
ESAIM: M2AN 56 (2022) 1629–1653 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2022036 www.esaim-m2an.org

ENERGY-ADAPTIVE RIEMANNIAN OPTIMIZATION ON THE STIEFEL
MANIFOLD

Robert Altmann1,*, Daniel Peterseim2 and Tatjana Stykel2

Abstract. This paper addresses the numerical solution of nonlinear eigenvector problems such as
the Gross–Pitaevskii and Kohn–Sham equation arising in computational physics and chemistry. These
problems characterize critical points of energy minimization problems on the infinite-dimensional Stiefel
manifold. To efficiently compute minimizers, we propose a novel Riemannian gradient descent method
induced by an energy-adaptive metric. Quantified convergence of the methods is established under suit-
able assumptions on the underlying problem. A non-monotone line search and the inexact evaluation of
Riemannian gradients substantially improve the overall efficiency of the method. Numerical experiments
illustrate the performance of the method and demonstrates its competitiveness with well-established
schemes.
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1. Introduction

This paper is devoted to the numerical solution of energy minimization problems stated on the infinite-
dimensional Stiefel manifold of index 𝑁 containing 𝑁 -tuples of 𝐿2-orthonormal functions. The Kohn–Sham
model [19, 23, 25] is a prototypical example. In this popular model from density functional theory in compu-
tational chemistry, the state of the system is described by 𝑁 > 1 functions (orbitals), which need to satisfy
𝐿2-orthogonality conditions. The ground state of the system minimizes the Kohn–Sham energy under these
orthogonality constraints, i.e., on the Stiefel manifold of index 𝑁 , cf. [36]. For 𝑁 = 1, the Stiefel manifold
boils down to the unit sphere in 𝐿2. In this special case, the Gross–Pitaevskii model for Bose–Einstein conden-
sates of ultracold bosonic gases [26, 29] is a relevant example. Its ground state is the global minimizer of the
corresponding Gross–Pitaevskii energy functional on the Stiefel manifold which simply represents a unit mass
constraint.

More generally, the ground states of energy functionals on the Stiefel manifold as well as further critical
points are characterized by coupled systems of eigenvalue problems of partial differential equations (PDEs)
with eigenvector nonlinearities, so-called nonlinear eigenvector problems. Existing approximation methods for
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these problems are either linked to linear eigenvalue solvers or to Riemannian optimization. A well-known
iteration scheme for the nonlinear eigenvector problem is the self-consistent field iteration (SCF). Each SFC
iteration step involves the solution of a linear eigenvalue problem, see, e.g., [9,10,13] and [21] for its connection
to Newton’s method. On the Riemmanian side, the direct constrained minimization algorithm (DCM) is very
popular. DCM results from a standard minimization approach [3,31,35] and is based on the Riemannian gradient
descent method in 𝐿2. However, this method requires suitable preconditioning to work. In the special case of the
Gross–Pitaevskii eigenvalue problem, the DCM is known as the discrete normalized gradient flow [7]. Although
empirically successful, the preconditioning or stable time discretization comes with the drawback of deviating
from the gradient descent structure. In this case, the energy decay cannot be guaranteed anymore. In [18],
an alternative Riemannian gradient descent scheme was proposed for the special case of the Gross–Pitaevskii
problem, which is based on a gradient flow defined in an energy-adaptive metric. The resulting method is
convergent and energy diminishing for sufficiently small step sizes. The energy diminishing property even gives
rise to global convergence to the ground state [18] and turns out to be valuable in the context of reliable
a posteriori error control [17].

In this paper, we generalize this promising yet simple energy-adaptive Riemannian descent method to non-
linear eigenvector problems formulated on the Stiefel manifold. The general functional analytical setting of the
considered problems is presented in Section 2. Details on the infinite-dimensional Stiefel manifold, its tangent
and normal spaces, and the orthogonal projection onto the tangent space are then discussed in Section 3. Therein,
we show that the mentioned projection can be characterized by a saddle point problem, which facilitates the
proposed algorithm significantly. Finally, several retractions are introduced, which are needed to transform tan-
gent vectors back to the manifold. Section 4 presents the novel energy-adaptive Riemannian gradient descent
method. Its convergence analysis generalizes the approach of [38] for 𝑁 = 1. It is independent of the space
dimension and, hence, also independent of possible spatial discretization by finite elements, spectral methods or
related schemes. The convergence is further accelerated by the non-monotone line search algorithm of [34,39].
Moreover, we identify a connection to a preconditioned version of DCM, which motivates the substantial reduc-
tion of the computational complexity of the new method related on inexact gradient computations. In Section 5,
we show that the Gross–Pitaevskii and Kohn–Sham models fit into the given framework. Numerical experiments
for the Kohn–Sham model illustrate the performance of the presented method. Using the step size control and
suitable inexact gradient computations prove the new approach competitive with established methods such as
SCF and DCM.

2. Energy minimization problem on the Stiefel manifold

This section introduces an abstract constrained PDE energy minimization problem and its connection to
a coupled system of nonlinear eigenvector problems formulated on the infinite-dimensional Stiefel manifold of
index 𝑁 . Particular examples such as the Gross–Pitaevskii eigenvalue problem and the Kohn–Sham model will
be discussed in detail in Section 5.

2.1. Spaces and bilinear forms

We consider a space 𝑉 ⊆ 𝐻1(Ω) for a given domain Ω ⊆ R𝑑 and define

𝑉 := 𝑉 𝑁 , 𝐻 :=
[︀
𝐿2(Ω)

]︀𝑁
with 𝑁 ≥ 1. The suitable choice of the Hilbert space 𝑉 depends on the particular application, cf. the
examples in Section 5. Let 𝑉 * denote the dual space of 𝑉 . We assume that 𝑉 ⊂ 𝐻 ⊂ 𝑉 * form a Gelfand
triple ([37], Chap. 23.4). Throughout this paper, we use the row-vector notation for 𝑁 -frames, i.e., we write
𝑣 = (𝑣1, . . . , 𝑣𝑁 ) ∈ 𝑉 . This allows us to adapt the notion of typical matrix-vector multiplication, i.e., we may
multiply 𝑣 by an 𝑁×𝑁 matrix from the right, leading again to an element of 𝑉 . Furthermore, for 𝑣,𝑤 ∈ 𝐻, we
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define the dot product 𝑣 ·𝑤 :=
∑︀𝑁

𝑗=1 𝑣𝑗𝑤𝑗 . We say that the components of 𝑣 ∈ 𝑉 ∖{0} are linearly independent,
if there is no non-zero vector 𝑥 ∈ R𝑁 such that 𝑣𝑥 = 0.

On the pivot space 𝐻, we introduce an outer product J · , · K𝐻 : 𝐻 × 𝐻 → R𝑁×𝑁 and an inner product
(·, ·)𝐻 : 𝐻 ×𝐻 → R. More precisely, for 𝑣,𝑤 ∈ 𝐻, we define

J𝑣,𝑤K𝐻 :=

⎡⎢⎣ (𝑣1, 𝑤1)𝐿2(Ω) . . . (𝑣1, 𝑤𝑁 )𝐿2(Ω)

...
. . .

...
(𝑣𝑁 , 𝑤1)𝐿2(Ω) . . . (𝑣𝑁 , 𝑤𝑁 )𝐿2(Ω)

⎤⎥⎦ ∈ R𝑁×𝑁 (2.1)

and

(𝑣,𝑤)𝐻 :=
𝑁∑︁

𝑗=1

(𝑣𝑗 , 𝑤𝑗)𝐿2(Ω) = tr J𝑣,𝑤K𝐻 , (2.2)

where tr denotes the trace of a matrix. The inner product (2.2) induces the norm ‖𝑣‖𝐻 =
√︀

(𝑣,𝑣)𝐻 on 𝐻. Some
properties of the outer product (2.1) are collected in the following lemma, which follows from straight-forward
calculations.

Lemma 2.1. Consider 𝑣,𝑤 ∈ 𝐻 and an arbitrary matrix 𝑆 ∈ R𝑁×𝑁 . Then it holds that

J𝑣,𝑤𝑆K𝐻 = J𝑣,𝑤K𝐻𝑆, J𝑣𝑆,𝑤K𝐻 = 𝑆𝑇 J𝑣,𝑤K𝐻 , J𝑣,𝑤K𝐻 = J𝑤,𝑣K𝑇
𝐻 .

For the definition of the energy in the next subsection, we further introduce a (problem-dependent) bilinear
form 𝑎𝜑 : 𝑉 × 𝑉 → R for a fixed 𝜑 ∈ 𝑉 . With the density function 𝜌(𝜑) = 𝜑 · 𝜑, we consider

𝑎𝜑(𝑣,𝑤) = 𝑎0(𝑣,𝑤) +
∫︁

Ω

𝛾(𝜌(𝜑))𝑣 ·𝑤 d𝑟 =
𝑁∑︁

𝑗=1

𝑎̃𝜑(𝑣𝑗 , 𝑤𝑗) (2.3)

for 𝑣,𝑤 ∈ 𝑉 . Here, 𝑎0 : 𝑉 ×𝑉 → R is a bilinear form, which is independent of 𝜑, and 𝛾 : R → R is a continuous
nonlinear function with 𝛾(0) = 0. Later, 𝑎0 and the term with 𝛾 will correspond, respectively, to the quadratic
part and the nonlinear part of the energy. Note that (2.3) encodes a special structure, i.e., 𝑎𝜑 can be written as
a sum with a bilinear form 𝑎̃𝜑 : 𝑉 × 𝑉 → R. Within the abstract setting, we consider the following assumption.

Assumption 2.2 (Bilinear form 𝑎̃𝜑). For a fixed 𝜑 ∈ 𝑉 , 𝑎̃𝜑 from (2.3) is a symmetric, bounded, and coercive
bilinear form on 𝑉 .

By equation (2.3), the bilinear from 𝑎𝜑 inherits the inner product structure from 𝑎̃𝜑, meaning that 𝑎𝜑 is
symmetric, bounded, and coercive on 𝑉 . Thus, it defines an inner product on 𝑉 which induces the norm

‖𝑣‖𝑎𝜑
=
√︁
𝑎𝜑(𝑣,𝑣), 𝑣 ∈ 𝑉.

The assumed Gelfand structure implies the existence of a constant 𝐶𝐻 > 0 such that ‖𝑣‖𝐻 ≤ 𝐶𝐻 ‖𝑣‖𝑎0 .
Moreover, for a bounded 𝜑 ∈ 𝑉 ∩ [𝐿∞(Ω)]𝑁 , there exists a constant 𝑐𝐸 > 0 such that

𝑐𝐸 ‖𝑣‖𝑎𝜑
≤ ‖𝑣‖𝑎0 ≤ ‖𝑣‖𝑎𝜑

for all 𝑣 ∈ 𝑉.

The corresponding operator formulation of the bilinear form 𝑎𝜑 reads

⟨𝒜𝜑𝑣,𝑤⟩ := 𝑎𝜑(𝑣,𝑤) for all 𝑣,𝑤 ∈ 𝑉, (2.4)

with a linear operator 𝒜𝜑 : 𝑉 → 𝑉 *. Assumption 2.2 implies that 𝒜𝜑 is symmetric, bounded, and coercive.
Hence, it is invertible (for fixed 𝜑). Its inverse satisfies

𝑎𝜑

(︁
𝒜−1

𝜑 𝑣,𝑤
)︁

= (𝑣,𝑤)𝐻 for all 𝑣,𝑤 ∈ 𝑉. (2.5)

Next, we show some useful properties of the matrix
r
𝑣,𝒜−1

𝜑 𝑣
z

𝐻
.
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Proposition 2.3. Let 𝜑,𝑣 ∈ 𝑉 and let 𝒜𝜑 be defined as in (2.4). Then, under Assumption 2.2, the matrixr
𝑣,𝒜−1

𝜑 𝑣
z

𝐻
∈ R𝑁×𝑁 is symmetric positive semidefinite. If, additionally, 𝑣 ̸= 0 and its components are linearly

independent, then
r
𝑣,𝒜−1

𝜑 𝑣
z

𝐻
is positive definite.

Proof. Due to the additive structure of (2.3), there exists a symmetric and coercive operator 𝒜𝜑 : 𝑉 → 𝑉 *

corresponding to the bilinear form 𝑎̃𝜑 such that

⟨𝒜𝜑𝑣,𝑤⟩ =
𝑁∑︁

𝑗=1

⟨
𝒜𝜑𝑣𝑗 , 𝑤𝑗

⟩
for all 𝑣,𝑤 ∈ 𝑉.

Thus, we conclude that 𝒜−1
𝜑 𝑣 =

(︁
𝒜−1

𝜑 𝑣1, . . . ,𝒜−1
𝜑 𝑣𝑁

)︁
∈ 𝑉 . Moreover, since 𝒜𝜑 is symmetric, so is its inverse,

which implies (︁r
𝑣,𝒜−1

𝜑 𝑣
z

𝐻

)︁
𝑖𝑗

=
(︁
𝑣𝑖, (𝒜−1

𝜑 𝑣)𝑗

)︁
𝐿2(Ω)

=
(︁
𝑣𝑖,𝒜−1

𝜑 𝑣𝑗

)︁
𝐿2(Ω)

=
(︁
𝑣𝑗 , 𝒜−1

𝜑 𝑣𝑖

)︁
𝐿2(Ω)

=
(︁
𝑣𝑗 , (𝒜−1

𝜑 𝑣)𝑖

)︁
𝐿2(Ω)

=
(︁r
𝑣,𝒜−1

𝜑 𝑣
z

𝐻

)︁
𝑗𝑖
.

Further, for an arbitrary vector 𝑥 ∈ R𝑁 , we get

𝑥𝑇
(︁r
𝑣,𝒜−1

𝜑 𝑣
z

𝐻
𝑥
)︁

=
𝑁∑︁

𝑖=1

𝑁∑︁
𝑗=1

(︁
𝑣𝑖,𝒜−1

𝜑 𝑣𝑗

)︁
𝐿2(Ω)

𝑥𝑖 𝑥𝑗 =
(︁
𝑣𝑥,𝒜−1

𝜑 (𝑣𝑥)
)︁

𝐿2(Ω)

= 𝑎̃𝜑

(︁
𝒜−1

𝜑 (𝑣𝑥),𝒜−1
𝜑 (𝑣𝑥)

)︁
≥ 0.

This shows that
r
𝑣,𝒜−1

𝜑 𝑣
z

𝐻
is positive semidefinite. Finally, if 𝑣 ̸= 0 has linearly independent components,

then for all 𝑥 ∈ R𝑁 ∖ {0}, we have 𝑣𝑥 ̸= 0 and, hence,
r
𝑣,𝒜−1

𝜑 𝑣
z

𝐻
is positive definite. �

2.2. Variational form and nonlinear eigenvector problem

Given an index 𝑁 ∈ N and the space 𝑉 , let

St(𝑁,𝑉 ) := {𝜑 ∈ 𝑉 : J𝜑,𝜑K𝐻 = 𝐼𝑁}

denote the infinite-dimensional Stiefel manifold of index 𝑁 . Here, 𝐼𝑁 is the identity matrix in R𝑁×𝑁 . We will
see in Section 3 that St(𝑁,𝑉 ) admits a structure of an embedded submanifold of the Hilbert space 𝑉 . Such
a manifold was previously considered in [16,33].

This paper is devoted to the abstract constrained energy minimization problem

min
𝜑∈St(𝑁,𝑉 )

ℰ(𝜑) (2.6)

with the energy functional

ℰ(𝜑) :=
1
2
𝑎0(𝜑,𝜑) +

1
2

∫︁
Ω

Γ(𝜌(𝜑)) d𝑟, Γ(𝜌) =
∫︁ 𝜌

0

𝛾(𝑡) d𝑡. (2.7)

Throughout the paper, we make the (physically meaningful) assumption that ℰ is orthogonally invariant in the
sense that ℰ(𝜑𝑄) = ℰ(𝜑) for any orthogonal matrix 𝑄 ∈ R𝑁×𝑁 . This means that the energy depends only on
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the space spanned by the components of 𝜑 and not on a particular choice of 𝜑. This condition is fulfilled in the
applications we are interested in, see Section 5.

We are seeking critical points of the energy ℰ which represent low-energy states. The state of minimal energy,
which is called the ground state, is of particular interest. Critical points of the energy subject to the constraint
are characterized by a coupled system of nonlinear eigenvector problems associated with the bilinear form 𝑎𝜑

introduced in (2.3). The connection follows from the observation that the directional derivative Dℰ(𝜑)[𝑣] of ℰ
at 𝜑 along 𝑣 is given by

Dℰ(𝜑)[𝑣] = 𝑎𝜑(𝜑,𝑣) for all 𝑣 ∈ 𝑉. (2.8)

The variational formulation of the nonlinear eigenvector problem then reads: seek 𝜑 ∈ St(𝑁,𝑉 ) and 𝑁 eigen-
values 𝜆1, . . . , 𝜆𝑁 ∈ R such that

𝑎̃𝜑(𝜑𝑗 , 𝑣𝑗) = 𝜆𝑗 (𝜑𝑗 , 𝑣𝑗)𝐿2(Ω) for all (𝑣1, . . . , 𝑣𝑁 ) ∈ 𝑉. (2.9)

We emphasize that all these problems are coupled, since the bilinear form 𝑎̃𝜑 contains the information on the
entire 𝑁 -frame 𝜑.

3. Geometry of the infinite-dimensional Stiefel manifold

In this section, we investigate the geometric structure of the Stiefel manifold St(𝑁,𝑉 ). First, we state that
St(𝑁,𝑉 ) is an embedded submanifold of the Hilbert space 𝑉 . This result can be proved analogously to the
finite-dimensional case of the Stiefel matrix manifold; see Section 3.3.2 of [2].

Proposition 3.1. The Stiefel manifold St(𝑁,𝑉 ) is a closed embedded submanifold of the Hilbert space 𝑉 . It
has co-dimension 𝑁(𝑁 + 1)/2.

The tangent space of St(𝑁,𝑉 ) at 𝜑 ∈ St(𝑁,𝑉 ) is given by

𝑇𝜑 St(𝑁,𝑉 ) := {𝜂 ∈ 𝑉 : J𝜂,𝜑K𝐻 + J𝜑,𝜂K𝐻 = 0𝑁}.

Hence, 𝑇𝜑 St(𝑁,𝑉 ) contains all functions 𝜂 ∈ 𝑉 for which the matrix J𝜂,𝜑K𝐻 is skew-symmetric.

3.1. Hilbert metric and normal space

The simplest Riemannian metric on the Stiefel manifold St(𝑁,𝑉 ) is the Hilbert metric 𝑔𝐻 inherited from the
ambient space 𝑉 ⊂ 𝐻. It is given by

𝑔𝐻(𝜂, 𝜁) = (𝜂, 𝜁)𝐻 = tr J𝜂, 𝜁K𝐻 for all 𝜂, 𝜁 ∈ 𝑇𝜑 St(𝑁,𝑉 ).

This metric turns St(𝑁,𝑉 ) into a Riemannian submanifold of 𝑉 . The normal space at 𝜑 ∈ St(𝑁,𝑉 ) with respect
to 𝑔𝐻 is then defined as

(𝑇𝜑 St(𝑁,𝑉 ))⊥𝐻 = {𝑧 ∈ 𝑉 : 𝑔𝐻(𝑧,𝜂) = 0 for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 )}.

The following proposition gives an explicit characterization of this space. Its proof is similar to the finite-
dimensional setting, which can be found in Section 2.2.1 of [14].

Proposition 3.2. The normal space (𝑇𝜑 St(𝑁,𝑉 ))⊥𝐻 at 𝜑 ∈ St(𝑁,𝑉 ) is given by

(𝑇𝜑 St(𝑁,𝑉 ))⊥𝐻 = {𝜑𝑆 ∈ 𝑉 : 𝑆 ∈ 𝒮sym(𝑁)}, (3.1)

where 𝒮sym(𝑁) denotes the set of all real symmetric 𝑁 ×𝑁 matrices.
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We now introduce an 𝐻-orthonormal basis of (𝑇𝜑 St(𝑁,𝑉 ))⊥𝐻 . Let 𝑆𝑖𝑗 ∈ 𝒮sym(𝑁) denote the (normalized)
symmetric matrix which has a non-zero entry at positions (𝑖, 𝑗) and (𝑗, 𝑖) and a zero otherwise. More precisely,
we have

𝑆𝑖𝑖 = 𝑒𝑖 𝑒
𝑇
𝑖 , 1 ≤ 𝑖 ≤ 𝑁,

𝑆𝑖𝑗 = 1√
2

(︀
𝑒𝑖 𝑒

𝑇
𝑗 + 𝑒𝑗 𝑒

𝑇
𝑖

)︀
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁,

(3.2)

where 𝑒𝑗 denotes the 𝑗th column of 𝐼𝑁 . Note that these matrices form a basis of 𝒮sym(𝑁). For 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁 ,
we define the functions 𝜑𝑖𝑗 := 𝜑𝑆𝑖𝑗 ∈ (𝑇𝜑 St(𝑁,𝑉 ))⊥𝐻 . This means that

𝜑𝑖𝑖 = (0, . . . , 0, 𝜑𝑖, 0, . . . , 0), 1 ≤ 𝑖 ≤ 𝑁,

𝜑𝑖𝑗 = 1√
2

(0, . . . , 0, 𝜑𝑗 , 0, . . . , 0, 𝜑𝑖, . . . , 0), 1 ≤ 𝑖 < 𝑗 ≤ 𝑁,
(3.3)

where 𝜑𝑗 (the 𝑗th component of 𝜑) is placed at the 𝑖th position and 𝜑𝑖 at the 𝑗th position. Properties of these
functions are summarized in the following proposition.

Proposition 3.3. Let 𝜑 ∈ St(𝑁,𝑉 ). Then the functions 𝜑𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁 , introduced in (3.3) form an
H-orthonormal basis of (𝑇𝜑 St(𝑁,𝑉 ))⊥𝐻 .

Proof. First, we show the 𝐻-orthonormality of the functions 𝜑𝑖𝑗 . Since 𝜑 ∈ St(𝑁,𝑉 ), we obtain

(︀
𝜑𝑖𝑖,𝜑ℓℓ

)︀
𝐻

=
𝑁∑︁

𝑚=1

(︀
𝜑𝑖𝑖

𝑚, 𝜑
ℓℓ
𝑚

)︀
𝐿2(Ω)

=
𝑁∑︁

𝑚=1

𝛿𝑖𝑚𝛿ℓ𝑚 (𝜑𝑖, 𝜑ℓ)𝐿2(Ω) = 𝛿𝑖ℓ.

For 𝑘 < ℓ, we have(︀
𝜑𝑖𝑖,𝜑𝑘ℓ

)︀
𝐻

=
(︀
𝜑𝑖, 𝜑

𝑘ℓ
𝑖

)︀
𝐿2(Ω)

= 1√
2
𝛿𝑖𝑘(𝜑𝑖, 𝜑ℓ)𝐿2(Ω) + 1√

2
𝛿𝑖ℓ(𝜑𝑖, 𝜑𝑘)𝐿2(Ω) =

√
2 𝛿𝑖𝑘𝛿𝑖ℓ = 0.

Finally, for 𝑖 < 𝑗 and 𝑘 < ℓ, which implies 𝛿𝑖ℓ𝛿𝑗𝑘 = 0, we derive

(︀
𝜑𝑖𝑗 ,𝜑𝑘ℓ

)︀
𝐻

=
𝑁∑︁

𝑚=1

(︀
𝜑𝑖𝑗

𝑚, 𝜑
𝑘ℓ
𝑚

)︀
𝐿2(Ω)

=
1
2

(𝛿𝑖𝑘𝛿𝑗ℓ + 𝛿𝑗ℓ𝛿𝑖𝑘) = 𝛿𝑖𝑘𝛿𝑗ℓ.

Obviously, the functions 𝜑𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁 , span (𝑇𝜑 St(𝑁,𝑉 ))⊥𝐻 and, hence, they form an 𝐻-orthonormal
basis of (𝑇𝜑 St(𝑁,𝑉 ))⊥𝐻 . �

3.2. The 𝑎𝜑-metric, normal space, and 𝑎𝜑-orthogonal projection

An alternative Riemannian metric on the Stiefel manifold St(𝑁,𝑉 ) can be defined by using the inner product
𝑎𝜑(·, ·) introduced in (2.3) as

𝑔𝑎(𝜂, 𝜁) = 𝑎𝜑(𝜂, 𝜁) for all 𝜂, 𝜁 ∈ 𝑇𝜑 St(𝑁,𝑉 ).

Then the normal space at 𝜑 ∈ St(𝑁,𝑉 ) with respect to 𝑔𝑎 is defined as

(𝑇𝜑 St(𝑁,𝑉 ))⊥𝑎 = {𝑧 ∈ 𝑉 : 𝑔𝑎(𝑧,𝜂) = 0 for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 )}.

Our goal is now to construct a basis of (𝑇𝜑 St(𝑁,𝑉 ))⊥𝑎 . To this end, we introduce the functions 𝜓𝑘ℓ ∈ 𝑉
for 1 ≤ 𝑘 ≤ ℓ ≤ 𝑁 as solutions to

𝑎𝜑

(︀
𝜓𝑘ℓ,𝜂

)︀
= 0 for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ), (3.4a)(︀

𝜓𝑘ℓ,𝜑𝑖𝑗
)︀
𝐻

= 𝛿𝑖𝑘𝛿𝑗ℓ for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁, (3.4b)

where 𝜑𝑖𝑗 are defined in (3.3). The following proposition establishes the well-posedness of these problems.
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Proposition 3.4. There exist unique functions 𝜓𝑘ℓ ∈ 𝑉 , 1 ≤ 𝑘 ≤ ℓ ≤ 𝑁 , satisfying (3.4).

Proof. Let the indices 1 ≤ 𝑘 ≤ ℓ ≤ 𝑁 be arbitrary but fixed. We can write (3.4) as a saddle point problem.
Hence, we seek for 𝜓𝑘ℓ ∈ 𝑉 and Lagrange multipliers 𝜇𝑖𝑗 ∈ R, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁 , such that

𝑎𝜑(𝜓𝑘ℓ,𝑣) +
∑︁
𝑖≤𝑗

(𝜑𝑖𝑗 ,𝑣)𝐻𝜇
𝑖𝑗 = 0 for all 𝑣 ∈ 𝑉,

(𝜓𝑘ℓ,𝜑𝑖𝑗)𝐻 = 𝛿𝑖𝑘𝛿𝑗ℓ for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁.

By Assumption 2.2, the bilinear form 𝑎𝜑 is coercive. Moreover, the number of constraints equals 𝑁(𝑁 + 1)/2
and is, hence, finite. In this case, the corresponding inf-sup stability follows from the linear independence of the
functions 𝜑𝑖𝑗 . As a result, Chapter III.4 of [8] implies the existence of a unique solution 𝜓𝑘ℓ ∈ 𝑉 . Note that 𝜓𝑘ℓ

satisfies (3.4a), since by Proposition 3.3, we have (𝜑𝑖𝑗 ,𝜂)𝐻 = 0 for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ). �

Next, we characterize the normal space (𝑇𝜑 St(𝑁,𝑉 ))⊥𝑎 by providing a basis of it.

Proposition 3.5. Let 𝜑 ∈ St(𝑁,𝑉 ). Then the functions 𝜓𝑘ℓ ∈ 𝑉 , 1 ≤ 𝑘 ≤ ℓ ≤ 𝑁 , satisfying (3.4) form a basis
of the normal space (𝑇𝜑 St(𝑁,𝑉 ))⊥𝑎 .

Proof. It follows from (3.4a) that 𝜓𝑘ℓ ∈ (𝑇𝜑 St(𝑁,𝑉 ))⊥𝑎 . Further, equation (3.4b) implies that these functions
are linearly independent. Taking into account that (𝑇𝜑 St(𝑁,𝑉 ))⊥𝑎 has dimension 𝑁(𝑁 + 1)/2, we obtain the
result. �

Any element 𝑣 ∈ 𝑉 can be uniquely decomposed as 𝑣 = 𝑃𝜑(𝑣) + 𝑃⊥𝜑 (𝑣), where 𝑃𝜑 and 𝑃⊥𝜑 denote the
𝑎𝜑-orthogonal projections onto 𝑇𝜑 St(𝑁,𝑉 ) and (𝑇𝜑 St(𝑁,𝑉 ))⊥𝑎 , respectively. The projection operator 𝑃𝜑

satisfies the conditions 𝑃𝜑 ∘ 𝑃𝜑 = 𝑃𝜑 and

J𝑃𝜑(𝑣),𝜑K𝐻 + J𝜑, 𝑃𝜑(𝑣)K𝐻 = 0𝑁 , (3.5a)
𝑎𝜑(𝑣 − 𝑃𝜑(𝑣),𝜂) = 0 for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ). (3.5b)

Note that (3.5) implies that range𝑃𝜑 = 𝑇𝜑 St(𝑁,𝑉 ) and ker𝑃𝜑 = (𝑇𝜑 St(𝑁,𝑉 ))⊥𝑎 . For the construction of such
an operator, we use the basis functions 𝜓𝑘ℓ. It turns out that for any 𝑣 ∈ 𝑉 , 𝑃𝜑(𝑣) can be written as

𝑃𝜑(𝑣) = 𝑣 −
∑︁
𝑘≤ℓ

(︀
𝑣,𝜑𝑘ℓ

)︀
𝐻
𝜓𝑘ℓ (3.6)

= 𝑣 −
𝑁∑︁

𝑘=1

(𝑣𝑘, 𝜑𝑘)𝐿2(Ω)𝜓
𝑘𝑘 − 1√

2

∑︁
𝑘<ℓ

[︁
(𝑣𝑘, 𝜑ℓ)𝐿2(Ω) + (𝑣ℓ, 𝜑𝑘)𝐿2(Ω)

]︁
𝜓𝑘ℓ.

The following result shows that this operator indeed satisfies the requested conditions and, hence, equals the
𝑎𝜑-orthogonal projection onto 𝑇𝜑 St(𝑁,𝑉 ).

Proposition 3.6. For 𝜑 ∈ St(𝑁,𝑉 ), the operator 𝑃𝜑 from (3.6) is the 𝑎𝜑-orthogonal projection onto
𝑇𝜑 St(𝑁,𝑉 ).

Proof. First, we emphasize that 𝑃𝜑 in (3.6) is a projection, since by Proposition 3.3 all summands (𝑣,𝜑𝑘ℓ)𝐻

vanish if 𝑣 is already an element of 𝑇𝜑 St(𝑁,𝑉 ).
Next, we verify condition (3.5a), which means that 𝑃𝜑 maps 𝑉 into 𝑇𝜑 St(𝑁,𝑉 ). Note that for 𝑘 < ℓ, we

obtain from (3.4b) that (︀
𝜓𝑘ℓ

𝑖 , 𝜑𝑖

)︀
𝐿2(Ω)

=
(︀
𝜓𝑘ℓ,𝜑𝑖𝑖

)︀
𝐻

= 𝛿𝑖𝑘𝛿𝑖ℓ = 0, 𝑖 = 1, . . . , 𝑁.
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This implies
(︀
J𝑃𝜑(𝑣),𝜑K𝐻 + J𝜑, 𝑃𝜑(𝑣)K𝐻

)︀
𝑖,𝑖

= 2
(︀
J𝑃𝜑(𝑣),𝜑K𝐻

)︀
𝑖,𝑖

= 0 for all 𝑣 ∈ 𝑉 . Further, for 𝑖 ̸= 𝑗, we
observe that(︀

J𝑃𝜑(𝑣),𝜑K𝐻 + J𝜑, 𝑃𝜑(𝑣)K𝐻

)︀
𝑖,𝑗

=
(︀
(𝑃𝜑(𝑣))𝑖, 𝜑𝑗

)︀
𝐿2(Ω)

+
(︁

(𝑃𝜑(𝑣))𝑗 , 𝜑𝑖

)︁
𝐿2(Ω)

= (𝑣𝑖, 𝜑𝑗)𝐿2(Ω) + (𝑣𝑗 , 𝜑𝑖)𝐿2(Ω)

− 1√
2

∑︁
𝑘<ℓ

[︁
(𝑣𝑘, 𝜑ℓ)𝐿2(Ω) + (𝑣ℓ, 𝜑𝑘)𝐿2(Ω)

]︁ [︁(︀
𝜓𝑘ℓ

𝑖 , 𝜑𝑗

)︀
𝐿2(Ω)

+
(︀
𝜓𝑘ℓ

𝑗 , 𝜑𝑖

)︀
𝐿2(Ω)

]︁
= (𝑣𝑖, 𝜑𝑗)𝐿2(Ω) + (𝑣𝑗 , 𝜑𝑖)𝐿2(Ω) −

∑︁
𝑘<ℓ

[︁
(𝑣𝑘, 𝜑ℓ)𝐿2(Ω) + (𝑣ℓ, 𝜑𝑘)𝐿2(Ω)

]︁
𝛿𝑖𝑘𝛿𝑗ℓ = 0.

Finally, we show the 𝑎𝜑-orthogonality property (3.5b). Indeed, for any 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ), equations (3.6) and
(3.4a) yield

𝑎𝜑(𝑣 − 𝑃𝜑(𝑣),𝜂) =
∑︁
𝑘≤ℓ

(︀
𝑣,𝜑𝑘ℓ

)︀
𝐻
𝑎𝜑

(︀
𝜓𝑘ℓ,𝜂

)︀
= 0.

Thus, 𝑃𝜑 is the 𝑎𝜑-orthogonal projection onto 𝑇𝜑 St(𝑁,𝑉 ). �

For the Riemannian gradient descent method, which will be introduced in Section 4, we are especially inter-
ested in the projection operator 𝑃𝜑 applied to 𝜑 ∈ St(𝑁,𝑉 ). In this case, we get

𝑃𝜑(𝜑) = 𝜑−
𝑁∑︁

𝑘=1

(𝜑𝑘, 𝜑𝑘)𝐿2(Ω)𝜓
𝑘𝑘 = 𝜑−

𝑁∑︁
𝑘=1

𝜓𝑘𝑘.

Hence, for the computation of 𝑃𝜑(𝜑), one only needs the sum 𝜓 :=
∑︀𝑁

𝑘=1𝜓
𝑘𝑘 of the functions 𝜓𝑘𝑘 ∈ 𝑉 ,

𝑘 = 1, . . . , 𝑁 . It follows from (3.4) that this sum is uniquely defined by the equations

𝑎𝜑(𝜓,𝜂) = 0 for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ), (3.7a)
(𝜓,𝜑𝑆𝑖𝑗)𝐻 = 𝛿𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁. (3.7b)

The following proposition provides an explicit expression for the solution 𝜓.

Proposition 3.7. Let 𝜑 ∈ St(𝑁,𝑉 ). The unique solution of system (3.7) is given by

𝜓 = 𝒜−1
𝜑 𝜑

r
𝜑,𝒜−1

𝜑 𝜑
z−1

𝐻
. (3.8)

Proof. System (3.7) is equivalent to the saddle point problem

𝑎𝜑(𝜓,𝑣) +
∑︁
𝑖≤𝑗

(︀
𝜑𝑆𝑖𝑗 ,𝑣

)︀
𝐻
𝜇𝑖𝑗 = 0 for all 𝑣 ∈ 𝑉, (3.9a)

(︀
𝜓,𝜑𝑆𝑖𝑗

)︀
𝐻

= 𝛿𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁 (3.9b)

for 𝜓 ∈ 𝑉 and the Lagrange multipliers 𝜇𝑖𝑗 ∈ R. Using the special structure of the matrices 𝑆𝑖𝑗 in (3.2), the
constraint conditions (3.9b) can be written as sym(J𝜓,𝜑K𝐻) = 𝐼𝑁 , where sym(𝐴) = 1

2 (𝐴 + 𝐴𝑇 ) denotes the
symmetric part of a matrix 𝐴 ∈ R𝑁×𝑁 . Further, we obtain

∑︁
𝑖≤𝑗

(︀
𝜑𝑆𝑖𝑗 ,𝑣

)︀
𝐻
𝜇𝑖𝑗 =

⎛⎝𝜑∑︁
𝑖≤𝑗

𝑆𝑖𝑗𝜇𝑖𝑗 ,𝑣

⎞⎠
𝐻

= (𝜑𝑆,𝑣)𝐻
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with the symmetric matrix 𝑆 =
∑︀

𝑖≤𝑗 𝑆
𝑖𝑗𝜇𝑖𝑗 . As a result, system (3.9) takes the form

𝑎𝜑(𝜓,𝑣) + (𝜑𝑆,𝑣)𝐻 = 0 for all 𝑣 ∈ 𝑉, (3.10a)
sym(J𝜓,𝜑K𝐻) = 𝐼𝑁 . (3.10b)

Using (2.5), we derive from (3.10a) that

0 = 𝑎𝜑(𝜓,𝑣) + 𝑎𝜑

(︁
𝒜−1

𝜑 𝜑𝑆,𝑣
)︁

= 𝑎𝜑

(︁
𝜓 +𝒜−1

𝜑 𝜑𝑆,𝑣
)︁

for all 𝑣 ∈ 𝑉

and, hence, 𝜓 = −𝒜−1
𝜑 𝜑𝑆. Substituting this function into (3.10b) yields the Lyapunov equation

r
𝜑,𝒜−1

𝜑 𝜑
z

𝐻
𝑆 + 𝑆

r
𝜑,𝒜−1

𝜑 𝜑
z

𝐻
= −2𝐼𝑁 (3.11)

for 𝑆. By Proposition 2.3, the matrix
r
𝜑,𝒜−1

𝜑 𝜑
z

𝐻
is symmetric positive definite. In this case, the Lyapunov

equation (3.11) has a unique symmetric solution ([24], Thm. 12.3.2) given by 𝑆 = −
r
𝜑,𝒜−1

𝜑 𝜑
z−1

𝐻
. This finally

gives the expression (3.8). �

3.3. Retractions

Next, we introduce the concept of retractions on the Stiefel manifold St(𝑁,𝑉 ). Retractions provide a useful
tool in Riemannian optimization which allows us to keep the iteration points on the manifold.

Definition 3.8 (Retraction). Let 𝑇 St(𝑁,𝑉 ) be the tangent bundle of St(𝑁,𝑉 ). A smooth map
ℛ : 𝑇 St(𝑁,𝑉 ) → St(𝑁,𝑉 ) is called a retraction on St(𝑁,𝑉 ) if for all 𝜑 ∈ St(𝑁,𝑉 ), the restriction
ℛ𝜑 = ℛ

⃒⃒
𝑇𝜑 St(𝑁,𝑉 )

on 𝑇𝜑 St(𝑁,𝑉 ) has the following properties:

(a) ℛ𝜑(0𝜑) = ℛ(𝜑,0𝜑) = 𝜑, where 0𝜑 denotes the zero element of 𝑇𝜑 St(𝑁,𝑉 ),

(b) d
d𝑡ℛ𝜑(𝑡𝜂)

⃒⃒
𝑡=0

= 𝜂 for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ).

In Example 4.1.3 of [2] and [1,14,22,30], several retractions on the (generalized) Stiefel matrix manifold have
been introduced and compared with respect to computational cost and accuracy. Here, we extend some of the
decomposition-based retractions to the manifold St(𝑁,𝑉 ).

3.3.1. The projective retraction

First, we introduce a retraction based on the polar decomposition and show that it provides a projection
onto St(𝑁,𝑉 ).

Similarly to the matrix case, e.g., Section 9.4.3 of [15], we define the polar decomposition of 𝑣 ∈ 𝑉 as 𝑣 = 𝑢𝑆,
where 𝑢 ∈ St(𝑁,𝑉 ) and 𝑆 ∈ R𝑁×𝑁 is symmetric positive semidefinite. Such a decomposition always exists.
If the components of 𝑣 are linearly independent, then the matrix J𝑣,𝑣K𝐻 is positive definite. In this case,
𝑆 = J𝑣,𝑣K1/2

𝐻 is positive definite and the factor 𝑢 = 𝑣 J𝑣,𝑣K−1/2
𝐻 is unique.

For any (𝜑,𝜂) ∈ 𝑇 St(𝑁,𝑉 ), i.e., 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ), the components of 𝜑+ 𝜂 are linearly independent, since
the matrix

J𝜑+ 𝜂,𝜑+ 𝜂K𝐻 = J𝜑,𝜑K𝐻 + J𝜑,𝜂K𝐻 + J𝜂,𝜑K𝐻 + J𝜂,𝜂K𝐻 = 𝐼𝑁 + J𝜂,𝜂K𝐻 (3.12)

is positive definite. Then we can use the polar decomposition of 𝜑+ 𝜂 to define a retraction on St(𝑁,𝑉 ).

Proposition 3.9. For (𝜑,𝜂) ∈ 𝑇 St(𝑁,𝑉 ), the map

ℛ(𝜑,𝜂) := (𝜑+ 𝜂)(𝐼𝑁 + J𝜂,𝜂K𝐻)−1/2 (3.13)

is a retraction on St(𝑁,𝑉 ).
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Proof. Let (𝜑,𝜂) ∈ 𝑇 St(𝑁,𝑉 ). First, we verify that ℛ(𝜑,𝜂) belongs to St(𝑁,𝑉 ). Using Lemma 2.1 and (3.12),
we obtain

Jℛ(𝜑,𝜂),ℛ(𝜑,𝜂)K𝐻 =
r

(𝜑+ 𝜂)(𝐼𝑁 + J𝜂,𝜂K𝐻)−1/2
, (𝜑+ 𝜂)(𝐼𝑁 + J𝜂,𝜂K𝐻)−1/2

z

𝐻

= (𝐼𝑁 + J𝜂,𝜂K𝐻)−1/2(𝐼𝑁 + J𝜂,𝜂K𝐻)(𝐼𝑁 + J𝜂,𝜂K𝐻)−1/2 = 𝐼𝑁 ,

and, hence, ℛ(𝜑,𝜂) ∈ St(𝑁,𝑉 ). Furthermore, we have ℛ𝜑(0𝜑) = 𝜑 and

d
d𝑡ℛ𝜑(𝑡𝜂)

⃒⃒⃒
𝑡=0

= d
d𝑡 (𝜑+ 𝑡𝜂)

(︀
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

)︀−1/2
⃒⃒⃒
𝑡=0

= −𝑡 (𝜑+ 𝑡𝜂) J𝜂,𝜂K𝐻

(︀
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

)︀−3/2
+ 𝜂

(︀
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

)︀−1/2
⃒⃒⃒
𝑡=0

= 𝜂.

This shows that ℛ defined in (3.13) is the retraction on St(𝑁,𝑉 ). �

The evaluation of the retraction in (3.13) involves the computation of the outer product J𝜂,𝜂K𝐻 and the
eigenvalue decomposition

𝐼𝑁 + J𝜂,𝜂K𝐻 = 𝑄𝐷𝑄𝑇 , (3.14)

where 𝑄 ∈ R𝑁×𝑁 is orthogonal and 𝐷 = diag(𝑑1, . . . , 𝑑𝑁 ) with 𝑑𝑗 > 0 for 𝑗 = 1, . . . , 𝑁 . With this, we obtain
ℛ(𝜑,𝜂) = (𝜑+ 𝜂)𝑄𝐷−1/2𝑄𝑇 .

Remark 3.10. For stability reasons, we recommend to use J𝜑+ 𝜂,𝜑+ 𝜂K𝐻 instead of 𝐼𝑁 + J𝜂,𝜂K𝐻 in (3.14).
A similar suggestion for the generalized Stiefel matrix manifold can be found in [30]. Note that, due to (3.12),
both expressions are equivalent if 𝜑 ∈ St(𝑁,𝑉 ) and 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ).

The polar decomposition based retraction (3.13) can be viewed as a projective retraction, since it satisfies

ℛ(𝜑,𝜂) = arg min
𝜉∈St(𝑁,𝑉 )

‖𝜉 − (𝜑+ 𝜂)‖2𝐻 . (3.15)

To prove this, we first observe that for all (𝜑,𝜂) ∈ 𝑇 St(𝑁,𝑉 ), 𝜑+ 𝜂 can be represented as

𝜑+ 𝜂 = 𝑢𝐷1/2𝑄𝑇 , (3.16)

where 𝑢 ∈ St(𝑁,𝑉 ) and 𝐷,𝑄 are as in (3.14). This decomposition is an extension of the singular value
decomposition known for matrices, e.g., Section 2.4 of [15] to the elements of 𝑉 . For any 𝜉 ∈ St(𝑁,𝑉 ), we
have

‖𝜉 − (𝜑+ 𝜂)‖2𝐻 = ‖𝜉‖2𝐻 − 2 (𝜉,𝜑+ 𝜂)𝐻 + ‖𝜑+ 𝜂‖2𝐻 = 𝑁2 − 2 (𝜉,𝜑+ 𝜂)𝐻 + tr𝐷

with

(𝜉,𝜑+ 𝜂)𝐻 = tr
(︁r
𝜉,𝑢𝐷1/2𝑄𝑇

z

𝐻

)︁
= tr

(︁
J𝜉,𝑢K𝐻𝐷

1/2
)︁

=
𝑁∑︁

𝑖=1

(𝜉𝑖, 𝑢𝑖)𝐿2(Ω)

√︀
𝑑𝑖 ≤

𝑁∑︁
𝑖=1

‖𝜉𝑖‖𝐿2(Ω)‖𝑢𝑖‖𝐿2(Ω)

√︀
𝑑𝑖 = tr𝐷1/2.

For 𝜉 = 𝑢𝑄𝑇 ∈ St(𝑁,𝑉 ), the equality

(𝜉,𝜑+ 𝜂)𝐻 = tr
r
𝑢𝑄𝑇 ,𝑢𝐷1/2𝑄𝑇

z

𝐻
= tr𝐷1/2

holds, i.e., 𝜉 = 𝑢𝑄𝑇 solves (3.15). Thus, ℛ(𝜑,𝜂) = (𝜑+ 𝜂)𝑄𝐷−1/2𝑄𝑇 = 𝑢𝑄𝑇 is a projection onto St(𝑁,𝑉 ).
The following proposition shows that the retraction (3.13) is second-order bounded.
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Proposition 3.11. The retraction ℛ in (3.13) satisfies

‖ℛ(𝜑, 𝑡𝜂)− (𝜑+ 𝑡𝜂)‖𝑎𝜑
≤ 𝑡2 ‖𝜑+ 𝑡𝜂‖𝑎𝜑

‖𝜂‖2𝐻 .

Proof. The proof is given in Appendix A.1. �

3.3.2. The 𝑞𝑅-based retraction

An alternative retraction on St(𝑁,𝑉 ) can be defined by using the orthonormalization with respect to the
inner product (·, ·)𝐻 . First, we observe that for any 𝑣 = (𝑣1, . . . , 𝑣𝑁 ) ∈ 𝑉 with linearly independent components,
there exist 𝑞 ∈ St(𝑁,𝑉 ) and an upper triangular matrix 𝑅 ∈ R𝑁×𝑁 with strictly positive diagonal elements
such that 𝑣 = 𝑞𝑅. The existence of such a decomposition, called 𝑞𝑅 decomposition, can be proved constructively
by using the Gram–Schmidt orthonormalization procedure

𝑞1 := 𝑣1, 𝑞1 :=
𝑞1

‖𝑞1‖𝐿2(Ω)
,

𝑞𝑗 := 𝑣𝑗 −
𝑗−1∑︁
𝑖=1

(𝑣𝑗 , 𝑞𝑖)𝐿2(Ω) 𝑞𝑖, 𝑞𝑗 :=
𝑞𝑗

‖𝑞𝑗‖𝐿2(Ω)
, 𝑗 = 2, . . . , 𝑁.

(3.17)

With this, we obtain 𝑞 = (𝑞1, . . . , 𝑞𝑁 ) ∈ St(𝑁,𝑉 ) and

𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎣

(𝑣1, 𝑞1)𝐿2(Ω) (𝑣2, 𝑞1)𝐿2(Ω) · · · · · · (𝑣𝑁 , 𝑞1)𝐿2(Ω)

0 (𝑣2, 𝑞2)𝐿2(Ω) · · · · · · (𝑣𝑁 , 𝑞2)𝐿2(Ω)

0 0
. . .

...
...

. . . . . .
...

0 0 · · · 0 (𝑣𝑁 , 𝑞𝑁 )𝐿2(Ω)

⎤⎥⎥⎥⎥⎥⎥⎦.

Note that the matrix 𝑅 has positive diagonal elements (𝑣𝑗 , 𝑞𝑗)𝐿2(Ω) = ‖𝑞𝑗‖𝐿2(Ω). This property of 𝑅 guarantees
the uniqueness of the 𝑞𝑅 decomposition. Let qf(𝑣) denote the factor 𝑞 in 𝑣 = 𝑞𝑅. This allows us to define
a 𝑞𝑅-based retraction on the Stiefel manifold St(𝑁,𝑉 ).

Proposition 3.12. For (𝜑,𝜂) ∈ 𝑇 St(𝑁,𝑉 ), the map

ℛ(𝜑,𝜂) := qf(𝜑+ 𝜂) (3.18)

is a retraction on St(𝑁,𝑉 ).

Proof. Obviously, ℛ in (3.18) is well defined on 𝑇 St(𝑁,𝑉 ). Further, by definition, we have ℛ(𝜑,𝜂) ∈ St(𝑁,𝑉 )
for all (𝜑,𝜂) ∈ 𝑇 St(𝑁,𝑉 ) and ℛ𝜑(0𝜑) = 𝜑.

In order to prove the second property in Definition 3.8, we follow the lines of Example 8.1.5 from [2]. For any
(𝜑,𝜂) ∈ 𝑇 St(𝑁,𝑉 ), we consider a curve 𝜙(𝑡) = 𝜑+ 𝑡𝜂. Let 𝜙(𝑡) = 𝑞(𝑡)𝑅(𝑡) be the 𝑞𝑅 decomposition of 𝜙(𝑡).
Then, using the product rule, we have

𝜙̇(𝑡) = 𝑞̇(𝑡)𝑅(𝑡) + 𝑞(𝑡)𝑅̇(𝑡), (3.19)

where 𝜙̇(𝑡) = d
d𝑡𝜙(𝑡) and similar for 𝑞(𝑡) and 𝑅(𝑡). For the sake of brevity, we omit the argument 𝑡 in what

follows. Computing the outer product of 𝑞 and 𝜙̇, we obtain

J𝑞, 𝜙̇K𝐻 = J𝑞, 𝑞̇K𝐻𝑅+ J𝑞, 𝑞K𝐻𝑅̇ = J𝑞, 𝑞̇K𝐻𝑅+ 𝑅̇. (3.20)

Multiplication of (3.20) by 𝑅−1 from the right yields

J𝑞, 𝜙̇K𝐻𝑅
−1 = J𝑞, 𝑞̇K𝐻 + 𝑅̇𝑅−1,
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Algorithm 1. Modified Gram–Schmidt procedure.
1: Input: 𝑣 = (𝑣1, . . . , 𝑣𝑁 ) ∈ 𝑉
2: for 𝑖 = 1, . . . , 𝑁 do
3: 𝑟𝑖𝑖 = ‖𝑣𝑖‖𝐿2(Ω)

4: 𝑞𝑖 = 𝑣𝑖/𝑟𝑖𝑖

5: for 𝑗 = 𝑖 + 1, . . . , 𝑁 do
6: 𝑟𝑖𝑗 = (𝑣𝑗 , 𝑞𝑖)𝐿2(Ω)

7: 𝑣𝑗 = 𝑣𝑗 − 𝑟𝑖𝑗𝑞𝑖

8: Output: 𝑞 = (𝑞1, . . . , 𝑞𝑁 ) ∈ St(𝑁, 𝑉 ) and 𝑅 = [𝑟𝑖𝑗 ] ∈ R𝑁×𝑁 such that 𝑣 = 𝑞𝑅

where J𝑞, 𝑞̇K𝐻 is skew-symmetric and 𝑅̇𝑅−1 is upper triangular. Since 𝑀 := J𝑞, 𝜙̇K𝐻𝑅
−1 can uniquely be

represented as 𝑀 = 𝜚skew(𝑀) + 𝜚up(𝑀), where 𝜚skew(𝑀) is skew-symmetric and 𝜚up(𝑀) is upper triangular,
we obtain

𝜚skew

(︀
J𝑞, 𝜙̇K𝐻𝑅

−1
)︀

= J𝑞, 𝑞̇K𝐻 , 𝜚up

(︀
J𝑞, 𝜙̇K𝐻𝑅

−1
)︀

= 𝑅̇𝑅−1.

Further, multiplying (3.20) by 𝑞 from the left and subtracting the resulting equation from (3.19), we find

𝜙̇− 𝑞 J𝑞, 𝜙̇K𝐻 = 𝑞̇𝑅− 𝑞 𝜚skew

(︀
J𝑞, 𝜙̇K𝐻𝑅

−1
)︀
𝑅,

which implies

𝑞̇ = (𝜙̇− 𝑞 J𝑞, 𝜙̇K𝐻)𝑅−1 + 𝑞 𝜚skew

(︀
J𝑞, 𝜙̇K𝐻𝑅

−1
)︀
.

Taking into account that 𝜙̇(0) = 𝜂, 𝜙(0) = 𝜑 = 𝑞(0), 𝑅(0) = 𝐼𝑁 , and that J𝜑,𝜂K𝐻 is skew-symmetric, we
finally obtain

d
d𝑡ℛ𝜑(𝑡𝜂)

⃒⃒⃒
𝑡=0

= d
d𝑡 𝑞(𝑡)

⃒⃒⃒
𝑡=0

= 𝜂 − 𝜑 J𝜑,𝜂K𝐻 + 𝜑 J𝜑,𝜂K𝐻 = 𝜂,

which completes the proof. �

The 𝑞𝑅-based retraction (3.18) can be computed by the modified Gram–Schmidt procedure as presented in
Algorithm 1 which is more numerically stable than the Gram–Schmidt process (3.17). An alternative approach
for evaluating (3.18) is based on computing the Cholesky factorization J𝜑+ 𝜂,𝜑+ 𝜂K𝐻 = 𝐹𝑇𝐹 with an upper
triangular matrix 𝐹 ∈ R𝑁×𝑁 and determining

ℛ(𝜑,𝜂) = (𝜑+ 𝜂)𝐹−1. (3.21)

It is an extension of the Cholesky-QR-based method on the generalized matrix Stiefel manifold presented
in [30]. Compared to the polar decomposition based retraction (3.13), the computation of (3.21) has lower
numerical complexity, especially for large 𝑁 , since it requires the Cholesky factorization instead of the eigenvalue
decomposition.

The following proposition establishes the second-order boundedness of the 𝑞𝑅-based retraction (3.18).

Proposition 3.13. The retraction ℛ in (3.18) satisfies

‖ℛ(𝜑, 𝑡𝜂)− (𝜑+ 𝑡𝜂)‖𝑎𝜑
≤ 𝑡2√

2
‖𝜑+ 𝑡𝜂‖𝑎𝜑

(︀
1 + 𝑡2‖𝜂‖2𝐻

)︀1/2‖𝜂‖2𝐻 .

Proof. The proof is given in Appendix A.2. �
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4. Energy-adaptive Riemannian gradient descent method

The simplest approach to minimize the energy functional ℰ over St(𝑁,𝑉 ) is the gradient descent method,
which requires the Riemannian gradient of ℰ . For a smooth scalar field ℰ on the Riemannian manifold St(𝑁,𝑉 ),
the Riemannian gradient grad ℰ(𝜑) of ℰ at 𝜑 ∈ St(𝑁,𝑉 ) with respect to the metric 𝑔𝑎 is defined as the unique
element of the tangent space 𝑇𝜑 St(𝑁,𝑉 ) satisfying

𝑔𝑎(grad ℰ(𝜑),𝜂) = 𝑎𝜑(grad ℰ(𝜑),𝜂) = Dℰ(𝜑)[𝜂] for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ).

Since St(𝑁,𝑉 ) is an embedded submanifold of 𝑉 , we obtain the following expression for the Riemannian
gradient.

Proposition 4.1. The Riemannian gradient of the energy functional ℰ : 𝑉 → R from (2.7) at 𝜑 ∈ St(𝑁,𝑉 )
with respect to the metric 𝑔𝑎 is given by

grad ℰ(𝜑) = 𝑃𝜑(𝜑) = 𝜑−𝒜−1
𝜑 𝜑

r
𝜑,𝒜−1

𝜑 𝜑
z−1

𝐻
. (4.1)

Proof. Using (2.8), we obtain

𝑎𝜑(grad ℰ(𝜑),𝜂) = Dℰ(𝜑)[𝜂] = 𝑎𝜑(𝜑,𝜂) for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ).

Hence, 𝑎𝜑(grad ℰ(𝜑)−𝜑,𝜂) = 0 for all 𝜂 ∈ 𝑇𝜑 St(𝑁,𝑉 ). This implies that grad ℰ(𝜑)−𝜑 belongs to the normal
space (𝑇𝜑 St(𝑁,𝑉 ))⊥𝑎 and, hence,

grad ℰ(𝜑) = 𝜑+ 𝑃⊥𝜑 (grad ℰ(𝜑)− 𝜑) = 𝜑− 𝑃⊥𝜑 (𝜑) = 𝑃𝜑(𝜑).

The second expression for grad ℰ(𝜑) in (4.1) immediately follows from Proposition 3.7. �

Using the Riemannian gradient and any retraction ℛ on St(𝑁,𝑉 ) from Section 3.3, the Riemannian gra-
dient descent method for solving the minimization problem (2.6) can be formulated as follows: for given
𝜑(𝑛) ∈ St(𝑁,𝑉 ), compute

𝜑(𝑛+1) = ℛ
(︁
𝜑(𝑛), 𝜏𝑛𝜂

(𝑛)
)︁

(4.2)

with the search direction 𝜂(𝑛) = − grad ℰ
(︀
𝜑(𝑛)

)︀
and an appropriately chosen step size 𝜏𝑛 > 0.

Remark 4.2 (Connection to Sobolev gradient flows). The presented minimization approach for solving the
nonlinear eigenvector problem (2.9) is closely related to the Sobolev gradient flow algorithm studied in [18]
for the Gross–Pitaevskii eigenvalue problem which, as will be shown in Section 5, fits in the given framework
with 𝑁 = 1. For general problems with 𝑁 ≥ 1, let ∇ℰ(𝜑) denote the Riesz representative of Dℰ(𝜑) in the
Hilbert space 𝑉 with respect to the inner product 𝑎𝜑(·, ·). The operator ∇ℰ : 𝑉 → 𝑉 is called the 𝑎𝜑-Sobolev
gradient of ℰ . It follows from (2.8) that

𝑎𝜑(∇ℰ(𝜑),𝑣) = Dℰ(𝜑)[𝑣] = 𝑎𝜑(𝜑,𝑣) for all 𝑣 ∈ 𝑉

and, hence, ∇ℰ(𝜑) = 𝜑. Given an initial guess 𝜑(0) ∈ St(𝑁,𝑉 ), the corresponding dynamical system, also
called the 𝑎𝜑-Sobolev gradient flow, has the form

𝜑̇(𝑡) = −𝑃𝜑(𝑡)(∇ℰ(𝜑(𝑡))) = −𝑃𝜑(𝑡)(𝜑(𝑡)) = − grad ℰ(𝜑(𝑡)). (4.3)

It can be easily seen that the solution of this system satisfies 𝜑(𝑡) ∈ St(𝑁,𝑉 ) for all times. Moreover, any
stationary solution 𝜑* ∈ St(𝑁,𝑉 ) of (4.3) is the critical point of the energy ℰ in (2.7), since it satisfies
grad ℰ(𝜑*) = 0.

In the following subsection, we show that the iteration (4.2) is convergent if the step size 𝜏𝑛 is sufficiently
small.
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4.1. Convergence analysis

To show that the Riemannian gradient scheme (4.2) converges, we restrict ourselves to the case of a con-
stant step size 𝜏𝑛 ≡ 𝜏 . First, we collect some assumptions which guarantee the convergence as established in
Theorem 4.3 below.

(A1) (Polyak- Lojasiewicz gradient inequality) For the ground state 𝜑* ∈ St(𝑁,𝑉 ), there exist 𝐶*, 𝐶PL > 0
such that for all 𝜑 ∈ St(𝑁,𝑉 ) with ‖𝜑− 𝜑*‖𝑎0

≤ 𝐶*, it holds⃒⃒
ℰ(𝜑)− ℰ(𝜑*)

⃒⃒
≤ 𝐶PL ‖grad ℰ(𝜑)‖2𝑎𝜑

.

(A2) (Descent inequality) We say that a given sequence
{︀
𝜑(𝑛)

}︀
⊂ St(𝑁,𝑉 ) satisfies the descent inequality, if

there exist 𝐶D > 0 and 𝑛D ∈ N such that for all 𝑛 ≥ 𝑛D,

ℰ
(︁
𝜑(𝑛)

)︁
− ℰ

(︁
𝜑(𝑛+1)

)︁
≥ 𝐶D

⃦⃦⃦
grad ℰ

(︁
𝜑(𝑛)

)︁⃦⃦⃦
𝑎

𝜑(𝑛)

⃦⃦⃦
𝜑(𝑛+1) − 𝜑(𝑛)

⃦⃦⃦
𝑎0

. (4.4)

(A3) (Step size condition) For a given sequence
{︀
𝜑(𝑛)

}︀
⊂ St(𝑁,𝑉 ), we say that it satisfies the step size

condition, if there exist 𝐶S > 0 and 𝑛S ∈ N such that for all 𝑛 ≥ 𝑛S,⃦⃦⃦
𝜑(𝑛+1) − 𝜑(𝑛)

⃦⃦⃦
𝑎0

≥ 𝐶S

⃦⃦⃦
grad ℰ

(︁
𝜑(𝑛)

)︁⃦⃦⃦
𝑎

𝜑(𝑛)

. (4.5)

Under these assumptions, the convergence result and the convergence rate can be established by the following
theorem adapted from [38]. Its proof is a straight-forward modification of Theorem 2.1 from [38] and therefore
omitted here.

Theorem 4.3. Let
{︀
𝜑(𝑛)

}︀
⊂ St(𝑁,𝑉 ) be a sequence generated by the descent gradient method (4.2), which

satisfies the descent condition (A2). If there exists an accumulation point 𝜑* ∈ St(𝑁,𝑉 ) of the sequence that
satisfies the Polyak- Lojasiewicz gradient condition (A1), then 𝜑* is the unique limit point of

{︀
𝜑(𝑛)

}︀
with respect

to ‖ ·‖𝑎0 . Further, if the sequence
{︀
𝜑(𝑛)

}︀
fulfills the step size condition (A3), then there exist constants 𝑐, 𝐶 > 0

such that the convergence rate can be estimated as

‖𝜑(𝑛) − 𝜑*‖𝑎0 ≤ 𝐶 𝑒−𝑐𝑛

and it holds lim
𝑛→∞

grad ℰ
(︀
𝜑(𝑛)

)︀
= 0.

It remains to discuss the validity of the three conditions (A1)–(A3) in the considered setting. Condition (A1)
is an assumption on the energy and depends on the particular application. The special case of the Gross–
Pitaevskii equation is discussed in detail in [38]. The other two conditions can be verified under moderate
constraints on the step size and suitable regularity assumptions on the energy.

Lemma 4.4 (Sufficient condition for (A2)). Consider a sufficiently small step size 0 < 𝜏 ≤ 𝜏max. Assume that
the second-order derivative of the energy is bounded in the sense that

𝐷2ℰ(𝜉)[𝑣,𝑤] ≤ 𝐶0 ‖𝑣‖𝑎0‖𝑤‖𝑎0 (4.6)

for all 𝜉 in a small neighborhood of the ground state and all 𝑣,𝑤 ∈ 𝑉 . If the iterates 𝜑(𝑛) given by (4.2) with
the polar decomposition based retraction (3.13) are in this neighborhood, then there exists a constant 𝐶D > 0
such that the estimate (4.4) is satisfied.
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Proof. For 𝜂(𝑛) = − grad ℰ
(︀
𝜑(𝑛)

)︀
= −𝜑(𝑛) + 𝜓(𝑛) with 𝜓(𝑛) ∈

(︀
𝑇𝜑(𝑛)St(𝑁,𝑉 )

)︀⊥
𝑎

, we obtain

𝑎𝜑(𝑛)

(︁
𝜑(𝑛),𝜂(𝑛)

)︁
= −𝑎𝜑(𝑛)

(︁
𝜂(𝑛),𝜂(𝑛)

)︁
= −

⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦2

𝑎
𝜑(𝑛)

.

Further, it follows from Proposition 3.11 and

𝜑(𝑛+1) − 𝜑(𝑛) = ℛ
(︁
𝜑(𝑛), 𝜏 𝜂(𝑛)

)︁
−
(︁
𝜑(𝑛) + 𝜏 𝜂(𝑛)

)︁
+ 𝜏 𝜂(𝑛) (4.7)

that ⃦⃦⃦
𝜑(𝑛+1) − 𝜑(𝑛)

⃦⃦⃦
𝑎0

≤
⃦⃦⃦
𝜑(𝑛+1) − 𝜑(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

≤ 𝜏 ‖𝜂(𝑛)‖𝑎
𝜑(𝑛) + 𝜏2

⃦⃦⃦
𝜑(𝑛) + 𝜏 𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦2

𝐻
. (4.8)

Using the expression 𝜂(𝑛) = −𝜑(𝑛) +𝒜−1
𝜑(𝑛)𝜑

(𝑛)
r
𝜑(𝑛),𝒜−1

𝜑(𝑛)𝜑
(𝑛)

z−1

𝐻
and the coercivity and boundedness of the

bilinear form 𝑎𝜑(𝑛) , we can show that there exists a constant 𝐶1 > 0 such that ‖𝜂(𝑛)‖𝑎
𝜑(𝑛) ≤ 𝐶1‖𝜑(𝑛)‖𝑎

𝜑(𝑛) .

Then taking into account that the iterates 𝜑(𝑛) are in a small neighborhood of the ground state, we estimate⃦⃦⃦
𝜑(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

≤ 𝐶2,
⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

≤ 𝐶1𝐶2,
⃦⃦⃦
𝜑(𝑛) + 𝜏 𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

≤ (1 + 𝜏max𝐶1)𝐶2 (4.9)

with a constant 𝐶2 > 0 independent of 𝜑(𝑛).
A Taylor expansion of ℰ

(︀
𝜑(𝑛+1)

)︀
at 𝜑(𝑛) yields

ℰ
(︁
𝜑(𝑛+1)

)︁
= ℰ

(︁
𝜑(𝑛)

)︁
+ Dℰ

(︁
𝜑(𝑛)

)︁[︁
𝜑(𝑛+1) − 𝜑(𝑛)

]︁
+

1
2

D2ℰ(𝜉)
[︁
𝜑(𝑛+1) − 𝜑(𝑛),𝜑(𝑛+1) − 𝜑(𝑛)

]︁
for some 𝜉 in the neighborhood of the ground state. Estimating the derivative

Dℰ
(︁
𝜑(𝑛)

)︁[︁
𝜑(𝑛+1) − 𝜑(𝑛)

]︁
= 𝑎𝜑(𝑛)

(︁
𝜑(𝑛),𝜑(𝑛+1) − 𝜑(𝑛)

)︁
≤ 𝜏 𝑎𝜑(𝑛)

(︁
𝜑(𝑛),𝜂(𝑛)

)︁
+
⃦⃦⃦
𝜑(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

⃦⃦⃦
ℛ
(︁
𝜑(𝑛), 𝜏 𝜂(𝑛)

)︁
−
(︁
𝜑(𝑛) + 𝜏 𝜂(𝑛)

)︁⃦⃦⃦
𝑎

𝜑(𝑛)

≤ −𝜏
⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦2

𝑎
𝜑(𝑛)

+ 𝐶2
𝐻 𝜏2

⃦⃦⃦
𝜑(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

⃦⃦⃦
𝜑(𝑛) + 𝜏 𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦2

𝑎
𝜑(𝑛)

and using (4.6) together with (4.9), we conclude that

ℰ
(︁
𝜑(𝑛)

)︁
− ℰ

(︁
𝜑(𝑛+1)

)︁
= −Dℰ

(︁
𝜑(𝑛)

)︁[︁
𝜑(𝑛+1) − 𝜑(𝑛)

]︁
− 1

2
D2ℰ(𝜉)

[︁
𝜑(𝑛+1) − 𝜑(𝑛),𝜑(𝑛+1) − 𝜑(𝑛)

]︁
≥ 𝜏

⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦2

𝑎
𝜑(𝑛)

− 𝐶2
𝐻 𝜏2

⃦⃦⃦
𝜑(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

⃦⃦⃦
𝜑(𝑛) + 𝜏 𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦2

𝑎
𝜑(𝑛)

− 2𝐶0 𝜏
2
⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦2

𝑎
𝜑(𝑛)

− 2𝐶0 𝐶
2
𝐻 𝜏4

⃦⃦⃦
𝜑(𝑛) + 𝜏𝜂(𝑛)

⃦⃦⃦2

𝑎
𝜑(𝑛)

⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦4

𝑎
𝜑(𝑛)

≥ 𝜏
⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦2

𝑎
𝜑(𝑛)

(︀
1− 𝜏max 𝐶3 − 𝜏3

max𝐶4

)︀
with 𝐶3 = 𝐶2

𝐻𝐶
2
2 (1 + 𝜏max𝐶1) + 2𝐶0 and 𝐶4 = 2𝐶0𝐶

2
𝐻𝐶

2
1𝐶

4
2 (1 + 𝜏max𝐶1)2.
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Finally, it follows from (4.8) and (4.9) that

𝜏
⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

≥

⃦⃦
𝜑(𝑛+1) − 𝜑(𝑛)

⃦⃦
𝑎0

1 + 𝜏max𝐶5
,

with 𝐶5 = 𝐶2
𝐻𝐶1𝐶

2
2 (1 + 𝜏max𝐶1). Thus, we obtain the estimate (4.4) for the sufficiently small step size

0 < 𝜏 ≤ 𝜏max and a constant 𝐶D > 0 depending on 𝜏max and the other constants only. �

Lemma 4.5 (Sufficient condition for (A3)). Consider a sufficiently small step size 0 < 𝜏min ≤ 𝜏 ≤ 𝜏max. If the
iterates 𝜑(𝑛) given by (4.2) with the polar decomposition based retraction (3.13) are in the neighborhood of the
ground state, then there exists a constant 𝐶S > 0 such that the estimate (4.5) is satisfied.

Proof. Using (4.7) and (4.9), we estimate

𝜏
⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

≤
⃦⃦⃦
𝜑(𝑛+1) − 𝜑(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

+ 𝜏2
⃦⃦⃦
𝜑(𝑛) + 𝜏 𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦2

𝐻

≤
⃦⃦⃦
𝜑(𝑛+1) − 𝜑(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

+ 𝐶5𝜏
2
⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

.

Therefore, a step size restriction 0 < 𝜏min ≤ 𝜏 ≤ 𝜏max with sufficiently small 𝜏max yields⃦⃦⃦
𝜑(𝑛+1) − 𝜑(𝑛)

⃦⃦⃦
𝑎0

≥ 𝑐𝐸

⃦⃦⃦
𝜑(𝑛+1) − 𝜑(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

≥ 𝑐𝐸 (1− 𝜏𝐶5) 𝜏
⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

≥ 𝑐𝐸 (1− 𝜏max𝐶5) 𝜏min

⃦⃦⃦
𝜂(𝑛)

⃦⃦⃦
𝑎

𝜑(𝑛)

= 𝐶S

⃦⃦⃦
grad ℰ

(︁
𝜑(𝑛)

)︁⃦⃦⃦
𝑎

𝜑(𝑛)

with 𝐶S = 𝜏min𝑐𝐸(1− 𝜏max𝐶5) > 0. �

Remark 4.6. Note that in Lemmas 4.4 and 4.5, the polar decomposition based retraction can be replaced by
the 𝑞𝑅-based retraction defined in (3.18) or any other second-order bounded retraction.

4.2. Step size control with a non-monotone line search

In order to accelerate the convergence of the Riemannian gradient descent method (4.2), we determine the
step size by employing the non-monotone line search algorithm [39] combined with the alternating Barzilai-
Borwein step size strategy as proposed in [34]. The resulting Riemannian gradient descent method is presented
in Algorithm 2.

The following theorem establishes that a convergent sequence generated by this algorithm yields a stationary
point.

Theorem 4.7. Let
{︀
𝜑(𝑛)

}︀
be a sequence generated by Algorithm 2. Then every accumulation point 𝜑* of this

sequence is a critical point of ℰ, i.e., we have grad ℰ(𝜑*) = 0.

Proof. Since the retractions considered in Section 3.3 are globally defined, the result can be proved analogously
to Theorem 3.3 of [20]. �

4.3. Inexact gradient descent schemes

In this subsection, we propose an inexact gradient descent method which significantly reduces the computa-
tional complexity of the iteration (4.2).

First, we establish a connection of our minimization method to the DCM method considered in [31]. Let
𝜑* ∈ St(𝑁,𝑉 ) be a critical point of ℰ , i.e., grad ℰ(𝜑*) = 0. Then (4.1) yields

𝒜𝜑* 𝜑* = 𝜑*
r
𝜑*,𝒜−1

𝜑*𝜑
*
z−1

𝐻
. (4.10)
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Algorithm 2. Riemannian gradient descent method with non-monotone line search.

1: Input: energy ℰ , retraction ℛ, initial guess 𝜑(0) ∈ St(𝑁, 𝑉 ), 𝑐0 = ℰ
(︁
𝜑(0)
)︁
, 𝑞0 = 1,

2: parameters 𝛼 ∈ [0, 1], 𝛽, 𝛿 ∈ (0, 1), 0 < 𝛾min < 𝛾max, 𝛾0 > 0

3: for 𝑛 = 0, 1, 2, . . . do

4: Compute a search direction 𝜂(𝑛) as an approximation of − grad ℰ
(︁
𝜑(𝑛)
)︁
.

5: if 𝑛 > 0 then
6: Compute a trial step size

𝛾𝑛 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(𝑠(𝑛),𝑠(𝑛))
𝐻⃒⃒

⃒(𝑠(𝑛),𝑦(𝑛))
𝐻

⃒⃒
⃒

for odd 𝑛,

⃒⃒
⃒(𝑠(𝑛),𝑦(𝑛))

𝐻

⃒⃒
⃒

(𝑦(𝑛),𝑦(𝑛))
𝐻

for even 𝑛,

where 𝑠(𝑛) = 𝜑(𝑛) − 𝜑(𝑛−1) and 𝑦(𝑛) = 𝜂(𝑛−1) − 𝜂(𝑛).

7: Set 𝛾𝑛 = max(𝛾min, min(𝛾𝑛, 𝛾max)).
8: Find the smallest 𝑘 ∈ N such that 𝜏𝑛 = 𝛾𝑛𝛿𝑘 satisfies the non-monotone condition

ℰ
(︁
ℛ
(︁
𝜑(𝑛), 𝜏𝑛𝜂

(𝑛)
)︁)︁

≤ 𝑐𝑛 − 𝛽 𝜏𝑛 𝑎𝜑(𝑛)

(︁
𝜂(𝑛),𝜂(𝑛)

)︁
.

9: Set 𝜑(𝑛+1) = ℛ
(︁
𝜑(𝑛), 𝜏𝑛𝜂

(𝑛)
)︁
.

10: Compute 𝑞𝑛+1 = 𝛼𝑞𝑛 + 1 and 𝑐𝑛+1 =
(︁
1− 1

𝑞𝑛+1

)︁
𝑐𝑛 + 1

𝑞𝑛+1
ℰ
(︁
𝜑(𝑛+1)

)︁
.

11: Output: sequence of iterates
{︁
𝜑(𝑛)
}︁

This equation further implies

J𝜑*,𝒜𝜑*𝜑*K𝐻 =
r
𝜑*,𝒜−1

𝜑*𝜑
*
z−1

𝐻
(4.11)

and, hence, (4.10) can be rewritten as 𝒜𝜑*𝜑* = 𝜑* J𝜑*,𝒜𝜑*𝜑*K𝐻 . In the DCM method considered in [31], the
search direction is taken as

−ℬ−1
𝜑

(︀
𝒜𝜑𝜑− 𝜑 J𝜑,𝒜𝜑𝜑K𝐻

)︀
, (4.12)

where ℬ𝜑 is a given preconditioner. Without ℬ𝜑, this leads to the Riemannian gradient descent method in the
Hilbert metric 𝑔𝐻 , which usually shows slow convergence. Considering the preconditioner ℬ𝜑 = 𝒜𝜑 yields the
search direction −𝜑+𝒜−1

𝜑 𝜑 J𝜑,𝒜𝜑𝜑K𝐻 . Due to (4.11), this search direction is asymptotically equivalent to

𝜂 = − grad ℰ(𝜑) = −𝜑+𝒜−1
𝜑 𝜑

r
𝜑,𝒜−1

𝜑 𝜑
z−1

𝐻
.

This observation shows that a suitably preconditioned DCM admits a near gradient descent structure in the
novel metric 𝑔𝑎.

The computation of both search directions requires the solution of a system involving the operator 𝒜𝜑

in each step but different linear combinations of the outcome are used. For the DCM, it is known that an
approximation of 𝒜𝜑 is sufficient for convergence in practice. In this spirit, we may also use the inexact
gradient. This consideration motivates to use

− grad ℰ(𝜑) ≈ −𝜑+ ℬ−1
𝜑 𝜑

r
𝜑,ℬ−1

𝜑 𝜑
z−1

𝐻
(4.13)

as a search direction. Here, ℬ𝜑 ≈ 𝒜𝜑 is a suitable preconditioner that realizes, e.g., a few iterations of a
preconditioned iterative solver for 𝒜−1

𝜑 𝜑 with starting value

𝜑 J𝜑,𝒜𝜑𝜑K−1
𝐻 ≈ 𝒜−1

𝜑 𝜑.
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The error of the proposed starting value is roughly as accurate as the current approximation of the wavefunction
in the iteration. Hence, after only a few steps of the preconditioned iterative solver the residual of the linear
system is substantially smaller than the current error. In a convergent iteration, sufficiently many (inner)
iterations will guarantee that the resulting direction is a descent direction, cf. the numerical experiments of
Section 5. The control of the number of iterations required to ensure a descent could be integrated into the
method.

5. Examples

In this final section, we present two examples which fit in the framework of Section 2. Moreover, the efficiency
of the proposed algorithm (and its preconditioned variants) are illustrated in a number of numerical experiments.

5.1. Gross–Pitaevskii eigenvalue problem

In the special case 𝑁 = 1, we seek an eigenfunction 𝑢 ∈ 𝑉 := 𝐻1
0 (Ω) satisfying the normalization constraint

‖𝑢‖𝐿2(Ω) = 1. Hence, the minimization takes place on the unit sphere S =
{︀
𝑣 ∈ 𝑉 : ‖𝑢‖𝐿2(Ω) = 1

}︀
. A well-

known example, which fits in this framework, is the Gross–Pitaevskii eigenvalue problem. In the classical form,
this reads

−∆𝑢+ 𝑉ext 𝑢+ 𝜅 |𝑢|2𝑢 = 𝜆𝑢

for some non-negative and space-dependent external potential 𝑉ext ≥ 0 and a constant 𝜅 ≥ 0 regulating the
strength of the nonlinearity. Here, the bilinear form 𝑎𝑢 : 𝑉 × 𝑉 → R is given by

𝑎𝑢(𝑣, 𝑤) :=
∫︁

Ω

∇𝑣 · ∇𝑤 + 𝑉ext 𝑣 𝑤 + 𝜅 |𝑢|2𝑣 𝑤 d𝑥.

The linear part 𝑎0, which contains the weak Laplacian and the potential, defines an inner product on 𝑉 . For the
nonlinear part, we set 𝛾(𝜌(𝑢)) = 𝛾(|𝑢|2) := 𝜅 |𝑢|2, i.e., a constant times the density of 𝑢. Hence, for any 𝑢 ∈ 𝑉 , the
bilinear form 𝑎𝑢 defines an inner product on 𝑉 and Assumption 2.2 is satisfied. Due to Γ(𝜌) = 𝜅

∫︀ 𝜌

0
𝑡d𝑡 = 1

2𝜅𝜌
2,

the corresponding energy has the form

ℰ(𝑢) =
1
2
𝑎0(𝑢, 𝑢) +

1
2

∫︁
Ω

Γ(𝜌(𝑢)) d𝑥 =
1
2

∫︁
Ω

‖∇𝑢‖2 + 𝑉ext |𝑢|2 +
𝜅

2
|𝑢|4 d𝑥.

The assumed property that ℰ does not change if the argument is multiplied by an orthogonal matrix translates
in the case 𝑁 = 1 to ℰ(±𝑢) = ℰ(𝑢), which is clearly satisfied. As before, we are interested in the ground state,
i.e., the state of minimal energy. For the Gross–Pitaevskii eigenvalue problem, the ground state coincides with
the eigenfunction that corresponds to the smallest eigenvalue.

Following the procedure presented in Section 2, we have J𝑢, 𝑣K𝐻 = (𝑢, 𝑣)𝐻 = (𝑢, 𝑣)𝐿2(Ω) and
𝑇𝑢 S = {𝑣 ∈ 𝑉 : (𝑢, 𝑣)𝐻 = 0}. Hence, the normal space is one-dimensional, and (3.4) reduces to find 𝜓 ∈ 𝑉
such that

𝑎𝑢(𝜓, 𝑣) = 0 for all 𝑣 ∈ 𝑇𝑢 S, (𝜓, 𝑢)𝐻 = 1.

Written as a saddle point problem, we seek (𝜓, 𝜇) ∈ 𝑉 × R such that

𝑎𝑢(𝜓, 𝑣) = 𝜇 (𝑢, 𝑣)𝐻 for all 𝑣 ∈ 𝑉, (5.1a)
(𝜓, 𝑢)𝐻 = 1. (5.1b)

The resulting projection applied to 𝑢 reads 𝑃𝑢(𝑢) = 𝑢−𝜓. For 𝑁 = 1, the polar decomposition based retraction
from Section 3.3.1 as well as the 𝑞𝑅-based retraction from Section 3.3.2 simply equal a 𝐿2-normalization. This
then leads to the following iteration scheme: Given 𝑢(𝑛) ∈ S, compute 𝜓(𝑛) = 𝜓(𝑢(𝑛)) by solving (5.1) with
𝑢 = 𝑢(𝑛) and set

𝑢̃(𝑛+1) := (1− 𝜏𝑛)𝑢(𝑛) + 𝜏𝑛𝜓
(𝑛), 𝑢(𝑛+1) :=

𝑢̃(𝑛+1)⃦⃦
𝑢̃(𝑛+1)

⃦⃦
𝐿2(Ω)

·



ENERGY-ADAPTIVE RIEMANNIAN OPTIMIZATION 1647

Note that this is exactly the damped GF𝑎𝑧 method introduced in [18], which is labeled 𝐴-method in [5].
Moreover, in the special case 𝜏𝑛 ≡ 1, this iteration is the straight-forward generalization of the inverse power
method to the nonlinear setting. We refer to the aforementioned original papers as well as to [4,6] for numerical
experiments that demonstrate the competitiveness of the method with established schemes and its ability to
capture relevant physical phenomena such as the exponential localization of eigenstates. The guaranteed energy
decay of the method has also been exploited explicitly in [13].

5.2. Kohn–Sham model

A second example, which is covered by this paper, is the Kohn–Sham model [23] and, in particular, the model
based on the density functional theory [19]. This theory allows a reduction of the degrees of freedom, leading to
a model which balances accuracy and computational cost, see also [11,12,36] for a more detailed introduction.

5.2.1. Validation of the model

As an energy functional, we consider (with Ω = R3)

ℰ(𝜑) =
1
2

𝑁∑︁
𝑗=1

∫︁
Ω

‖∇𝜑𝑗(𝑟)‖2 d𝑟 +
∫︁

Ω

𝑉ion(𝑟) 𝜌(𝜑(𝑟)) d𝑟

+
1
2

∫︁
Ω

∫︁
Ω

𝜌(𝜑(𝑟)) 𝜌(𝜑(𝑟′))
‖𝑟 − 𝑟′‖

d𝑟 d𝑟′ +
∫︁

Ω

𝜖xc(𝜌(𝜑(𝑟))) 𝜌(𝜑(𝑟)) d𝑟 (5.2)

with the ionic potential 𝑉ion, the exchange-correlation 𝜖xc, and the associated electronic charge density
𝜌(𝜑(𝑟)) = 𝜑(𝑟) · 𝜑(𝑟) =

∑︀𝑁
𝑗=1 |𝜑𝑗(𝑟)|2. Based on semi-empirically knowledge of the model, the particular

exchange-correlation is described in [36]. For more details, on this and the corresponding local density approxi-
mation, we refer to [27,28]. Following the physical setup, the ionic potential typically reads

𝑉ion(𝑟) =
𝑁nuc∑︁
𝑗=1

𝑧𝑗

‖𝑟 − 𝑟𝑗‖

with the number of nuclei 𝑁nuc, the charge of the 𝑗th nuclei 𝑧𝑗 , and its position 𝑟𝑗 , which are assumed to be fixed.
The obvious problem of the included singularities can be circumvented by considering core electrons (which are
very close to a nucleus) as part of the corresponding core. For more details on this so-called pseudopotential
approximation, we refer once more to [36] and the references therein. As a consequence, we may assume in the
following that 𝑉ion in (5.2) is a bounded potential.

We are interested in the Kohn–Sham ground state, which means that we aim to minimize the energy ℰ
over 𝑉 = 𝑉 𝑁 with 𝑉 = 𝐻1

per(Ω), i.e., the Sobolev space 𝐻1(Ω) with periodic boundary conditions, subject to the
constraint J𝜑,𝜑K𝐻 = 𝐼𝑁 . Hence, the minimization takes place on the Stiefel manifold St(𝑁,𝑉 ). Following (2.3),
the corresponding bilinear form reads

𝑎𝜑(𝑣,𝑤) =
∫︁

Ω

tr
(︁

(∇𝑣)𝑇∇𝑤
)︁

d𝑟 + 2
∫︁

Ω

𝑉ion 𝑣 ·𝑤 d𝑟 +
∫︁

Ω

𝛾(𝜌(𝜑))𝑣 ·𝑤 d𝑟

with the (non-local) nonlinearity

𝛾(𝜌) = 2
∫︁

Ω

𝜌(𝜑(𝑟′))
‖𝑟 − 𝑟′‖

d𝑟′ + 2
d
d𝜌

(𝜌 𝜖xc(𝜌)).

Lemma 5.1. Consider a fixed 𝜑 ∈ 𝑉 and assume that 𝑉ion and 𝛾(𝜌(𝜑)) are bounded. Then the corresponding
bilinear form

𝑎̃𝜑(𝑣𝑗 , 𝑤𝑗) =
∫︁

Ω

(∇𝑣𝑗)𝑇∇𝑤𝑗 d𝑟 + 2
∫︁

Ω

𝑉ion 𝑣𝑗 𝑤𝑗 d𝑟 +
∫︁

Ω

𝛾(𝜌(𝜑)) 𝑣𝑗 𝑤𝑗 d𝑟

satisfies a G̊arding inequality. Hence, there exists 𝜎 ∈ R such that 𝑎̃𝜑 + 𝜎 (·, ·)𝐿2(Ω) is a symmetric, bounded,
and coercive bilinear form.
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Proof. Let 𝑐𝑉 and 𝑐𝛾 denote the (possibly negative) lower bounds of 2𝑉ion and 𝛾(𝜌(𝜑)), respectively. Then, the
definition of 𝑎̃𝜑 gives

𝑎̃𝜑(𝑣, 𝑣) ≥
∫︁

Ω

‖∇𝑣‖2 d𝑟 + (𝑐𝑉 + 𝑐𝛾) (𝑣, 𝑣)𝐿2(Ω) = ‖𝑣‖2
𝑉
− (1− 𝑐𝑉 − 𝑐𝛾) ‖𝑣‖2𝐿2(Ω)

for all 𝑣 ∈ 𝑉 . The coercivity of 𝑎̃𝜑 +𝜎 (·, ·)𝐿2(Ω) then follows for any 𝜎 ≥ 1−𝑐𝑉 −𝑐𝛾 . Symmetry and boundedness
are directly given. �

Since we cannot ensure that 𝑎̃𝜑 is coercive, we need to adapt the original nonlinear eigenvector problem (2.9)
by a shift: seek 𝜑 ∈ St(𝑁,𝑉 ) and 𝜆1, . . . , 𝜆𝑁 ∈ R such that

𝑎̃𝜑(𝜑𝑗 , 𝑣𝑗) + 𝜎 (𝜑𝑗 , 𝑣𝑗)𝐿2(Ω) = (𝜆𝑗 + 𝜎) (𝜑𝑗 , 𝑣𝑗)𝐿2(Ω) for all (𝑣1, . . . , 𝑣𝑁 ) ∈ 𝑉

with the shift 𝜎 from Lemma 5.1. This gives a coupled system of nonlinear eigenvector problems, which satisfies
Assumption 2.2 and, therefore, the theory of this paper is applicable.

5.2.2. Numerical experiments

We now illustrate the convergence behaviour of the new energy-adaptive Riemannian gradient descent scheme
(RGD) and its variants and show that they are competitive with the established SCF iteration and the pre-
conditioned DCM method. The numerical experiments are performed on an Intel(R) Core(TM) i7-8565U
CPU@1.80 GHz using MATLAB (version R2021b). The implementation is based on the MATLAB toolbox
KSSOLV, cf. [36]. The usage of this toolbox allows us to focus on the new eigenvalue iterations and their
comparison to already existing methods. Note that the toolbox works with an additional factor of two in the
electronic charge density. This, however, does not affect the convergence behaviour. We initially select an exem-
plary molecule system implemented in KSSOLV, namely CO2 (𝑁 = 8). In KSSOLV, a spatial discretization
using a planewave discretization of functions in 𝑉 := [𝐻1(R3)]𝑁 is considered. As in [36], we use a 32× 32× 32
sampling grid for the wavefunctions in the CO2 model.

We shall first illustrate the convergence behaviour of the RGD. For the CO2 molecule, we compare the
following variants:

– RGD from (4.2) for several choices of a constant time step size 𝜏𝑛 = 𝜏 with 𝜏 ∈ {0.05, 0.1, 0.15, 0.2},
– RGD with the non-monotone line search as presented in Algorithm 2 with the descent direction
𝜂(𝑛) = − grad ℰ

(︀
𝜑(𝑛)

)︀
and parameters 𝛼 = 0.95, 𝛽 = 10−4, 𝛾min = 10−4, 𝛾max = 1.0, 𝛾0 = 10−2, and

𝛿 = 0.5.

For both variants, the polar decomposition based retraction (3.13) is used. As a stopping criterion, we consider
the 𝐻-norm of the residual to fall below the tolerance tol = 10−6. The linear systems are solved up to the higher
accuracy of 10−8.

Figure 1 (left) shows the evolution of the residuals in the iteration. In accordance with the theoretical
predictions, we observe convergence for sufficiently small constant step sizes. A look into the corresponding
errors in the energy (with respect to a reference minimal energy computed to higher accuracy) depicted in
Figure 1 (right) shows that for 𝜏 = 0.2, after an initial decay, the method approaches some other critical point
on a higher energy level. Furthermore, for smaller choices of 𝜏 , the linear convergence to the ground state is
observed. There is probably an optimal choice of the step size around 𝜏 = 0.15 that minimizes the linear rate
of convergence. However, the non-monotone line search converges much faster and appears to be much more
efficient for this example and many others that we have tried.

While the line search optimizes the iteration count, the cost per iteration step is largely reduced by the
inexact solution of linear system for the gradient computation in each step. We will refer to the corresponding
scheme as:

– inexact RGD with the non-monotone line search as presented in Algorithm 2 with 𝜂(𝑛) being the precon-
ditioned MINRES approximation given in (4.13). We use the MINRES implementation of MATLAB using
the KSSOLV built-in Teter preconditioner [32,36].
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Figure 1. Convergence history of the residual (left) and energy (right) for the CO2 model for
different (fixed) step sizes and the non-monotone line search from Algorithm 2.

Table 1. CPU time (in seconds) and number of needed iteration steps to achieve an approxi-
mation of the ground state of the CO2 molecule with tolerance 10−6 in the residual.

SCF RGD inexact RGD prec. DCM

CPU time 12.3 36.7 11.6 16.6
# iterations 8 28 37 45

We also compare the performance of the exact and inexact RGD with the established schemes

– SCF: self-consistent field iteration as readily available in KSSOLV using LOPCG to solve the linear eigenvalue
problem in each step up to tolerance 10−8,

– DCM: direct constrained minimization as defined in (4.12) with non-monotone line search. The precondi-
tioner is given by 3 steps of the preconditioned MINRES iteration as in the inexact RGD.

All schemes use the same initial guess to the wavefunction and the 𝑞𝑅-based retraction defined in (3.18). For
the RDG variants and DCM, we use the non-monotone line search with the prescribed parameters given above.

Table 1 shows the CPU times and (outer) iteration counts of the four methods. While solving the linear
systems too accurately seems to be suboptimal in terms of computational complexity, the numbers clearly
indicate that the inexact RGD substantially accelerates the simulation and is very competitive with SCF.
The closely related preconditioned DCM variant performs equally well asymptotically but, according to our
experience, is a bit slower in the initial phase when the residuals are still large.

According to our experience, the competitiveness of inexact RGD is representative. An experiment for the
more challenging molecule petacene, also implemented in KSSOLV, supports this assessment; see Table 2. Due
to the large number of electrons in pentacene (𝑁 = 102), a sampling grid of size 64 × 32 × 48 is used for the
spatial planewave discretization.
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Table 2. CPU time (in seconds) and number of needed iteration steps to achieve an
approximation of the ground state of the pentacene molecule with tolerance 10−6 in the
residual.

SCF inexact RGD prec. DCM

CPU time 3211 2204 2655
# iterations 14 43 51

6. Conclusion

In this paper, we have generalized the energy-adaptive gradient descent scheme from [18] to nonlinear eigen-
vector problems formulated on the infinite-dimensional Stiefel manifold. We have shown convergence of the
method and a guaranteed energy decay of the iterates if the step size is sufficiently small. Moreover, we have
introduced a non-monotone step size control and discussed the inexact variants, which accelerate the proposed
method significantly. In total, this gives a novel energy-adaptive descent scheme, which is competitive with
existing schemes such as SCF and DCM.

Appendix A. Proofs of second-order bounds for the retractions

A.1. Proof of Proposition 3.11

For
𝑤(𝑡) := ℛ(𝜑, 𝑡𝜂)− (𝜑+ 𝑡𝜂) = (𝜑+ 𝑡𝜂)

(︁(︀
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

)︀−1/2 − 𝐼𝑁

)︁
we have

‖𝑤(𝑡)‖𝑎𝜑
≤ ‖𝜑+ 𝑡𝜂‖𝑎𝜑

⃦⃦⃦(︀
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

)︀−1/2 − 𝐼𝑁

⃦⃦⃦
2
,

where ‖ · ‖2 denotes the spectral matrix norm. Let 𝜇1 ≥ . . . ≥ 𝜇𝑁 ≥ 0 be the eigenvalues of the symmetric,
positive semidefinite matrix J𝜂,𝜂K𝐻 . Then,

⃦⃦⃦(︀
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

)︀−1/2 − 𝐼𝑁

⃦⃦⃦
2

= max
1≤𝑗≤𝑁

(︃
1− 1√︀

1 + 𝑡2𝜇𝑗

)︃
= 1− 1√︀

1 + 𝑡2𝜇1

·

By the mean value theorem, there exists 𝜃 ∈ (0, 𝑡) such that

1− 1√︀
1 + 𝑡2𝜇1

=
𝜃 𝑡 𝜇1√︀

(1 + 𝜃2𝜇1)3
·

This implies ⃦⃦⃦(︀
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

)︀−1/2 − 𝐼𝑁

⃦⃦⃦
2
≤ 𝑡2𝜇1 = 𝑡2 ‖J𝜂,𝜂K𝐻‖2 ≤ 𝑡2 ‖𝜂‖2𝐻 .

Thus, the assertion holds true. �

A.2. Proof of Proposition 3.13

For a curve 𝜙(𝑡) = 𝜑+ 𝑡𝜂, consider the 𝑞𝑅 decomposition 𝜙(𝑡) = 𝑞(𝑡)𝑅(𝑡). Then we have

‖ℛ(𝜑, 𝑡𝜂)− (𝜑+ 𝑡𝜂)‖𝑎𝜑
= ‖𝑞(𝑡)− 𝑞(𝑡)𝑅(𝑡)‖𝑎𝜑

≤ ‖𝑞(𝑡)‖𝑎𝜑
‖𝑅(0)−𝑅(𝑡)‖2

≤ ‖𝜑+ 𝑡𝜂‖𝑎𝜑

⃦⃦
𝑅−1(𝑡)

⃦⃦
2

∫︁ 𝑡

0

⃦⃦⃦
𝑅̇(𝑠)

⃦⃦⃦
𝐹

d𝑠. (A.1)
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Differentiating the relation

𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻 = J𝜑+ 𝑡𝜂,𝜑+ 𝑡𝜂K𝐻 = 𝑅𝑇 (𝑡)𝑅(𝑡), (A.2)

we obtain
2𝑡 J𝜂,𝜂K𝐻 = 𝑅̇𝑇 (𝑡)𝑅(𝑡) +𝑅𝑇 (𝑡)𝑅̇(𝑡).

Multiplying this equation by 𝑅−𝑇 (𝑡) and 𝑅−1(𝑡) from the left and right, respectively, yields(︁
𝑅̇(𝑡)𝑅−1(𝑡)

)︁𝑇

+ 𝑅̇(𝑡)𝑅−1(𝑡) = 2𝑡𝑅−𝑇 (𝑡)J𝜂,𝜂K𝐻𝑅
−1(𝑡).

Since 𝑅̇(𝑡)𝑅−1(𝑡) is upper triangular, we obtain

𝑅̇(𝑡) = 2𝑡up
(︀
𝑅−𝑇 (𝑡)J𝜂,𝜂K𝐻𝑅

−1(𝑡)
)︀
𝑅(𝑡),

where

(up(𝑀))𝑖𝑗 =

⎧⎪⎨⎪⎩
𝑀𝑖𝑗 , if 1 ≤ 𝑖 < 𝑗 ≤ 𝑁,
1
2𝑀𝑖𝑗 , if 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,

0, otherwise

for any symmetric matrix 𝑀 = [𝑀𝑖𝑗 ] ∈ R𝑁×𝑁 . As before, let 𝜇1 ≥ . . . ≥ 𝜇𝑁 ≥ 0 denote the eigenvalues
of J𝜂,𝜂K𝐻 . Using 2 ‖up(𝑀)‖2𝐹 ≤ ‖𝑀‖2𝐹 and (A.2), we have

2
⃦⃦
up
(︀
𝑅−𝑇 (𝑡)J𝜂,𝜂K𝐻𝑅

−1(𝑡)
)︀⃦⃦2

𝐹
≤
⃦⃦
𝑅−𝑇 (𝑡)J𝜂,𝜂K𝐻𝑅

−1(𝑡)
⃦⃦2

𝐹

= tr
(︀
J𝜂,𝜂K𝐻𝑅

−1(𝑡)𝑅−𝑇 (𝑡)J𝜂,𝜂K𝐻𝑅
−1(𝑡)𝑅−𝑇 (𝑡)

)︀
=
⃦⃦⃦
J𝜂,𝜂K𝐻

(︀
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

)︀−1
⃦⃦⃦2

𝐹

=
𝑁∑︁

𝑖=1

(︂
𝜇𝑖

1 + 𝑡2𝜇𝑖

)︂2

≤
𝑁∑︁

𝑖=1

𝜇2
𝑖 = ‖J𝜂,𝜂K𝐻‖

2
𝐹
≤ ‖𝜂‖4𝐻

and, hence,
‖𝑅̇(𝑡)‖𝐹 ≤ 2 𝑡‖up(𝑅−𝑇 (𝑡)J𝜂,𝜂K𝐻𝑅

−1(𝑡))‖𝐹 ‖𝑅(𝑡)‖2 ≤
√

2 𝑡 ‖𝜂‖2𝐻‖𝑅(𝑡)‖2. (A.3)

Furthermore, (A.2) implies that

|𝑅(𝑡)‖2 =
⃦⃦
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

⃦⃦1/2

2
≤
(︁

1 + 𝑡2‖𝜂‖2𝐻
)︁1/2

, (A.4)⃦⃦
𝑅−1(𝑡)

⃦⃦
2

=
⃦⃦⃦(︀
𝐼𝑁 + 𝑡2J𝜂,𝜂K𝐻

)︀−1
⃦⃦⃦1/2

2
< 1. (A.5)

Thus, the claimed estimate follows from (A.1), (A.3), (A.4), and (A.5). �
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