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Abstract – Braided glass-fibre/epoxy circular tubes with polymer foam cores are loaded in tension and in compression, and the energy of deformation
is measured. Theoretical models of tube deformation are developed, and are used to predict the energy absorption as a function of tube wall strength,
the ratio of tube wall thickness to tube diameter, and the density of the foam. The energy per unit mass and energy per unit volume are optimised with
respect to the relative density and geometry. It is found that foam-filled braided circular tubes exhibit promising energy absorbing characteristics, due
to a combination of energy absorption by the polymeric foam core and by the glass/epoxy braided tube. 2000 Éditions scientifiques et médicales
Elsevier SAS
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1. Introduction

The design of air, sea and ground vehicles is increasingly driven by minimum weight considerations and
by concerns for passenger safety. Composite structures are lightweight, can be tailored in composition and
shape, and can provide high crashworthiness when used as part of an energy dissipating device, such as
the sub-floor assembly of helicopter cabins, Cronkhite (1984). Braided composite tubes offer better energy-
management characteristics than laminated composites because the intertwining fibre architecture prevents
gross delamination, as discussed by Hamada et al. (1994). Further performance gain is achieved by filling the
tubes with crushable foam.

Ideal energy absorbers have a long, flat load-deflection curve: the absorber collapses plastically at a constant
force called the ‘plateau force’Fpl, as sketched infigure 1a. Energy absorbers for crash protection and for
packaging are chosen so that the plateau force is just below that which will cause damage to the protected
object; the best choice is the one which has the longest plateau (i.e. the largest value of lock-up displacement
u∗), and therefore absorbs the most energy. Solid sections do not perform well in this role. Hollow tubes,
shells and metal honeycombs (loaded parallel to the axis of the hexagonal cells) have the appropriate shape of
load-deflection curve; so, too, do foams.

Practical energy absorbers have a characteristic load-deflection response as sketched infigure 1b. An initial
(or subsequent) peak value of loadFmax exceeds the average valueFav, and leads to an increased acceleration
and potential damage to the object. The ‘crush force efficiency’, defined byη = Fav/Fmax, is a useful measure
of the uniformity of collapse load; for the ideal energy absorber,η = 1. The crush force efficiency is closely
related to the structural effectiveness introduced by Puglsey (1960), defined as the ratio of the average collapse
load to the limit load of the structure. In the ideal case, an energy absorber is also as compact as possible, with
a lengthL equal to the useful stroke lengthu∗; in practice, the ‘stroke efficiency’, SE, defined by SE= u∗/L
is less than unity. In summary, crashworthiness is maximised by using an energy absorber of high crush force
efficiency, and of high stroke efficiency. In energy absorption applications a typical design requirement is to use
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Figure 1. (a) The force-deflection characteristic of an ideal energy absorber; (b) Typical force-deflection characteristic of a practical energy absorber.

an energy absorbing device of minimum volume or of minimum mass for a given level of absorbed energyW ,
and for a peak collapse forceFmax. In this study, the uniaxial compressive and tensile behaviour of braided glass-
fibre/epoxy circular tubes containing a polymeric foam core are examined theoretically and experimentally, and
their potential as energy absorbers is explored.

The structure of this paper is as follows. First, measurements and models are reviewed for the axial crushing
of empty and foam-filled circular tubes; collapse is by a number of competing deformation modes, including
tube inversion, progressive pulverisation and buckling. Second, an experimental program is reported on the
compressive and tensile behaviour of foam-filled glass/epoxy braided tubes. The foam core raises the level of
energy absorption: in the compression tests the foam crushes axially, whereas in the tension tests, the foam
core undergoes radial crushing due to a reduction of the braid diameter as it extends. Motivated by these
experiments, simple analytical models are derived for the energy absorbed in tension and in compression, and
the predictions are compared with the measured values. In order to explore the potential of foam-filled tubes for
energy absorption, the predicted energy per unit mass and energy per unit volume are optimised with respect to
the relative density of the foam, and with respect to the strength and geometry of the braided tube.

2. Previous work on the compressive crushing of tubes

Circular cylindrical structures deform in compression by at least four competing mechanisms: (i) tube
inversion, (ii) progressive crushing, (iii) axisymmetric buckling and (iv) diamond-shape buckling. These four
modes are depicted infigure 2, and are summarised as follows.

2.1. Tube inversion (figure 2a)

Tube inversion involves the bending and stretching of a tube to a larger or smaller diameter. An end fixture
is needed to trigger and maintain this deformation mode, and this adds weight to the energy absorbing system
(Barrett, 1996). The large plastic strains involved in tube inversion limit its occurrence to ductile materials,
such as steels and aluminium alloys, and to braided and filament wound composites, as observed recently by
Harte (1997). The steady state inversion of metallic tubes has been analysed by Al-Hassani et al. (1972) via a
plastic work calculation.

2.2. Progressive crushing or pulverisation (figure 2b)

Progressive crushing is a commonly observed failure mode for composite tubes in compression (Hull, 1983;
Kindervater and Georgi, 1993; Haug and De Rouvray, 1993). When this mode of failure is desired, the ends
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Figure 2. Axial modes of collapse for cylinders: (a) tube inversion; (b) progressive crushing; (c) axisymmetric buckling, and (d) diamond buckling.

of the tube are usually chamfered to trigger the failure. The high energy absorption is associated with the
large number of microfractures that occur as the tube crushes; energy dissipation results from the generation of
fracture surface area, from friction between fragments, and from plastic shear of the matrix.

Chiu et al. (1998) have recently explored this failure mode for biaxial and triaxial braids: the effect of fibre
orientation upon the collapse response was measured for carbon/epoxy braids of fibre lay-up(±θ/0◦). One
end of the specimens was chamfered, and consequently the specimens failed by a progressive splaying mode
of crushing; the average width of the splaying fronds increased with increasing braid angle but decreased with
increasing axial yarn content.

2.3. Axisymmetric buckling and diamond shaped buckling (figures 2c and d)

Elastic shells fail by a number of buckling modes, as depicted infigures 2cand 2d, and as reviewed by
Timoshenko and Gere (1961). In general, classical elastic bifurcation analysis fails to predict the peak load
observed in practice: for example, the observed buckling load of circular aluminium tubes is typically one
third of the bifurcation load (Weingarten et al., 1968). In order to predict realistic buckling loads, the effects of
material non-linearity and geometric imperfections must be included, see for example Hutchinson (1974).

The ratio of tube wall thickness to tube radius is the dominant factor in determining whether axisymmetric
buckling or diamond buckling will occur in both elastic and plastic buckling: thick isotropic tubes fail by
axisymmetric buckling, whereas thin-walled tubes fail by diamond buckling (Mikkelsen, 1999; Tvergaard,
1983). For geometries close to the transition, a specimen can switch from one mode to another during a single
test (Andrews et al., 1983).
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Large plastic strains accumulate in the plastic hinges for both axisymmetric and diamond buckling, and so
fibre composite tubes fail by this mode only when the matrix and fibres possess high failure strains. Thornton
(1979) found that Kevlar/epoxy tubes of orientation±45◦ collapsed by diamond buckling, whereas tubes
of 0◦/90◦ lay-up (with reduced axial and circumferential ductility) failed by end fragmentation. Karbhari et
al. (1997) have observed axisymmetric and diamond buckling of hollow circular tubes made from±45◦/0◦
triaxial braids, with fibres of glass, Kevlar and carbon in a vinyl ester resin. They found that the highest energy
absorption was obtained using glass-carbon and Kevlar-carbon fibre hybrids, with the carbon fibres comprising
the axial yarns of triaxial braids.

A number of investigators have developed approximate models for the post-buckling collapse of metallic
and polymeric tubes by both axisymmetric buckling and diamond buckling, including Pugsley and Macaulay
(1960), Alexander (1960), Johnson et al. (1977), and Mamalis et al. (1986, 1989). Pugsley and Macaulay
(1960) estimated the mean load for plastic diamond buckling of a rigid, ideally plastic solid. They split the
energy absorbed into two parts: (i) plastic bending at the edges of the folded plates, and (ii) plastic stretching
as the original square plates deform into rhomboids. The total plastic work is equated to the work done by an
external load. Their theory compared well with experimental measurements of the average collapse stress for
stainless steel and aluminium circular cylinders.

Alexander (1960) addressed axisymmetric buckling, and he also used a plastic work calculation to estimate
the average collapse load. He equated the external work to the internal work associated with the plastic bending
of circumferential hinges and with axisymmetric stretching. Minimisation of the average collapse load with
respect to the buckle wavelength gave an expression for the wavelength. Alexander found that the buckle
wavelength is approximately equal to

√
Dt , whereD is the tube diameter andt is the wall thickness. This

wavelength is slightly less than the value given by Timoshenko and Gere (1961) for elastic buckling. Recently,
Mikkelsen (1999) has found that Alexander’s approximation for the buckle wavelength is in good agreement
with that found by a full numerical analysis of axisymmetric plastic buckling.

Johnson et al. (1977) extended the ideas of Alexander (1960) and Pugsley and Macaulay (1960) by proposing
two types of collapse mode: the plastic hinges are taken to be either stationary or moving. In the simpler
stationary hinge case, the plastic work is partitioned into the work needed to bend the material at the hinges
and the work needed to flatten the initially curved triangular or trapezoidal segments into flat plates. Their
more complex but more accurate solution was obtained using ‘travelling hinges’, wherein the plastic hinges are
assumed to propagate along the axis of the specimen. The accuracy of this solution was verified by Mamalis et
al. (1989) in a series of experiments on the crushing behaviour of grooved PVC tubes.

Wierzbicki et al. (1992) have described axisymmetric buckle propagation by the sequential formation of an
active crush zone along the length of the tube. The tube crumples within the active crush zone, and after lock-up
of the active zone occurs, an adjacent crush zone forms and the cycle is repeated. Two levels of approximation
of geometry of crush zone are made: a simplified geometry, wherein prismatic straight elements rotate about
stationery hinges, and a more sophisticated model comprising two S-shaped ‘superfolding elements’. For both
geometries, closed form solutions were obtained for the average load and the buckle wavelength. Both models
succeeded in describing aspects of the observed behaviour not captured hitherto: alternating heights of peaks in
the load-displacement curve, an unequal distance between peaks, a reduced crush distance and a realistic shape
of crushed tubes. The more complex crush zone geometry led to more accurate predictions than the simpler
stationary hinge model.

Experimental and theoretical evidence are accruing that the average force necessary to collapse a foam filled
tube is greater than the sum of the collapse force of an empty tube and the foam individually. Abramowicz
and Wierzbicki (1988) coupled the response of a foam core to that of a metallic tube and concluded that the
stiffening effect of the foam decreases the buckle wavelength, and increases the amount of absorbed energy
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Figure 3. Geometry of a foam-filled braided tube.

within the tube. Reid et al. (1986) have treated the foam-filled structure as an elastic plate on an elastic
foundation to find the reduced buckle wavelength. This value of wavelength is used to calculate the separate
contributions to absorbed energy from the tube and the polyurethane foam. Langseth et al. (1998) and Hanssen
et al. (1999) observed a reduction of buckle wavelength when crushing square aluminium extrusions with an
aluminium foam filler. Hanssen et al. (1999) found that the elevation in collapse force associated with the
interaction between foam and tube is described accurately by an empirical non-dimensional function of the
foam plateau stress, the flow strength of the tube wall, the tube width and the wall thickness.

3. Experimental program

Exploratory tension and compression tests have been performed on glass/epoxy braided tubes containing a
polymeric foam core. These experiments are used to motivate simple models of tube deformation.

3.1. Compression of foam-filled braided tubes

Braided tubes were manufactured manually using a Maypole braiding machine, such that the tube wall
comprises a single layer of±θ 2-over, 2-under regular braid with 32 tows in the+θ direction and 32 tows in
the−θ direction, seefigure 3. Each tow consists of approximately 1 600 glass fibres. The matrix is a two part
casting epoxy under the tradename of Ciba Geigy Araldite MY 753; it is a plasticised liquid epoxy resin with
hardener HY 956, mixed 100 parts to 20 parts by volume. After hand-brushing of the epoxy onto the tows, the
epoxy wicked between individual fibres. The samples were cured in an air oven at 100◦C for 20 min. After
curing, the braided tubes were cut so that their length was approximately equal to their diameter, and the ends
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Table I. Material properties of the braided tubes and foams used in axial compression and tension tests.

Braided tube properties

Wall Tube wall Shear strength of Density of tube

Radius thickness yield strength epoxy wall

r (mm) t (mm) Y (MPa) τY (MPa) ρt (Mg/m3)

θ0= 40◦ 21.1 0.98 60 22 1.8

θ0= 55◦ 26.5 0.93 25 22 1.8

Foam properties

Strength of Density of Density of cell

cell wall foam wall material

σc (MPa) ρf (Mg/m3) ρs (Mg/m3)

Polyurethane 127 0.16 1.2

Polymethyl-acrylamid 120 0.08 1.3

Figure 4. The nominal stress versus nominal strain responses of polyurethane foam (ρf = 160 kg/m3) and polymethyl-acrylamid foam (ρf = 80 kg/m3)
in compression. The nominal strain rateε̇ equals 1.2× 10−4 s−1.

of each circular tube were turned on a lathe to ensure that the end faces were perpendicular to the specimen
axis. The tubes were of diameter 42.2 mm, of length 46 mm and of wall thickness 0.93 mm. The specimen
geometry and braid unit cell are sketched infigure 3, and are listed intable I.

Two closed cell polymeric foams were used as cores: a rigid polyurethane foam of density 160 kg/m3

supplied by Kooltherm Insulation, and a polymethyl-acrylamid foam of density 80 kg/m3, known as Rohacell.
The nominal stress versus nominal strain curve for each foam in compression is shown infigure 4, for a strain
rate of 1.2×10−4 s−1. The expected collapse response is displayed: linear elastic, followed by a plateau region
and then final lock-up. Pertinent materials properties of the foams are included intable I.

The foam cores were machined to a sliding fit inside the braided tubes and were inserted without adhesive.
The foam-filled tubes were then loaded to failure in uniaxial compression at a nominal strain rate of
6.0× 10−4 s−1, using a screw-driven test machine and parallel loading platens which had been lubricated with
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Figure 5. Load versus displacement curves for uniaxial compression of braided tubes with foam cores. The foam of density 160 kg/m3 is made from
polyurethane, whereas the foam of density 80 kg/m3 is made from polymethyl-acrylamid. For both foam-filled tubes, the initial helix angleθ0 = 40◦

andr/t = 23.4.

Table II. Measured crashworthiness parameters for the axial crushing of foam-filled braided circular tubes.

Specific energy Mean crushing Crush force Stroke

(kJ/kg) stress (MPa) efficiency efficiency

θ0= 40◦,
polyurethane 14.5 6.38 0.77 0.73

core

θ0= 40◦,
polymethyl- 9.08 3.29 0.55 0.85

acrylamid core

PTFE spray.Figure 5 shows the load versus shortening curves for the glass/epoxy braided tubes containing
a rigid polyurethane core (density,ρf = 160 kg/m3), and a polymethyl-acrylamid core (ρf = 80 kg/m3). The
radius-to-wall-thickness ratior/t for these tubes equals 23.4, and the initial helix angleθ0 equals 40◦. Table II
gives the corresponding measures of crashworthiness: the energy absorbed per unit mass, the stroke efficiency
and the crush force efficiency, as defined in the Introduction. Collapse is by axisymmetric buckling, as shown
in figure 6for a sectioned specimen containing a polyurethane foam core.

3.2. Tension of foam-filled braided tubes

Tensile stress–strain curves were measured for glass fibre braids containing no matrix (referred to as a ‘dry
braid’) and for two glass fibre/epoxy braids. All specimens contained an unbonded polyurethane foam core, of
density 160 kg/m3, and were subjected to uniaxial tension using a screw driven test machine, at a nominal strain
rate ε̇ of 1.2× 10−4 s−1. Epoxy adhesive in combination with jubilee clips were used to fasten the specimens
to circular cylindrical grips. The length of each specimen was about four times its diameter.
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Figure 6. Cross-sectioned braided tube with polyurethane core after uniaxial compression.θ0= 40◦.

Figure 7. Tensile nominal stress versus nominal strain curve for three braids with polyurethane foam cores of density 160 kg/m3. σ is the average stress
over the cross section of the braided tube and foam core. (i) A dry braid withθ0 = 40◦, r/t = 23.3; (ii) a glass fibre/epoxy matrix braid withθ0 = 55◦,

r/t = 28.7, and (iii) a glass fibre/epoxy matrix braid withθ0= 40◦, r/t = 23.3.

The nominal stress versus nominal strain response for a dry glass braid (no matrix) containing the
polyurethane core is shown infigure 7. Here, the nominal stress is defined by the axial load divided by the
initial cross-sectional area of the tube, and is to be distinguished from the axial stress on the tube wall. The
initial helix angleθ0 is 40◦ and the ratio of radius to wall thicknessr/t is 23.3. Glass/epoxy braids with foam
cores were also tested for the two helix angles,θ0= 40◦ and 55◦, and the results are included infigure 7. The
ratio of radius to wall thickness isr/t = 23.3 for θ0= 40◦ andr/t = 28.7 for θ0= 55◦. It is seen immediately
from a comparison of the load versus displacement curves in compression (figure 5) that a pronounced load
peak occurs in compression but not in tension. The presence of this load peak reduces the crashworthiness
of the structure, as it leads to an increased acceleration rate of the crashed body: the crush force efficiency
η≡ Fav/Fmax is reduced.
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Figure 8. Progressive collapse by axisymmetric buckling.

4. An analytical model for energy absorption of foam-filled braided circular tubes in compression

In this section, we estimate the energy absorbed by a foam-filled braided tube in compression. To do so we
adapt the methods of Reddy and Wall (1988) and of Alexander (1960): we split the energy absorbed by a tube
when it undergoes axisymmetric buckling into the energy required to bend the material at the circumferential
hinges through an angle of 2β and the energy required to stretch the material circumferentially between the
hinges, seefigure 8. A simple plastic work calculation is performed and for this purpose the braid is treated
as a rigid-ideally plastic solid. Following preliminary observations of the buckling mode of the foam-filled
braided tubes as evidenced infigure 6, it is assumed that the unbonded foam core prevents the braided tube
from collapsing radially inwards, but does allow for free radial expansion of the tube. (This is in contrast to
the observations of Hanssen et al. (1999) on aluminium tubes with aluminium foam cores: they found that the
foam is radially crushed by the tube wall.) In our tests, the final hinge angleβ∗ after collapse is fixed by the
final crushing strain of the foam, or by contact between the adjacent folds of the tube walls. The average axial
force on the foam-filled tube is found by equating the total energy absorbed in deforming the foam core and
the tube to the work done by the external load. The details are as follows.

The work done in axisymmetrically folding a tube into a concertina shape is split into two parts: that required
to fold the material at the hinges and that required to stretch the material between the hinges. We shall calculate
each contribution in turn. Consider the incremental plastic collapse of a representative unit cell by the rotation
of a pair of straight-sided annular segments of the tube wall, seefigure 8. Each segment has rotated by±β, and
each hinge has rotated by 2β. The average circumferential length of each hinge equalsπ(2r+hsinβ), wherer
is the tube radius, andh is the buckle length. The work increment dW in rotating the three hinges within the
unit cell is

dW = 4π(2r + hsinβ)Mp dβ. (1)

Upon assuming that the material is rigid-ideally plastic, the plastic bending moment per unit lengthMp is given
by Y t2/4, whereY is the uniaxial yield strength of the tube wall in tension and in compression, andt is the
wall thickness. Independent uniaxial tests on the glass/epoxy braids show that they behave in an elastic-plastic
ductile manner, with an axial yield strength in tension equal to that in compression; the micromechanism of
plastic flow is shear yielding within the epoxy matrix (Harte, 1997).



40 A.-M. Harte et al.

As mentioned above, the foam provides a unilateral radial constraint so that the tube can fold radially
outwards but not inwards. Hence, the material must stretch circumferentially to accommodate buckling. This
prevents diamond buckling by eliminating the compressive hoop stresses required for the initiation of diamond
buckling (Mikkelsen, 1999; Harte and Fleck, 1999a). In the experiments on foam-filled composite tubes, the
initial fibre orientationθ0= 40◦ is close to an angle of 45◦, and so we make the additional approximation that
the composite behaves in a transversely isotropic manner, with the circumferential strength of the braided tube
equal to the axial strength.

The work increment in hoop stretching two annular segments within the unit cell shown infigure 8is given
by

dW = 2πYh2t cosβ dβ. (2)

Thus, the total internal work in developing a single fold is calculated by integrating (1) and (2) fromβ = 0 to a
final angleβ∗ which is specified below. On noting that the final nominal axial strainε∗ of the folded portion of
the tube is related to the final angleβ∗ by

ε∗ = 1− cosβ∗ (3)

the external work in collapse of the unit cell of initial length 2h is 2Phε∗ = 2Ph(1− cosβ∗) in terms of the
average forceP . An energy balance of external and internal work gives

P = π
2
Y t2

[
1+ 2r

h

β∗

1− cosβ∗

]
+ πYht sinβ∗

1− cosβ∗
(4a)

and, following Alexander (1960), we assume that wavelengthh is such to minimiseP , giving h=√2rt and

P = π
2

[
(β∗ + 2sinβ∗)

1− cosβ∗

√
2r

t
+ 1

]
Y t2. (4b)

The lock-up axial strain in the folded portion of the tubeε∗ is limited either by the densification strain of
the foam or by contact between the adjacent folds of the tube walls. Gibson and Ashby (1997) approximate the
nominal axial strain for foam densificationεD by

εD = 1− 2
ρf

ρs
, (5)

whereρf is the density of the foam, andρs is the density of the solid cell wall material. But we must also
consider the axial crushing strainεC of the tube associated with contact between successive folds. If no foam
is present the hinge rotates throughβ = 90◦ and the final nominal strain of the tubeεC is approximated by
εC= 1− t/h or, upon substitutingh≈√2rt , is given by

εC= 1−
√
t

2r
. (6)

It is assumed that the foam-filled braided tube collapses to a final axial strainε∗ which is given by the smaller
value of the maximum crushing strain of the foamεD defined in (5) and the crushing strain of the tubeεC

defined in (6). The final fold angleβ∗ is related toε∗ via (3).
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Figure 9. Normalised energy per unit mass of a foam-filled tube in compression, plotted against relative density of foam, for selected ratios of tube
radius to wall thicknessr/t , and of cell wall strength to tube wall strength,σc/Y .

The energyW absorbed by a length̀� h of the foam-filled tube combines the contributions from the foam
and from the outer braided tube, to give

W = (P + πr2σpl
)
`ε∗, (7)

where the uniaxial crushing stressσpl of the foam is given by Gibson and Ashby (1997)

σpl = 0.3σc

(
ρf

ρs

)3/2

(8)

in terms of the crushing strength of the solid cell wall materialσc. On noting that the combined mass of the
tube and corem is

m= (πr2ρf + 2πrtρt
)
`, (9)

whereρt is the density of the tube material, the energy per unit massW/m is obtained via (4) and (7)–(9) as

W

m
= 1

2

(
r2ρf + 2rtρt

)−1
[(
β∗ + 2sinβ∗

1− cosβ∗

√
2r

t
+ 1

)
Y t2+ 0.6σc

(
ρf

ρs

)3/2

r2
]
ε∗. (10)

It is instructive to quantify the effect of a foam core upon the energy absorption by introducing the non-
dimensional specific energy9, defined byW/m for a filled tube normalised byW/m for an identical but empty
tube (constrained against inward folding).Figure 9displays9 as a function of the relative foam densityρf/ρs

for selected values of the ratio of wall radius to thicknessr/t , and of the ratio of the foam cell wall crushing
strengthσc to the tube wall uniaxial yield strength,Y . Predictions are given for the representative measured
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Figure 10.Plot of energy absorption in compression versusσc/Y for selected values ofr/t , andρf/ρs= 0.2.

valueσc/Y = 2 (corresponding to a braided tube of helix angleθ0 = 40◦, of uniaxial strengthY = 60 MPa,
with a polymethyl-acrylamid foam core of cell wall strengthσc= 120 MPa). For small values ofr/t it is clear
that the presence of the foam core does not increase the normalised specific energy9. An optimal relative
density ofρf/ρs≈ 0.2 exists such that9 is a maximum, regardless of the values ofr/t and ofσc/Y . In order
to explore the dependence of the normalised energy9 uponr/t andσc/Y we plot9 againstσc/Y in figure 10
for selected values ofr/t , with ρf/ρs held fixed at 0.2. It is clear from bothfigures 9and10 that9 increases
with both increasingσc/Y andr/t .

The predictions given by the above simplified theory may be compared with the experimental results
presented infigure 5for a glass/epoxy braids and foam core. For the case whereρf = 160 kg/m3, the predicted
energy absorption isW/m = 9.51 kJ/kg, in satisfactory agreement with the measured value ofW/m =
14.5 kJ/kg. Similarly, for the caseρf = 80 kg/m3, the predicted energy absorption isW/m = 8.22 kJ/kg, in
good agreement with the measured value ofW/m= 9.08 kJ/kg. The predicted wavelength

√
2rt = 7.1 mm is

in good agreement with the observed values of 7.6 mm and 7.9 mm for the tubes with a core of density 80 and
160 kg/m3, respectively.

Material properties used in theoretical calculations ofW/m are given intable I for all the foam-filled tubes
used here. The yield strength of the tube wallY was taken as the average of the strengths in a compression test
and in a tension test on braided circular tubes (Harte, 1997); the strength of the foam cell wall material was
found using the compressive data offigure 4and Eq. (8). The densities of the foamρf and tube wall materialρt

were measured directly and the densities of the cell wall materialsρs were manufacturers data.

The energy per unit mass is not the only relevant design parameter for energy absorption; the energy per unit
volume is important where space is a limitation. Using a similar approach to that given above, the energy per
unit volumeW/V can be written

W

V
= Yε

∗

2

(
t

r

)2{(
β∗ + 2sinβ∗

1− cosβ∗

)√
2r

t
+ 1

}
+ 0.3σcε

∗
(
ρf

ρs

)3/2

, (11)
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Figure 11.Normalised energy per unit volume in compression versus relative densityρf/ρs for selected values of radius to wall thickness ratior/t , and
foam cell wall strength to tube wall strength ratio,σc/Y .

whereV is the enclosed volume of the tube in the initial state. We shall define8 as the energy per unit volume
for a filled tube, normalised by the value for an empty tube: it is an additional measure of structural efficiency,
and is plotted against the relative densityρf/ρs of the foam core infigure 11, for selected values ofσc/Y and
r/t . As noted above for the normalised energy per unit mass of the foam-filled tube, an increase inσc/Y or r/t
causes an increase in the energy per unit volume. The normalised energy per unit volume8 is maximised at a
foam relative density of about 0.3 for all values ofσc/Y andr/t within the practical range. The maximum value
of 8 is obtained within the regime where the final strainε∗ is associated with densification of the foam rather
than lock-up of the braid. The switch in lock-up condition from that of the braid to that of the foam occurs at a
relative density of 0.05–0.1 for the range of values ofr/t considered infigure 11.

5. An analytical model for energy absorption of foam-filled braided circular tubes in tension

Most energy absorbing devices are used in compression, but there are some applications where energy
absorption is required for tensile loading. In this section, an approximate analysis is performed to determine
the energy absorbed by a foam-filled braided tube loaded in tension.

When a braided tube is pulled axially in tension the individual tows of the braid scissor, the length of the tube
increases and its diameter decreases. A dry braid is unable to carry significant tensile load provided the tows
are able to scissor freely. After some axial extension the tows lock-up, and the stiffness of the braid increases
dramatically; dry braids lock-up at a braid angle such that the fibres in the tows and the tows in the braid
are close-packed. The work of deformation (i.e. the energy absorbed) in extending the dry braid to lock-up is
negligible. Significant energy can by absorbed by introducing a matrix into the weave of a tubular braid, or by
introducing a foam core, or both. In order to predict the energy absorbed by a foam-filled fibre/matrix braid as
the braid scissors through a large angle, the following micromechanical model is introduced.
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Figure 12.The kinematics of a braid in tension. The initial braid angle isθ0, the current braid angle isθ and the lock-up angle isθL .

5.1. Kinematics of an empty braided tube in tension

The axial deformation of a braided composite tube is by the scissoring of tows past each other, from an
initial angleθ0 to a final angleθ∗. Post-failure microscopy of the glass/epoxy braids reveals that the pattern of
microcracking within the matrix between the tows is accompanied on a smaller scale by microcracking of the
matrix between individual fibres of each tow. This suggests that the kinematic description of scissoring of the
tows also describes the relative motion of fibres within each tow. In the following analysis, we shall smear out
the fibres and matrix, and define overall stress and strain measures for the smeared-out continuum.

It is convenient to calculate the strain rate within the composite in the reference frame of the rotating
orthonormal axes(x1, x2), with thex1-direction aligned with the fibres of orientationθ as shown infigure 12.
The fibres in both theθ and the−θ directions are assumed to be inextensional; thus, in the(x1, x2) reference
frame we havėε11= 0 and the strain rate components of interest are the strain rate transverse to the fibres
ėt ≡ ε̇22 and the shear strain ratėγ = 2ε̇12 along the fibre direction. In order to define(ėt, γ̇ ) we consider the
relative velocities of neighbouring tows. The true transverse strain rateėt is given by the separation velocity of
the centre-lines of two neighbouring tows along thex2-direction divided by their current separation,

ėt = 2

tan 2θ
θ̇ . (12a)

The shear strain ratėγ is defined by the rate of scissoring 2θ̇ of fibres in theθ and the−θ directions, such that

γ̇ = 2ε̇12=−2θ̇ . (12b)
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Figure 13.The evolution of transverse and shear strain in a braid for an initial helix angle ofθ0= 60◦.

Integration from an initial helix angleθ0 to a current angleθ gives

γ = 2(θ0− θ) (13a)

and

et = ln
(

sin 2θ

sin 2θ0

)
. (13b)

The transverse and shear strains are sketched infigure 13 for the caseθ0 = 60◦. As expected, the shear
strain increases with decreasing helix angleθ . The transverse strainet reaches a maximum atθ = 45◦, then
drops through zero to negative values with increasingθ . The negative transverse strains are associated with
crumbling of the matrix from the braid. For an initial helix angleθ0> 45◦ the matrix shears and initially dilates
under axial extension, whereas forθ0 < 45◦ the matrix shears and initially compacts under axial extension.
The distance between neighbouring tows and fibres reaches a maximum atθ = 45◦, at which point the matrix
deforms in pure shear.

The ratio of current volumeV to the initial volumeV0≡ 2πrt` of the braid material is given by

V

V0
= sin(2θ)

sin(2θ0)
(14)

and the internal energy dissipated in scissoring the fibres fromθ = θ0 to a final angleθ = θ∗ is

W = V0

∫ γ ∗

0
τ
V

V0
dγ + V0

∫ e∗t

0
σt
V

V0
det, (15)

whereγ ∗ ≡ γ (θ = θ∗) ande∗t ≡ et(θ = θ∗) are given by (13), andτ andσt are the macroscopic shear stress
and transverse stress in the current configuration, resolved onto the local fibre axes. The final braid angleθ∗
is less than or equal to the lock-up angleθL of the braid: lock-up of the braid occurs at an angleθL for which
the tows are tightly packed and can no longer scissor. Experiments show thatθL is about 11◦ for a dry braid
without a matrix and 21◦ for a braid with an epoxy matrix, regardless of the initial braid angleθ0 (Harte and
Fleck, 1999b).
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On recalling that the scissoring of the braid is dictated by a single degree of freedomθ we can re-write (15)
as

W = V0

∫ θ∗

θ0

−τ 2sin 2θ

sin 2θ0
dθ + V0

∫ θ∗

θ0

σt
2 cos 2θ

sin 2θ0
dθ. (16)

The axial strain of the braidεa is related to the current braid angleθ and to the initial braid angleθ0 by

εa= cosθ − cosθ0

cosθ0
, (17)

where 2cosθ0 is the original axial length of a braid unit cell and 2cosθ is the current length, seefigure 12. By
the same argument the circumferential and radial strains are expressed by

εr = sinθ − sinθ0

sinθ0
. (18)

5.2. Energy dissipation in tensile deformation

Energy is dissipated in the foam-filled braid by plastic elongation of the braid and by radial crushing of
the foam core. In order to obtain a closed form solution for the energy dissipated in tension, we simplify
the integral (16) by assuming that the composite behaves as a rigid-ideally plastic solid, with the+θ layer
yielding in shear at|τ | = τY , and similarly for the−θ layer. Further, it is assumed that the presence of extensive
microcracking within the matrix reduces the level of transverse stressσt to a negligible level. Consequently, we
setτ = τY and drop the second term on the right hand side of (16).

Next, consider the energy dissipated within the foam core. It is assumed that the core is not bonded to the
braided tube, and is subjected to equi-biaxial straining due to radial compression by the braid. The available
experimental evidence suggests that polymer foams obey a maximum principal stress criterion for compressive
yielding (Gibson and Ashby, 1997). We adopt the criterion that the densification strain under equi-biaxial
straining equals that for uniaxial straining; this is consistent with the notion of independent plastic collapse
in orthogonal directions, as suggested by a maximum principal stress criterion. Thus, the plastic workWf

dissipated in radially crushing a foam of length` and areaπr2 by a radial strainε∗r is given by

Wf = 2πr2`σplε
∗
r , (19)

whereσpl is the plateau stress for the foam in uniaxial compression. The total energy dissipated by the foam
filled tube is the sum of (19) and the integrated form of (16), to give

W = 2π
(

cos 2θ∗ − cos 2θ0

sin2θ0

)
rt`τY + 2πr2`σplε

∗
r . (20)

The specific energy absorbed by the foam-filled tube is obtained by dividing the total energyW by the mass as
stated in (9), giving

W

m
=
(
ρt + r

2t
ρf

)−1[(cos 2θ∗ − cos 2θ0

sin2θ0

)
τY + r

t
σplε

∗
r

]
, (21)

whereε∗r is the nominal radial strain at lock-up. It remains to specify the lock-up strainε∗r and the final angleθ∗.
Lock-up can occur first in the foam core or in the braided tube. We assume that the foam core locks-up

when the radial strainεr attains the valueεD, whereεD is the uniaxial densification strain for the foam, and
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Figure 14.Normalised energy per unit mass of foam-filled tubes in tension, plotted against relative density of foam, for selected ratios of tube radius to
wall thicknessr/t , and crushing strength of the foam cell walls to matrix shear strength,σc/τY .

depends upon the relative densityρf/ρs according to (5). The corresponding braid angle follows from (18)
as θ∗ = arcsin[(1− εD)sinθ0]. Alternatively, the braid locks-up at an angleθL, as discussed above. When
this limit is attained, we setθ∗ = θL and the corresponding radial strain in the foam core is given by
ε∗r = (sinθL−sinθ0)/sinθ0 from (18). The average axial nominal stressσa on the tube cross-section is obtained
by equating the expression (20) for the internal work to extend a foam-filled tube to the axial lock-up strainε∗a
to the external work,

W = πr2`σaε
∗
a, (22)

giving,

σa=
(

cos 2θ∗ − cos 2θ0

sin 2θ0

)
2t

r

τY

ε∗a
+ 2ε∗r
ε∗a
σpl. (23)

It is instructive to plot the energy per unit mass of the foam filled tube, normalised by that of an empty tube,
9 as a function of the relative densityρf/ρs of the foam. Predictions are shown infigure 14for selected values
of the relative strength of the foam to braid (parameterised byσc/τY ) and for selected ratios of braid radius to
wall thicknessr/t . For the case shown infigure 14the density of the tube wall is taken to be that of GFRP
(ρt = 1.8 Mg/m3), the initial braid helix angleθ0 equals 40◦ and the final braid angle is taken asθL = 21◦. These
values are representative of those used in the experiments on glass fibre braids reported above (Section 3.2).

The normalised energy per unit mass9 increases with increasingσc/τY for all values ofr/t andρf/ρs.
The maximum value of9 occurs at a foam relative density of approximately 0.29, independent of the ratio of
crushing strength to shear strengthσc/τY and of the ratio of radius to wall thicknessr/t . This maximum occurs
at the point where the lock-up strain switches from that of the braid to that of the foam. The optimal relative
density of the foam corresponds toεr =−εD, and is given byρf

ρs
= 1− sinθL

2 sinθ0
from Eqs. (5) and (18).
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Figure 15.Normalised energy per unit volume of foam-filled tubes in tension, plotted against relative density of foam, for selected ratios of tube radius
to wall thicknessr/t , and crushing strength of the foam cell walls to matrix shear strength,σc/τY .

The prediction (21) for the specific energy absorptionW/m and the prediction (23) for the average axial
flow stress can be compared with the experimental results shown infigure 7. In all experiments a polyurethane
foam core of densityρf = 160 kg/m3 was employed. The material properties required for the predicted energy
absorption were measured independently, and are listed intable I. The shear strength of the matrixτY was
deduced from a tension test on a±45◦ braid (see Harte and Fleck, 1999b). For the case of a dry braid,
with no epoxy matrix, the predicted energy per unit mass equals 12.5 kJ/kg and the average axial stress is
7.25 MPa, compared with measured values of 5.0 kJ/kg and 6.01 respectively. The measured and predicted
energy absorption for the foam-filled glass/epoxy braid are as follows. The measured energy absorption is
5.8 kJ/kg and the average axial stress equals 9.57 MPa forθ0= 40◦, whereas the predicted values are 11.7 kJ/kg
and 11.5 MPa. For the foam-filled glass/epoxy braid withθ0 = 55◦ the predicted values of 18.0 kJ/kg and
5.52 MPa are in acceptable agreement with the experimental values of 10.4 kJ/kg and 4.29 MPa, respectively.
The theoretical predictions for the glass/epoxy braids consistently exceed the measured values: a plausible
explanation is the fact that the flow strength of the glass/epoxy braid at large plastic strains may be significantly
less than the initial yield value due to progressive microcracking of the epoxy matrix between the glass fibres.

When the available volume for an energy absorber imposes a greater limitation on a design than the mass of
the energy absorber, it becomes important to optimise the energy per unit volumeW/V , whereV = πr2` is
the volume of the filled tube. The energy per unit volume follows immediately from (20) as

W

V
=
(

cos 2θ∗ − cos 2θ0

sin 2θ0

)
2t

r
τY + 2σplε

∗
r . (24)

The energy per unit volume, normalised by the value for an empty tube,8, is plotted against relative density
in figure 15. The value of8 increases with increasingσc/τY and r/t . A peak value occurs atρf/ρs= 0.29,
corresponding to a switch in the lock-up condition from that of the braid to that of the core.
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6. Concluding remarks

Foam-filled braided tubes have been tested in compression and tension and their energy absorbing
capabilities have been examined. Approximate analytical models for the energy absorption per unit massW/m

and for the energy absorption per unit volumeW/V have been developed.

The foam-filled glass/epoxy tubes tested in the current study failed in compression by axisymmetric plastic
buckling of the braided tube walls, with uniaxial crushing of the foam core. The predicted energy absorbed per
unit massW/m and the energy absorbed per unit volumeW/V peak when the relative density of the foam
coreρf/ρs equals 0.2 and 0.3, respectively. The effects of the tube radius to wall thickness ratior/t and the
yield strength of the tube wall in relation to the foam cell wall strengthσc/Y were also addressed. These two
non-dimensional groups hardly affect the value of the optimal density but the energy absorbed per unit mass
increases with increasingr/t andσc/Y .
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