl =
s

∫

0

Fpl,w−g−wds =
1

2
πR1pFs2 =

1

2
Fpl,Us

=
1

2
kn,pl,w−g−ws2. (40)

For some elastic-perfectly plastic granules the elastic strain
energy is large in comparison with energy of the plastic defor-
mation [78]. In this case, the yield point must be considered in
the expression for the plastic force in Eq. (35) as s := s− sF:

Fpl,w−g−w =
1

2
πd1pF (s − sF) . (41)

The deformation work of elastic-perfectly plastic granule
Wel,pl results from the sum of the elastic strain energy up
to the yield point in Eq. (38) and the energy of the plastic
deformation done by the force in Eq. (41). Insertion of the
yield pressure (Eq. (26)) into Eq. (41), this deformation work
results in:

Wel,pl =
sF

∫

0

Fel,w−g−wds +
s

∫

sF

Fpl,w−g−wds

=
1

5
E∗

√

d1s5
F

[

1 +
15

2

(

s

sF
− 1

)2
]

. (42)

Additionally during granule stressing one has to consider
friction between the primary particles sliding within their
microscopic contacts, see Tomas [98,99]. The frictional
microcontact behaviour contributes remarkably to the energy
absorption of the stressed granule.
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2.5 Description of energy absorption using a restitution
coefficient

2.5.1 Measurement of the restitution coefficient

of a granule

The restitution coefficient is a very important parameter to
describe the particle collisions in rapid particle or particle-
fluid flows [104]. This is an essential parameter which is
needed to describe the energy absorption and damping force
in numerical discrete modelling of particles [50,61,74,86].
The restitution coefficient is used in the field of granular
matter and fluidized grains, more known as “granular gas”
[22,73], to model the inelastic behaviour of grains; see mod-
els of plane flows of circular disks [37], inelastic particles
in a general flow field [62]. Moreover, several hydrody-
namic models for granular gases are based on the hard sphere
approaches, which include the restitution coefficient [9]. The
complex dynamic evolution of granular gases, where the
energy loss takes place due to inelastic deformation and fric-
tion by collisions, can be predicted using the models with
normal and tangential restitution coefficients [114].

Figure 7 shows the contact force versus time and displace-
ment in the impact between a comparatively soft spherical
granule and a fixed stiff wall at different deformation behav-
iour. During the initial period of impact, i.e. compression,
the contact partners are compressed and their kinetic energy
is transformed into internal energy of deformation, friction
and adhesion. The reaction force deforms the particle, which
leads to the contact displacement or overlap. With increas-
ing indentation the contact force increases and the relative
velocity of contact partners decreases. If the deformation is
rate-independent (elastic or plastic behaviour), the maximum
indentation and maximum contact force occur at zero relative
velocity [88].

The elastic contribution of the impact energy absorbed
during the compression is released during the restitution
phase of impact and leads to the elastic force that separates
the contact partners. The absorption of the kinetic energy dur-
ing the impact can be described by a restitution coefficient.
The coefficient of restitution is a ratio of impulse during the
restitution phase of impact (tC ≤ t ≤ tR) to that during the
compression phase (0 ≤ t ≤ tC ), Eq. (43). Moreover, the
impulse ratio in Eq. (43) gives the square root of the ratio of
elastic strain energy Wkin,R released during the restitution to
the impact energy, i.e. initial kinetic energy Wkin .

e =
∫ tR

tc
Fdt

∫ tc
0 Fdt

=

√

Wkin,R

Wkin

=

√

1 −
Wdiss

Wkin

=
v1,R

v1
≈

√

h1,R

h1
. (43)

Both contributions of impact energy can be obtained by
the force-displacement curve, Fig. 7b. Hence, the restitution
coefficient is the square root of the ratio of the area below
the curve during unloading (restitution) to that during loading
(compression).

In case of a fully elastic impact the impact energy adsorbed
during compression is fully restored during the rebound and
so the relative velocity of contact partners before impact
is equal to that after the impact, e = 1 in Eq. (43). In the
case of full absorption of initial kinetic energy due to plas-
tic deformation, adhesion, friction in the contact as well as
propagation of the stress waves, the impact bodies are not
separated after the unloading (restitution), e = 0 in Eq. (43).
The force-displacement curve of perfectly plastic contact
partners does not show elastic restitution as illustrated in
Fig. 7b. For elastic-plastic behaviour during the impact, the
restitution coefficient is in the range of 0 < e < 1, see examples
in [5,15,16,20,23,28,34,55,59,60,71,76,83,85,88,91,92].

Two different types of impact, i.e. normal and oblique, are
described by normal and tangential restitution coefficients:

en = vn,R/vn, (44)

et = vt,R/vt , (45)

where vn and vt are normal and tangential components of the
velocity vector, respectively.

Different types of equipment were developed to measure
the restitution coefficient, which can be divided into free-fall
(a), particle–particle (b) and pendulum tests (c, d) illustrated
in Fig. 8.

The most frequently used method to measure the restitu-
tion coefficient in both normal and tangential direction is the
free-fall test (Fig. 8a), see examples in [23,60,71,76,85,92].
To describe the oblique impact the measurements are carried
out at different impact angles, in the range from 0◦ to 90◦.
The additional information about the impact behaviour can
be obtained from rebound angle and the angular speed of
rotation created during the rebound [46,18].

Neglecting the fluid drag force acting upon particle during
the free fall and rebound, the normal coefficient of restitution
can also be determined as a ratio of heights after and before
impact, h1,R and h1 in Eq. (43). These are measured by a
simple free-fall test.

In the publications [21,23,60] the restitution coefficient
was measured without any initial spin of particles. The using
of a vacuum nozzle prevents the initial rotation of the par-
ticle by releasing. On the other hand, to give a predefined
rotation before collision the particle can be wrapped with a
strip of paper, which will be unwrapped during the falling
under gravity [18]. The angular velocity of the particle can
be varied using strips with different unwrapped length. A
disadvantage of this method is the possible slip of particle
during the unwrapping.
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Fig. 7 Schematic
representation of the contact
force versus time (a) and
displacement (b) at different
deformation behaviour during
the impact

Fig. 8 Different testing
methods for measurements of
the restitution coefficient of
particles

In many cases, the material of the target for experiments
is chosen identical to walls of the apparatus or the tube of
the investigated process. Using particle tracking velocimetry,
Sommerfeld and Huber [85] obtained the influence of wall
roughness and stiffness on the impact behaviour of glass and
quartz particles in a particle-laden horizontal channel flow.
Some authors have performed the impact of particles on the
target with a layer, Fig. 8d. The knowledge of these impact
characteristics is necessary to describe particle collisions in
the presence of solid or liquid layers that occurs in some pro-
cesses such as wet comminution, fluidized bed spray granu-
lation, filtration etc. Kantak and Davis [42] have performed
impact tests of steel and Teflon balls with wet or dry porous
layers placed on a flat target from quartz. In the work of
Huang et al. [32] the effects of milling conditions including
impact velocity, ball size and powder thickness were stud-
ied by fall-tests. During these experiments a steel ball fell
onto steel powder particles located in a shallow recess in the
hardened steel plate.

For the particle–particle impact experiments, in contrast
to the above category of devices, two particles collide with-
out any rigid tool according to (Fig. 8b) [15,20,55,59]. This
type of stressing occurs in fluidized bed granulation and com-
minution. The experimental device consists of two vacuum
tweezers that are placed on top of each other to release the
particles. The top particle is dropped first and reaches in a

definite time the falling height of the bottom particle. Before
the impact the bottom vacuum noise of the second particle is
quickly removed. A high-speed camera records the collision.
To reach the central impact the release mechanisms of these
devices should be accurate centred.

Pendulum-based experiments are also performed to
measure the restitution coefficient in particle-wall [16,34],
particle–particle [86,108] and particle-beam events [83].
Figure 8c schematically shows the pendulum experiments.
Two particles are attached with thin wires to a horizontal
overhead plate at a distance l. During the experiment the
particles are simultaneously released and collide in normal
direction. The relative impact velocity of a particle can be
calculated from the distance between the overhead plane and
impact point. The velocity of particles after the impact can be
measured using high-speed video recording of impact [108]
or some photodiodes [86]. The advantage of the pendulum-
based experiments is the possibility to perform the impact at
small impact velocities (cm/s), which is difficult to obtain in
free-fall experiments because on the small falling height.

2.5.2 Significant factors affecting the restitution coefficient

The coefficient of restitution can depend on many param-
eters, like impact velocity, material behaviour of impacted
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Fig. 9 Coefficient of restitution of spherical indentor made of tung-
sten carbide impacted on a PVC target as a function of the carbide
temperature for four different impact velocities [75]

Fig. 10 The force-displacement curves according to the model of
Walton and Braun

bodies, particle size, shape, roughness, moisture content,
adhesion properties and process conditions, like temperature.

Increasing the material temperature can change the con-
tact behaviour of particles from dominantly elastic to elastic-
plastic or viscoplastic. In this case the restitution coefficient is
decreased. Figure 9 shows the results of impact tests between
carbide and PVC at different temperatures. For a given impact
velocity the decrease of the restitution coefficient with tem-
perature increasing from −20◦C to 70◦C (in the glassy state)
is relatively small while a severe decrease can be observed
at a temperature above ∼70◦C, as PVC begins to behave as
a viscoplastic material [75].

As long as at least one of the contact partners does not start
to yield, the restitution coefficient remains constant and only
depends on material properties. If the contact force exceeds
the yield point, the coefficient of restitution can decrease
with increasing impact velocity, which was shown in many
experimental studies [21,23,46,64,86] and described with
the models [73,94].

This occurs because of increase in the energy absorption
at higher impact velocities due to plastic deformation and
heating of bodies contacted. In the case of constant resti-
tution coefficient the ratio of the energy absorption during
the impact to the kinetic impact energy in Eq. (46) remains

constant for each impact velocity. This behaviour describes
the well-know model of Walton and Braun [106] based on
simple linear force-displacement relationships for loading
(FB = kL × s) and unloading (FE = kU × (s − sE )), Fig. 10.
Thus the ratio of energies from Eq. (43) can be reduced to
the ratio of constant contact stiffness of load kL to contact
stiffness kU of unload:

e =

√

Wkin,R

Wkin

=

√

√

√

√

∫ sU

sE
kU (s − sE )ds
∫ sU

0 kLsds
=

√

kU (sU − sE )2

kLs2
U

=

√

kL

kU

. (46)

The expression of Walton and Braun [106] is only one exam-
ple of an approximation of particle impact behaviour that was
presented here in detail since we used this model in the fol-
lowing description of restitution coefficient of the examined
granules. However, many different models were developed
to describe the restitution coefficient of viscoelastic (Schafer
et al. [79], Stronge [88], Stoianovici and Harmuzlu [87]),
viscoelastic-adhesive (Thornton and Ning), viscoelastic
(Brilliantov [11]), elastic-perfectly plastic (Thornton [93],
Wu et al. [109]), elastic-perfectly plastic adhesive (Thorn-
ton and Ning [94]), elastic-perfectly plastic with harden-
ing (Mangwandi et al. [64]), elastic-plastic (Johnson [38]),
elastic-viscoplastic (Adams et al. [3]), plastic and viscoplas-
tic (Walton and Braun [106]), elastic-adhesive (Thornton and
Ning [94]) contacts. A review of these models is given in
Table 1.

3 Methods and model granules

3.1 Examined granules

Four different industrial spherical granules—γ-Al2O3, syn-
thetic zeolite 13X, synthetic zeolite 4A and sodium benzoate
(C6H5CO2Na) were used as test materials (Fig. 11).

Previously we have tested many other granules to find
some model materials and selected these four granules
for varying the deformation behaviour from elastic-plastic
(γ-Al2O3, zeolites) to plastic (sodium benzoate). An advan-
tage of these particles is their comparable sizes. Because of a
nearly ideally spherical shape (sphericity in the range of 0.91-
0.95) it is possible to apply the contact theory of spheres for
description of deformation and breakage behaviour of these
granules.

A summary of the material properties of these granules is
given in Table 2. The methods used to measure the properties
were described in a previous publication [6]. We used two
fractions of sodium benzoate in order to determine the influ-
ence of the particle size on the stiffness and restitution coef-
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Fig. 11 Digital images of examined granules

Table 2 Characteristics of the examined granules

Characteristics γ-Al2O3 Zeolite 4A Zeolite 13X Sodium benzoate

Chemical composition in % 97.9% γ-Al2O3 85% Synthetic
zeolite 4A
binder: clay

85% Synthetic
zeolite 13X
binder: clay

C6H5CO2Na

Granule size in mm 1.6–1.9 2.1–2.5 1.2–1.7 0.86–0.96, 1.24–1.60

Sphericity 0.95 0.91 0.94 0.92

Granule density in kg/m3 1040 1140 1150 1440

Solid density in kg/m3 3230 3640 2100 1500

Specific surface area in m2/g 145 159 415 7.6

Pore volume in % 68 69 45 4

Water content in kg water/kg solid 0.023 0.002 0.006 0.007

Application Drying processes Adsorbent (molecular sieve) for drying
processes and cleaning of gas

Food and beverage preservative

Manufacturer Sasol, Hamburg CWK Chemiewerk Bad Köstritz, Bad
Köstritz

DSM, Geleen

ficient. The compression and free-fall tests were performed
at ambient temperature of 25◦C and atmospheric pressure.

3.2 Compression tests

A compression test of a single particle up to primary break-
age is used to determine the minimum energy requirement
for breakage, as shown first by Carey and Bosanquet [14].
The absorption of stressing energy in particle bed crushing is
much higher than in compression of a single particle because
of friction between the particle contacts. In a compression test
the secondary breakages (after the primary breakage) can be
separately observed, due to the comparatively low deforma-
tion velocity (from mm/ min to cm/ min).

In the pioneering works of Rumpf [77] and Schönert [80],
the deformation and breakage behaviour of solid particles
was described by force-displacement curves measured by
compression tests. Recently, the granules have been inves-
tigated using compression test: Al2O3 produced by fluid-
ized bed-spray granulation [4], detergents [78], enzyme [10],
polymer bound Al2O3 granules [84] and calcium carbonate
[64].

Fig. 12 Principle of single particle compression test

Figure 12 shows the principle of a granulate compression
test. During the movement of the punch towards the upper
fixed plate, a contact between the particle and the fixed plate is
created. During the stressing period, displacement and force
values are measured. Compression tests are carried out either
with strain control (constant stressing velocities) or stress
control (fixed stress or load rate).
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Because of fatigue of solids during the cyclic loading
their breakage can occur at stresses that are substantially
lower than the failure stress during static loading. The reduc-
tion of fracture strength occurs because of formation and
propagation of shear zones and microcracks during each
cycle. The number of cycles up to fracture decreases with
increasing stress amplitude, which was already described
for metallic and ceramic materials with the Wöhler curve
[76]. The investigations of solid particles and agglomerates
demonstrate the considerable effect of repeated loading on
the mechanical behaviour and breakage point. Tavares and
King [92] explained a decrease of the elastic-plastic stiff-
ness of particles during repeated impacts as well as their
breakage because of the formation and propagation of dam-
ages. In opposition to this, the stiffness of spherical granules
increased with increasing number of loading/unloading com-
pression cycles up to the point that saturation of the plastic
deformation is reached [5]. The intensity and the frequency of
stressing, the particle size and the microstructure influence
material resistance against cyclic loading. Beekman et al.
[10] and Pitchumani et al. [71] have also confirmed these
effects for different granules.

During a repeated compression test, the punch moves
towards the upper plate and presses the granule up to a defined
force. Subsequently, the punch moves downwards, thus the
unloading of the granule takes place.

The compression tests of the model granules performed in
this work were repeated 100 times for each sample at a con-
stant stressing velocity of 0.02 mm/s to increase the statistical
significance of results.

3.3 Apparatus and methods for free-fall experiments

Figure 13 shows the experimental setup for the free-fall
experiments. Before it is dropped, a granule is held at a height
h1 above the target (flat plane) with the aid of vacuum twee-
zers. The granule falls freely onto a target and reaches a
rebound height h1,R after the impact. The movement of the
granule near the contact point before and after the impact
is recorded by a high-speed video camera with a frequency
of 4.000 frames per second and a resolution of 512 × 256
pixels.

From the ratio of energies in Eq. (43), it follows that the
coefficient of restitution is a ratio of relative rebound velocity
v1,R to that before impact v1. These velocities were deter-
mined from captured impacts in free-fall experiments with
help of self programmed software on the basis of Matlab.

In order to examine the influence of the impact velocity
on the restitution coefficient of granules, the drop height was
varied from 12 mm to 1.5 m, i.e. the impact velocity was
in the range of about 0.5–4.5 m/s. This range was selected
according to two criteria. The upper limit had to be below
the critical impact velocity that leads to the breakage of gran-

ules. In previous work [6] a critical velocity of 6.1 m/s for
zeolite 13X was found through impact tests. The performed
measurements showed that the standard deviations of the
impact and rebound velocities increase with increasing in the
fall height. On the other hand, at heights below 12 mm the
error of measurement greatly increases. Therefore the lower
limit of the used impact velocities corresponds to the rebound
velocitywhich can still be measured accurately.

During the free-fall tests, the angle of incidence � was var-
ied from 0◦ to 80◦. To describe the oblique impact the angle
�R and angular velocity ω1,R of granules after rebound from
the wall have been measured. To detect the relatively small
granules, a black background was installed.

For accurate measurement of the normal restitution coeffi-
cient normal impact and rebound should be ensured. During
our experiments some granules without initial spin falling
at normal impact rebounded of the horizontal plate under
an angle (0◦–10◦). This can be explained by the non-ideal
spherical shape of the granules. Furthermore, the rebound
behaviour of granules can be affected by defects of particle
surface [6] when they occur in the contact range. However,
during data processing no influence on the mean restitution
coefficient was observed for rebound angles below 8◦. There-
fore, we determined the coefficient of restitution using free-
fall tests, in which the rebound took place in this small angle
range. The free-fall test was repeated for each model material
until 50 nearly vertically rebounds (angle below 8◦) were cap-
tured. The number of valid measurements was about 80% for
γ-Al2O3, 30% for zeolites 13X and 4A and 20% for sodium
benzoate.

Neglecting the air resistance acting on the granule the
restitution coefficient can be calculated as the ratio of drop
and rebound heights in Eq. (43). However, provided that the
height is large and the granule has a small density, the air
resistance decreases the velocity of the particle greatly, which
leads to a significant error in the restitution coefficient cal-
culated through the heights.

The real velocity v1 of a free falling granule can be calcu-
lated depending on granule and air properties from the fol-
lowing force balance or equation of motion (also see Fig. 13):

m1
dv1

dt
= n

(

Fg − FB

)

− FD, n =
{

1 f all

−1 rebound
, (47)

where m1 is the mass of granule, Fg is the gravity force, FB

is buoyancy force and FD is drag force.
For an ideally spherical granule with diameter d1, and

density ρ1 Eq. (47) becomes:

m1
dv1

dt
= n

πd3
1

6
g (ρ1 − ρf) − cD

πd2
1

4

ρf v2
1

2
, (48)

where cD is the drag coefficient and ρ f is air density.
The drag coefficient can be calculated according to Kaskas

[43], which is applicable over the entire range of Reynolds
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Fig. 13 The schematic
representation of free-fall device

numbers (0 < Re < 2-4 ×105) [81]:

cD =
24

Re
+

4
√

Re
+ 0.4, (49)

where the particle Reynolds-number Re is given by:

Re =
v1d1ρf

ηf
, (50)

where η f is dynamic viscosity of air.
The impact and rebound velocities of the examined gran-

ules were obtained by numerical solution of Eq. (48) using the
drag coefficient from Eq. (49) (at η f = 1.8×10−5kg/ms and
ρ f = 1.19kg/m3) and the material properties from Table 2.
An example of the results is shown in Fig. 14 for γ-Al2O3

granules. A noticeable difference between the velocities cal-
culated with and without air resistance and buoyancy forces
can be observed at the heights above 0.2 m. Hence, the large
particle deceleration during fall and rebound due to mainly air
resistance (the buoyancy force can be neglected with respect
to the gravity, ρ f << ρ1) confirmed that the drag cannot be
neglected in this case. In our free-fall experiments mentioned
below, the real velocities of the granules were observed by
high-video recording of the impacts. The measured results
(included in Fig. 14 for γ-Al2O3) confirmed the calculation
for all examined granules.

Another point that must be considered to accurately mea-
sure the restitution coefficient is the energy absorption due to
stress waves. Elastic stress waves arisen in the contact area
can have significant effects on the restitution coefficient [48].
At the beginning of contact deformation, the spherical elastic
wave expands away from the contact region into the target.
After the reflection from target borders, the wave comes back

Fig. 14 Comparison between measurement and calculation of impact
and rebound velocities at different drop heights for γ-Al2O3 granules
(d1 = 1.8 mm in calculation and d1 = 1.6 − 1.9 mm in experiments)

towards the contact area. If the contact time is longer than the
period of wave propagation through the plate from contact
point to the bottom wall of plate and return to the contact
point then the waves will reach the contact partners and lead
to loss of kinetic energy which was first calculated by Hunter
[33]. Because of reflected waves the granule looses additional
energy which leads to a decrease of the restitution coefficient.
Koller [48] estimated this energy loss to about 3.6% for a steel
ball impacted on a glass plate with the thickness of 19 mm.

Thus, the thickness δ, width B and length L of the used
target must be sufficiently large to exclude the energy absorp-
tion due the reflected elastic waves:

δ >
vl × tR

2
, B, L ≥

vt × tel

2
. (51)
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The propagation speed of longitudinal (vl) and transversal
(vt ) waves through the target can be calculated from modu-
lus of elasticity E2, Poisson’s ratio ν2 und density ρ2 of the
target [56]:

vl =
[

E2 (1 − v2)

ρ2 (1 + v2) (1 − 2v2)

]1/2

, vt =
[

E2

2ρ2 (1 + v2)

]1/2

=
[

G2

ρ2

]1/2

. (52)

As target during the free-fall experiments a hardened steel
plate (E2 = 2.1×105N/mm2, ν2 = 0.25, ρ2 = 7, 850 kg/m3)

with a smooth surface was used. In this material the longitu-
dinal waves propagate at a velocity of vl = 5, 367 m/s and
a transversal wave velocity of vl = 3, 626 m/s. The time of
impact tR in Eq. (51) can be estimated using Eq. (17) taking
into account the properties of the granules mentioned below
(see Tables 2 and 3). Finally, the minimal thickness of the
target was found to be 21 mm. Since the behaviour of gran-
ules is not ideally elastic, the time of contact is higher than
calculated using Hertz theory. Therefore, for the experiments
a target thickness of 30 mm was employed. The width and
length of the plate (210 mm) are less important, since the
transversal wave with vt < 0.64 × vl is relatively slow.

4 Experimental results

4.1 Material parameters

The typical force-displacement curve for γ-Al2O3 granules
is shown in Fig. 15. At the beginning of the punch-parti-
cle contact the elastic contact deformation of the granule
takes place. The elastic force was described by Hertz theory,
Eq. (10). The modulus of elasticity and stiffness of the gran-
ule during elastic deformation were calculated from Eqs. (4)
and (11), respectively. The average values of the mechani-
cal properties of the examined granules are summarised in
Table 3.

Due to the initial parabolic curvature of F(s), the contact
stiffness increases with increasing displacement and reaches
the maximum value in the yield point F in Fig. 15. In this
point the plastic deformation begins. This is confirmed by
the increasing deviation of the experimental curve F-B from
the theoretical Hertz curve (Fig. 15 right).

The slope of the curve F-B is a measure of the elastic-
plastic stiffness, which is proportional to the granule radius
and the yield strength, according to Eq. (30). A small slope
of the curve implies more plastic behaviour, whereas a large
slope indicates “stiff” material behaviour. In Eq. (26), the
yield strength pF can be characterized as the beginning of the
plastic displacement sF at contact force FF . These param-
eters were determined from the force-displacement curves T
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Fig. 15 Typical
force-displacement curve of
γ Al2O3 granules
(d1 = 1.62 − 1.76 mm) during
compression (vB = 0.02 mm/s)

Fig. 16 Comparison of calculated and measured contact stiffness ver-
sus displacement of a typical zeolite 13X granule (d1 = 1.4 mm) at
compressive stress (vB = 0.02 mm/s)

(Table 3) and thereby the force in elastic-plastic deformation
range was approximated. The small deviation of the theoreti-
cal curve from experimental data is explained by the fact that
the contact area of the granule under compression was not
perfectly circular and had visible roughness (Fig. 18) [5].

The contact stiffness of a granule during elastic-plas-
tic deformation (listed in Table 3) was calculated using
Eq. (30) taking into consideration that kn,el−pl,g = 2 ×
kn,el−pl,w−g−w. The force-displacement curve changes in the

yield point from the elastic to the elastic-plastic range. There-
fore, the contact stiffness drops at this point. Fig. 16 shows
the development of the stiffness during the full deformation
range of a zeolite 13X granule. After a severe decrease in
yield point the stiffness gradually decreases during the elas-
tic-plastic deformation up to the breakage point where the
stiffness suddenly drops. It is noted here that the elastic-
plastic stiffness of γ Al2O3 and both zeolite granules exceeds
their peak values at the yield point.

Fig. 17 Typical force-displacement curves of sodium benzoate gran-
ules during compression (vB = 0.02 mm/s)

Using the elastic-plastic contact area coefficient κA in
Table 3 the amount of plastic deformed contact area Apl in
comparison to the total contact area can be observed. Close to
the breakage point the coefficient κA of γ-Al2O3 and zeolite
13X reaches the value of ∼4/5. According to Eq. (22) this
result corresponds to a contact area ratio of Apl/AK = 2/5.

The breakage of the γ-Al2O3granule follows at a force
(point B in Fig. 15), which is approximately three times
higher than the yield force (point F). Compared to this,
the zeolite 13X granule shows a small elastic deformation
(Fig. 16), but considerable elastic-plastic deformation before
primary breakage.

The force-displacement curve of sodium benzoate is a
straight line along the whole deformation region up to the
breakage (Fig. 17). According to Eq. (35), that means that
perfectly plastic deformation occurs when Ael = 0 and
AK = Apl . Figure 17 shows the effect of the granule size on
the force-displacement behaviour. In the case of bigger plas-
tic granules, both the breakage force and the contact stiffness
increase. The stiffness of zeolite granules in elastic and elas-
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Table 4 The contact radius and yield pressure of sodium benzoate granules by compression

Granule diameter d1,50in µm sB in µm dk,pl (at spl = 40µm) in µm rk,pl at sB in µm pF in MPa σmaxin MPa

Eq. (34) Experiment

870 ± 61 43 ± 6 264 245 ± 14 136 ± 14 114 ± 20 10.5 ± 1.8

1390 ± 90 66 ± 8 333 308 ± 18 215 ± 20 112 ± 21 10.7 ± 1.7

Fig. 18 SEM of flattened surface of a sodium benzoate granule after
the compression test: 1 the entire approximated circular contact area, 2

the real contact area, 3 less deformed part of a contact surface (rough-
ness depressions)

tic-plastic ranges increases with increasing granule diameter
and therefore the material becomes stiffer, see Eqs. (11) and
(30). The increase in the breakage force does not influence
the material strength of plastic granules, σmax = FB/

(

π R2
1

)

.
As an example—for different size fractions of sodium ben-
zoate (see Table 4) the average compressive strength is about
10.6 MPa. Eqs. (34) and (35) can be used to develop the
equation for the strength of dominantly plastic granules:

σmax =
sB

R1
pF ≈ 0.1pF , (53)

where sB is the displacement up to the primary breakage
point. The constant ratio sB/R1 was experimentally found to
be about 0.1.

At the same deformation value, the formed contact area
increases with increasing particle size. Figure 18 shows Scan-
ning Electron Microscope (SEM) images of a sodium ben-
zoate granule after the compression. The flattened contact
surface (1) is not perfectly circular, since the granules sur-
face is not evenly curved and contains roughness. Load and
contact plastic deformation occur only at the asperities (2) of
the contact. Therefore a small part of the area is not deformed
(3).

The diameter of the contact dk,pl in Table 4 is calculated
by Eq. (34) at a deformation value of 40µm. This value is in
good agreement with the equivalent contact area measured
using a microscope. Each average value here corresponds
to 10 SEM measurements. We have observed that the yield
pressure pF is independent of the particle size.

4.2 Loading-unloading behaviour of granules

Typical loading-unloading curves of model granules are
shown in Fig. 19. Loading and unloading were performed
at a constant stressing velocity of 0.02 mm/s. To examine the
effect of the stress intensity on the energy absorption, the
maximum loading force was varied. After the first loading-
unloading cycle (up to force in point U1 in Fig. 19) the gran-
ule was carefully rotated on the punch, to load another range
on the granule surface during the second loading-unloading
cycle (up to a force in point U2). The magnitude of the sec-
ond maximum force was chose to be in the range of 90–95%
of the average breakage force of corresponding granules.

After the complete unloading (points Ei ) all granules
showed a permanent deformation. Furthermore, during the
time of 10 seconds a contribution of this deformation about
5% disappeared due to creeping

(

Ei → E ′
i

)

. Note that the
unloading curve of elastic-plastic zeolite and γ Al2O3 gran-
ules differs from the loading in the elastic range (Hertz curve)
because of softening during the unloading. Therefore, the
slope of the unloading curve, or in other words, the stiffness
during unloading is evidently larger then that during the elas-
tic loading. The nearly vertical unloading curves of sodium
benzoate without elastic deformation prove the dominantly
plastic behaviour of these granules during the compression.

The work done during the compression of the examined
granules was calculated according to the above derived rela-
tions (38–40). The energy absorption due to viscoelastic and
viscoplastic deformations is neglected in this calculation. The
good agreement of the predicted values with experimental
data can be obtained from Fig. 19 and Table 5.

4.3 Effect of cycle number on the dissipative behaviour
at a constant load amplitude

Zeolite 13X and sodium benzoate granules were investigated
by one-way cyclic compression tests. During the measure-
ment, a granule was repeatedly loaded and unloaded with
a constant velocity of 0.02 mm/s up to constant maximum
force, which is called the load amplitude. This force was set
near the average breakage point of the respective granule.

Figure 20 shows the force-time curves for the first four
cycles. The load amplitude (Fcyc = Fmax), the mean force
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Fig. 19 Typical loading-unloading curves at different maximum compressive forces. a γ Al2O3,d1 = 1.67 mm; b zeolite 4A, d1 = 2.10 mm; c

zeolite 13X, d1 = 1.56 mm and d sodium benzoate, d1 = 1.60 mm

Table 5 Energy characteristics of granule compression

Energy in µJ γ-Al2O3at FU = 20N Zeolite 4A at FU =20 N Zeolite 13X at FU = 7.3N Sodium benzoate
at FU =11.5 N

Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor.

Wel,el 44 48 329 345.2 5.2 4.8 – –

Wel−pl 311 310 162 172.9 111.9 112.7 – –

Wpl – – – – – – 203 200

WL 355 358 491 518.1 117.1 117.5 203 200

(Fm) and the period (T) characterize the cyclic stressing pro-
cess. As the number of cycles increases, the maximum force
Fcyc is reached faster. Thus, the cycle time decreases. After
each unloading the testing device needed a time of 10 s for the
reverse (pause tu in Fig. 20). The soft reversal of the equip-
ment for the unloading leads to creep which can be seen after
each peak in Fig. 20.

Figure 21 shows the results of a measurement by 20 cycles
for a zeolite 13X granule. For clarity cycles from 3 to 18
were not included in this diagram. At the beginning of each
cycle the granule behaves elastic only until the yield point F.
If the loading curve of the second cycle (E1U2) is moved to
the approximated Hertz curve of the first cycle (E1 → E ′

1in
Fig. 21), it becomes clear that the second loading can be

123



Energy absorption during compression and impact of dry elastic-plastic spherical granules 35

Fig. 20 Force-time curves during one-way cyclic loading in compres-
sion of a zeolite 13X granule (d1 = 1.54 mm, Fcyc = 7N, vB =
0.02 mm/s)

described by the Hertz equation of the first compression.
Therefore, during each following loading the force-displace-
ment response in elastic range depends on the modulus of
the elasticity and on the amount of total plastic deforma-
tion accumulated in the previous cycles. The modulus of the
elasticity remains nearly constant during the cyclic loading.
Therefore it can already be determined during the first cycle.
Considering these measurement results, the elastic force in
cycle z can be described with the force of the previous cycle

(z-1):

Fel,z = Fel,z

(

sel,z + spl,z−1
)

− Fel,z−1
(

spl,z−1
)

=
1

6
E∗√d1

(
√

(

sel,z + spl,z−1
)3 −

√

s3
pl,z−1

)

.

(54)

The first derivative of the force-displacement function gives
the stiffness of elastic deformation in cycle z:

k∗
n,el,w−g−w,z =

dFel,z

ds
=

1

4
E∗

√

d1
(

sel,z + spl,z−1
)

. (55)

The loading curves obtained from Fig. 21 are shown in Fig. 22
in transformed coordinates according to Hertz equation (10),
where sz is the displacement during a cycle z. The con-
tact stiffness in the elastic and elastic-plastic deformation
ranges increases with increasing number of cycles. The larg-
est increase in the loading stiffness occurs by change from
the first to the second cycle. A further increase of the curve
slope can only be observed during the first 15 cycles. There-
fore, all loading curves for z > 15 are located on the same
curve O − Uz , which approaches the corresponding Hertz
curve practically up to the maximum force (point Uz). The
hysteresis loops detected between unloading and reloading
curves are gradually decreased with the progress of load-
ing cycles. After some cycles no plastic deformation arises
and the unloading curves return to the loading origin, i.e.
a saturation state is reached. However, small viscoelastic
deformations occur during the cyclic loading in the satura-
tion state. As a result, the area of the hysteresis loop does not

Fig. 21 Typical
loading-unloading curves during
one-way cyclic loading in
compression of zeolite 13X
granule (d1 = 1.68 mm,

Fcyc = 7N, vB = 0.02mm/s)
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Fig. 22 Effect of number of
loading-unloading cycles on
contact stiffness of zeolite 13X
granule (d1 = 1.68 mm, Fcyc =
7N, vB = 0.02 mm/s)

fully disappear; see the loop between the loading-reloading
curves of the 19th and 20th cycles in Fig. 21.

From the curves F(sz) in Fig. 23 it can be observed that
after 25 cycles the sodium benzoate granule deforms only
viscoelastic without permanent deformation and so it exhib-
its the same loading-unloading response in all further cycles.
Thus, the behaviour of both examined granules during cyclic
loading changes from respectively elastic-plastic (by zeolite
13X) and dominantly plastic (by sodium benzoate) to visco-
elastic.

Figure 24 illustrates the development of elastic and plastic
strains during the cyclic loading-unloading for the two exam-
ined granules. The increase of cycle number results in gradual
decreasing theplastic strain toazerovalue,whichclearly indi-
cates a cyclic hardening of granules and reaching a saturation
state, at which the elastic behaviour becomes dominant. The
maximum elastic strain remains constant at each cycle.

The cyclic hardening can be explained on the basis of
microstructure change within the contact of the granule,
since the highest compressive stresses are generated there.
During the plastic deformation of the granule the structure
is greatly deformed within the contact area (see Fig. 25).
The largest changes occur at the first cycle, which is also
shown in increasing slope of the loading curve from the
first to the second cycle in Fig. 22 and 23. This micro-
structure change takes place locally close to contact zone,
which was confirmed with the following experiment. After
the first loading cycle we turned over (90◦) the granule
to stress two other contacts on the granule surface in the
next cycle. The force-displacement curve measured in the
second cycle exhibits the same slope as in the first cycle
(Fig. 19).

The radius of plastic deformed contact area after unload-
ing is the initial contact radius for the reloading. The total
displacement and the contact radius in the cycle z can be
calculated according to:

sz = spl,z−1 + sel,z + spl,z, rk,z = rk,pl,z−1 + rk,el,z

(

sel,z

)

+rk,pl,z

(

spl,z

)

, (56)

where sel,z is the elastic displacement at cycle z(sel,z lies in a
range from 0 to the yield point sF ).spl,z is the plastic displace-
ment in cycle z.spl,z−1 is the total plastic contact displace-
ment in previous cycles (1 . . . z − 1) , spl,z−1 =

∑z−1
i=1 spl,i ,.

Thereby, spl,z−1 characterises the history of the contact dis-
placement.

The plastic displacement in cycle z can be described for
a cyclically hardening material with the following relation-
ship:

spl,z = spl,1/zα, (57)

where spl,1 is the plastic displacement in the first cycle. The
exponent α represents a saturation parameter, which depends
on the material properties and the cyclic force amplitude.
Higher values of α correspond to the smaller number of
cycles that are needed to approach the saturation state. The
total plastic displacement in both contacts of compressed
granule during z cycles accumulates from the plastic dis-
placements of individual cycles:

spl,tot,z =
z

∑

i=1

spl,i . (58)

From the approximation according to Eq. (57) (Fig. 26) the
following values of the saturation parameter were obtained:
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Fig. 23 Typical
loading-unloading curves during
one-way cyclic loading in
compression of sodium benzoate
granule (d1 = 1.76 mm, Fcyc =
16N, vB = 0.02mm/s)

Fig. 24 The elastic and plastic
compressive strains versus the
number of cycles: a zeolite 13X,
d1 = 1.68 mm, Fcyc = 7N,
b sodium benzoate,
d1 = 1.76 mm, Fcyc = 16N

Fig. 25 SEM of surface
microstructure of a sodium
benzoate granule before (a) and
after (b) compression (contact

area). One can see locally
deformed primary particles,
shear and frictional sliding
between the contacts of the
primary particles and formation
of shear bands (1). This leads to
energy absorption by friction

α = 2.0 for zeolite granules and α = 1.66 for sodium benzo-
ate granules. In addition to Fig. 24 the curves in Fig. 26 show
the difference in the plastic displacement of both granules.

Combining Eqs. (56) and (57), the total displacement of
the granule in a cycle z can be written:

sz = sel,z +
z

∑

i=1

spl,1

iα
. (59)

Substituting Eq. (59) into Eq. (11), we obtained the stiffness
during the elastic displacement sel,z at each cycle for more
than two cycles:

kn,el,w−g−w,z =
1

4
E∗

√

√

√

√d1

(

sel,z +
z

∑

i=2

(

spl,1

(i − 1)α

)

)

,

by z ≥ 2,i ∈ [2, z] . (60)
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Fig. 26 The total plastic displacement of granules versus the number
of one-way loading-unloading cycles (sodium benzoate: d1 = 1.76 mm
at Fcyc = 16N, vB = 0.02mm/s and zeolite 13X: d1 = 1.68 mm at
Fcyc = 7N; vB = 0.02 mm/s)

Two parameters (the plastic displacement in the first cycle
spl,1 and saturation parameter α) are needed to calculate
the elastic stiffness in each cycle. The development of the
contact stiffness during loading, unloading and reloading for
a zeolite granule is plotted in Fig. 27. Due to increase of
contact area the contact stiffness increases, see Eq. (8). The
increase of the stiffness from the beginning of the first cycle
to the yield point (O1 − F1) was calculated using Eq. (11)
for elastic stiffness. In the same way, the above developed
elastic-plastic model in Eq. (30) was used to approximate
the stiffness after the beginning of the plastic deformation
up to the point in which unloading starts (F ′

1 − U1). At
the beginning of unloading (U ′

1) the stiffness is well higher
than during loading. The stiffness decreases quickly to zero
at the end of unloading. However, the development of the
stiffness from the beginning of reloading to the yield point
(O2 − F2) corresponds to the elastic deformation and it can
be described with the model in Eq. (60) using the above
obtained parameters: α = 2.0, spl,1 = 22µm. Due to hard-
ening of the granules the slope of the curve at the second
cycle beyond the yield point (F2 − U2) is higher than at the
first cycle.

The energy absorption during the static cyclic loading can
be quantitatively expressed by an equivalent restitution coef-
ficient. By analogy with impact stressing, it is the square
root of the ratio of elastic strain energy Wel released during
the unloading to the total deformation energy WL , i.e. the
work done by contact force during the compression of the
granule:

eeq =
√

Wel/WL (61)

Figure 28 shows the equivalent restitution coefficient of the
granules as a function of the number of cycles obtained
from the force-displacement curves of the above described

Fig. 27 Development of contact stiffness during the loading (◦),
unloading (x) and reloading (△) of a zeolite 13X granule according to
the experiment in Fig. 21 (d1 = 1.68 mm, Fcyc = 7N, vB = 0.02mm/s)

Fig. 28 Effect of repeated one-way cyclic loading on the equivalent
restitution coefficient of the granules

cyclic tests. Due to the decrease of the deformation energy
and energy absorption with increasing number of cycles, the
equivalent restitution coefficient increases until a saturation
state in the plastic deformation. It is evident that the increase
of the restitution coefficient can also be shown during the
repeated impact stressing of these granules on the same con-
tact point. An example of this behaviour for brass spheres
was presented by Weir and Tallon [108]. However, the resti-
tution coefficient of some materials decreases with increas-
ing impact number due to the softening, microcracking and
breakage (see [92]).
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Fig. 29 The
force-displacement curves
during the cyclic loading of a
zeolite 13X granule (d1 =
1.62 mm, vB = 0.02 mm/s). At
each maximum compressive
force FU five cycles were
performed. For clarity, only the
first cycle of each series is
shown

4.4 Dissipative behaviour during cyclic loading
with increasing stressing intensity

In the previous section we discussed the behaviour of gran-
ules at cyclic loading up to a maximum force, which was kept
constant in the test. In practice, the magnitude of the contact
force acting on a granule in a bed, e.g. during fluidisation,
pneumatic transportation, mixing, shows a distribution that
depends on the process parameters. An estimation of the evo-
lution of the average interparticle force during bed settling
under gravity after fluidisation was performed using DEM in
the publication of Moreno-Atanasio et al. [66].

In this section we describe how the behaviour of the gran-
ules changes with increasing the maximum cyclic force. A
granule of zeolite 13X was first five times repeatedly com-
pressed by a constant load amplitude of 2.2 N. The next five
cycles were performed at higher load amplitude of 5.2 N. In
the same way, the next cycles were carried out at a force of
8.2 N and subsequently at a force of 11.2 N.

Figure 29 shows the force-displacement curves of the first
cycles at the applied load amplitudes. With increasing num-
ber of cycles the slope of the loading curve increases (point
U1 → U ′

1 in Fig. 29) and the amount of plastic deformation
decreases.

In the fifth cycle still a small plastic deformation occurs,
since the zeolite 13X granules approach the saturation state
after ∼15 cycles. When we increased the force above 2.2 N
in the sixth cycle the plastic deformation starts again which
was detected after unloading by a significant increase in
the irreversible deformation in comparison to the previous
cycle. The inflection point at the maximum force of previ-

Fig. 30 Effect of number of cycles on the equivalent restitution coef-
ficient of zeolite 13X granules by increasing load amplitude

ous cycle (U ′
1 in Fig. 29) indicates clearly the transition to

the plastic flow. During next cycles the slope of the loading
curve changes only above this point.

It is noted here, that the loading curves of corresponding
cycles at different load amplitudes are approximately paral-
lel to each other in the plastic range, although four cycles
between these loadings were performed. Thus the contact
stiffness of the plastic deformation is independent of the max-
imum compressive force.

Furthermore, the curves showed that the previous cyclic
loading at the lower force has no influence on the plastic
deformation and saturation state in following cycles at a
higher force. This assertion is confirmed by the equivalent
coefficient of restitution in Fig. 30(A, B) obtained from force-
displacement curves (also see Table 6 for the first cycles).
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Table 6 Energy balance of first
loading-unloading cycle at
different maximum forces

FU in N WLin µJ WL/m1 in J/kg Wel in µJ eeq

2.2 14.7 5.7 4.8 0.57

5.2 49.5 19.3 17.5 0.60

8.2 80.7 31.5 29.0 0.60

11.2 123.7 48.3 46.2 0.61

4.5 Free-fall tests

4.5.1 The coefficient of normal restitution

The coefficients of normal restitution of the granules were
obtained from the free-fall tests at different impact veloc-
ities using above described device (Fig. 13). All granules
show the elastic-plastic impact behaviour in the examined
velocity range, Fig. 31. Furthermore, the following sequence
from elastic-plastic to dominantly plastic behaviour (based
on the average coefficient of restitution) can be observed:
γ-Al2O3 (en = 0.735), zeolite 4A (en = 0.653), zeolite
13X (en = 0.644) and sodium benzoate (en = 0.532). The
same sequence of behaviour from elastic to plastic range was
also shown by these granules during compression tests.

The standard deviations of the restitution coefficients mea-
sured by 50 repeated tests are relatively large. That was
expected because of inhomogeneity of granules. For a given
particle size, the contact stiffness and the position of the
yield point are not constant, since the mechanical charac-
teristics of the primary particles and the bonding agents are
randomly distributed within a fraction of granules. The indi-
vidual granules differ in surface roughness and distribution of
sizes of pores. The standard deviation of the restitution coef-
ficient corresponds to the standard deviation of contact stiff-
ness obtained by compression tests of corresponding gran-
ules (Table 3).

For all four examined granules the increasing impact
velocity in the examined range does not change the mean
normal coefficient of restitution. In other words, the gran-
ules exhibit elastic-plastic behaviour without a viscous effect
during the impact in this velocity range. As revealed previ-
ously by loading-unloading tests of these granules the mag-
nitude of maximum load does not affect the ratio of energy
absorption to the elastic strain energy. Under the assumption
that the force-displacement behaviour during slow loading
is approximately the same as during dynamic stressing, this
can give a rational explanation for constant restitution coef-
ficient.

The measured restitution coefficient was fitted with the
model of Walton and Braun in Eq. (46), shown in Fig. 31
as horizontal lines. Using the measured values of contact
stiffness during loading (kL = kn,el,g for γ −Al2O3, zeolites
and kL = kn,pl,g for bigger fraction of sodium benzoate in

Fig. 31 Normal coefficient of restitution of examined granules versus
impact velocity

Table 3), the stiffness during the unloading was determined
as: kU = 3,368 N/mm for γ −Al2O3, kU = 2,094 N/mm
for zeolite 4A, kU = 636N/mm for zeolite 13X and kU =
1,736 N/mm for sodium benzoate.

4.5.2 Maximum impact force of the elastic, elastic-plastic

and plastic granules

From the free-fall experiments, we should estimate the max-
imum impact forces that act on the granule by impact and
compare those with the yield point. Based on this information
the conditions of the validity of Hertz theory to the performed
impacts can be examined.

In the case of the impact of an elastic granule on a rigid
wall the Eq. (20) can be simplified as:

tel,cri t =
tel

tw
= 1.43

[

m2
1 E

1/2
1

(

1 − v2
1

)2

v1 R6
1ρ

5/2
1

]1/5

. (62)

The dependence of the critical impact time tel,cri t on the
impact velocity v1 (Fig. 32) was calculated for three gran-
ules using the material properties from Table 3. As has been
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Fig. 32 Effect of the impact velocity v1 of the granules on the critical
impact time tel,cri t

Fig. 33 Maximum displacement smax, maximum force Fel,max and
duration tel of the impact versus impact velocity v1 during the elas-
tic impact of γ-Al2O3granule on the steel wall

mentioned previously the elastic stress waves can show a
visible influence only at high impact velocities (limv1→∞ tel,

cri t → 1). However, heretofore plastic deformation (point
F in Fig. 32) and breakage of granules occur. The minimum
impact velocity (v1,F in Fig. 32), at which the maximum
impact force exceeds the yield point of the granule and the
plastic deformation is initiated, can be determined according
to Davies [17]:

v1,F =
(πpF

E∗

)2
√

2pF

5ρ1
. (63)

Equations (15–17) can be used to calculate the maximum
force, maximum deformation and duration of impact for
velocities lower than v1,F where the Hertz theory is valid.
Figure 33 shows an example of the calculation for the
γ Al2O3 granules.

In the case of elastic-perfectly plastic deformation behav-
iour of spherical granules, the maximum impact force can be
calculated according to Thornton and Ning [94] as:

Fel,pl,max = FF

√

√

√

√

6

5

v2
1

v2
1,F

−
1

5
, v1 ≥ v1,F . (64)

In this model the behaviour of the particle is assumed to be
elastic at the beginning of loading and perfectly plastic after
exceeding the yield point (index el,pl in Eq. 64), where the
force FF at yield point is given by Eq. (28).

In the case of elastic-plastic deformation behaviour,
beyond the yield point the centre of the contact area deforms
plastically. But a ring at the periphery exhibits further elastic
deformation. The maximum impact force can be calculated
for an adhesive particle [100]:

Fel−pl,max = π R∗ pF

(

κA − κp

)

×

⎡

⎣

√

(

κpaF=0

2κA

)2

+
8ρ1 R∗2

3pF

(

v2
1−v2

1,R

)

+s2
F−

κpaF=0

2κA

⎤

⎦

−FH0, (65)

where κA is the elastic-plastic contact area coefficient given
in Eq. (23). v1 and v1,R are the impact and rebound veloci-
ties, respectively. Neglecting the adhesion acting within the
contact zone (κp = 0, FH0 = 0) and sF (s2

F → 0) the
maximum force is given by:

Fel−pl,max ≈ π R1 pFκA

√

8ρ1 R2
1

3pF

(1 − e)v1

= π R1 pFκAsel−pl,max. (66)

Figure 34 shows the maximum force as a function of
the impact velocity calculated for different deformation
behaviour using models (16), (64) and (66). For this calcu-
lation the mean values of the material properties of γ-Al2O3

and zeolite 13X in Table 3 were used.
The yield point can be seen in Fig. 34 at the intersection of

the curves for elastic and elastic-perfectly plastic behaviour
at the impact velocity of v1,F = 1.7 m/s for zeolite 13X and
v1,F = 3.6 m/s for γ-Al2O3. Comparing these values with
the impact velocity of granules during the performed free-fall
tests (v1 = 0.5−4.5 m/s) it is found that the zeolite granules
exhibited the plastic deformation at drop heights above 0.15
m and the impact of γ-Al2O3 granules after the fall from
the height below 1.0 m had to behave elastic. However, the
measured restitution coefficients indicate the impact of these
granules as elastic-plastic over the complete range of impact
velocities, i.e. the energy absorption occurs also at low veloc-
ities and the yield point by collisional stressing is lower than
by slow compression.
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Fig. 34 The maximum impact force versus impact velocity at different deformation behaviour of the granules

Table 7 Comparison of energy absorption by compression and impact

Granules Diameter d1,50 in mm Impact Compression

en
Wdiss
Wkin,1

en,eq
Wdiss
WL

γ-Al2O3 1.8 ± 0.05 0.735 ± 0.018 0.46 0.57 ± 0.02 0.68

zeolite 4A 2.3 ± 0.12 0.653 ± 0.007 0.57 0.50± 0.03 0.77

zeolite 13X 1.4 ± 0.05 0.644 ± 0.010 0.59 0.52 ± 0.06 0.72

sodium benzoate 1.7 ± 0.11 0.532 ± 0.018 0.72 0.11 ± 0.03 0.99

4.5.3 Comparison of the energy absorption by slow

compression and rapid impact loading

In comparison to the slow loading the same granules show
higher restitution coefficients during impact (Table 7). Dur-
ing the impact the granules loose 15–27% of energy less than
during compression. It is independent of the impact velocity
(in the range of 0.5–4.5 m/s) or on the maximum compression
force.

4.5.4 The tangential restitution coefficient

In addition to the normal restitution coefficient measurement,
the velocity of granules before and after the oblique impact
has been measured with a high-speed camera to determine
the tangential restitution coefficient (Eq. 45). To evaluate the
angular velocity ωR of granules at the rebound the granules
were marked before testing, Fig. 35. The coefficient of tan-
gential restitution was measured for γ-Al2O3, zeolite 4A and
sodium benzoate granules. The zeolite 13X granules were not
examined as they have almost the same restitution coefficient
as the zeolite 4A granules.

The coefficient of restitution in the normal direction does
not depend on the impact angle in the range from 0◦ to 80◦

in Fig. 36a. However, the coefficient of tangential restitution
decreases with target inclination and reaches a minimum at an

Fig. 35 Images from the high-speed video recording of rebound of a
zeolite 4A granule (d = 2.3 mm) after the impact on steel wall

impact angle close to 30◦ (for γ-Al2O3 and zeolite 4A) and to
20◦ (for sodium benzoate) Fig. 36b. The presence of minima
in the function of tangential restitution coefficient is similar
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Fig. 36 Restitution coefficient
in a normal and b tangential
direction versus the impact angle
for three examined granules at
impact velocity of about 2.3 m/s

Fig. 37 Rebound angle (a) and
angular velocity after impact (b)
versus the impact angle for three
examined granules at the impact
velocity of about 2.3 m/s

to that observed by Dong and Moys [18], Kharaz et al. [46]
for different solid particles and it could be explained by tran-
sition from rolling at small angles to sliding at large angles.

The increasing the inclination above the minimum
increases the coefficient of tangential restitution which
exceeds the normal coefficient of restitution and reaches a
value of 1 at angles close to 90◦ by glancing incidence.
In the sliding regime (at impact angles higher 50◦) the
tangential coefficient of restitution has the largest value for
sodium benzoate and the least value for γ-Al2O3 as com-
pared to the examined granules. Hence, this sequence is
inversely to the coefficient of normal restitution of these
granules.

Figure 37 summarizes the measurements of rebound
angles and angular velocities of granules examined at impact
angles from 0◦ to 80◦. When the impact takes place at an
angle between 10◦ and 55◦, the rebound angle of γ-Al2O3

granules is slightly lower than the impact angle. The dot-
ted line shows an ideal case of rotation at � = �R and the
coefficient of friction: µ →0. The shape of particles showed
an important influence on the rebound behaviour at oblique
impact. The small deviation from spherical shape for zeo-
lite and great for sodium benzoate particles increases their

rebound angle, which is always higher than the impact angle,
Fig. 37a. Moreover, the particle roughness influences the col-
lision behaviour and therefore the rebound angle.

The angular velocity after rebound increases with increas-
ing the impact angle, reaches a maximum at an angle of
about 50◦ that shows the transition from rolling to sliding,
Fig. 37b.

5 Conclusions

To simulate the rapid and collisional flow of particle beds
by DEM, the normal and tangential restitution coefficients
are usually required. In this work the mechanical behaviour
and the associated restitution coefficients of various spheri-
cal granules were determined through slow compression and
rapid impact. In the case of compression, γ-Al2O3, zeolites
13X and 4A granules show both elastic and elastic-plastic
behaviour. The Hertz theory predicts satisfactorily the elas-
tic force-displacement behaviour of these granules. There-
fore, Eq. (6) may be used in DEM with obtained modulus
of elasticity and elastic contact stiffness. To describe the
elastic-plastic non-adhesive deformation beyond the yield
point a force-displacement model (Eq. (25)) was developed.
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Characteristic parameters are the contact pressure and the
deformation at the yield point. These were determined using
measured force-displacement curves.

The contact stiffness of granules increases with increas-
ing displacement in both the elastic and the elastic-plastic
ranges. Due to plastic deformation beyond yield point, the
increase of elastic-plastic stiffness with deformation is less
than by elastic stiffness. Moreover, the increase in granule
diameter leads to increase in stiffness.

The force-displacement curves of sodium benzoate gran-
ules are linear, i.e. the stiffness is constant during plastic
deformation, which confirms the perfectly plastic model,
Eq. (35). This model can be recommended for DEM as a
simple force-displacement relationship for loading of ideally
plastic spherical granules. A good agreement between calcu-
lated and measured radii of plastic deformed contact area
was obtained. The measured compressive strength and yield
pressure of plastic granules are independent of the granule
size.

Important effects of repeated loading on the deformation
behaviour of granules were described. The granules show
hardening during cyclic stressing at constant load amplitude.
However, the modulus of elasticity and the yield point of the
granule remain constant in each cycle but the elastic stiffness
increases due to increase of the initial contact area. With a
comfortable model (Eq. (59)) based on plastic deformation
in the first cycle and a saturation parameter, the decrease and
accumulation of plastic deformation with increasing number
of cycles could be predicted. Moreover, based on the Hertz
law an expression to calculate the elastic stiffness during
cycling loading was derived, Eq. (60). A good agreement
between this model and the stiffness evolution in cyclic tests
of zeolite 13X granules was obtained.

Moreover, the cyclic tests showed that hardening of gran-
ules only takes place locally in the contact range where
the maximum pressure during the compression occurs. The
largest compaction of the microstructure occurs in the first
cycle due to plastic deformation.

After reaching certain saturation in the plastic deforma-
tion, the granule behaves elastic-plastically and the restitu-
tion coefficient remains constant. Therefore, in a fluidized
bed the effect of hardening due to repeated impacts of gran-
ules on the magnitude of restitution coefficient will only be
relevant during the first impacts of granules. As a first approx-
imation of contact behaviour in DEM models, a constant
value of the restitution coefficient can be assumed.

An additional effect on the cyclic hardening is the mag-
nitude of maximum load. If this increase is before saturation
than the plastic deformation starts again, this significantly
reduces both the restitution coefficient and the contact stiff-
ness.

The energy absorption during impact was found to be
lower than during compression, although the sequence of

granules from elastic-plastic to dominantly plastic behav-
iour is the same in both stressing modes. Therefore, to pre-
dict the energy absorption of granules during impact, the
values of restitution coefficient obtained in free-fall exper-
iments should be used in DEM. Moreover, the restitution
coefficient of granules is independent of the impact velocity
in the examined range of 0.5–4.5 m/s and of the maximum
compressive load. For DEM simulations of a fluidized bed
with dry granules, where the particle velocity is generally not
higher then 4.5 m/s, a constant coefficient of restitution can
safely be assumed.

From the study of oblique impact is found that the coeffi-
cient of normal restitution is independent of the impact angle.
Therefore, the tangential restitution coefficient shows mini-
mum value at angles in the range of 20◦–30◦. The rebound
angle of γ-Al2O3 granules is slightly lower (in the range
of impact angles of 10◦–55◦) or equal to the impact angle.
Because of the deviation from sphericity and high rough-
ness the rebound angle of zeolite 4A and sodium benzo-
ate granules is higher than the impact angle. The angular
velocity after rebound shows a maximum at an angle of
about 50◦.

In future work, the obtained mechanical behaviour of
granules will be used to select the appropriate contact model
for their implementation in DEM and to analyze the dynam-
ics of collisional particle flow in fluidized beds.
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