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Energy and angular momentum of the gravitational field in the teleparallel geometry
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The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of
energy, momentum and angular momentum of the gravitational field arise from the integral form of the
constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of
scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is
investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external
event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The
gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell.
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[. INTRODUCTION energy properties of the gravitational field. Such densities
may be given in terms of the torsion tensor, which cannot be
Teleparallel theories of gravity have been considered @ade to vanish at a point by a coordinate transformation.
long time ago in connection with attempts to define the enMéller [1] was probably the first one to notice that the tetrad
ergy of the gravitational fieli1]. By studying the properties description of the gravitational field allows a more satisfac-
of solutions of Einstein’s equations that describe the gravitatory treatment of the gravitational energy-momentum.
tional field of isolated material systems, it is concluded thata The dynamics of the gravitational field can be described
consistent expression for the ener@qnsityof the gravita- in the context of the teleparallel geometry, where the basic
tional field would be given in terms of second order deriva-geometrical entity is the tetrad field®, [a and u are
tives of the metric tensor. It is known that there exists noSQ3,1) and space-time indices, respectivielJeleparallel
covariant, nontrivial expression constructed out of the metridgheories of gravity are defined on the Weitzedkspace-
tensor, both in three and in four dimensions, that containgime [4], endowed with the affine connection
such derivatives. However, covariant expressions that con-
tain second order derivatives of tetrad fields are feasible. N —e?g e (1.1)
Thus it is legitimate to conjecture that the difficulties regard- hd prav: ’
ing the problem of defining the gravitational energy-
momentum is related to the geometrical description of theélhe curvature tensor constructed out of Ef.1) vanishes
gravitational field, rather than being an intrinsic drawback ofidentically. This connection defines a space-time with
the theory[2]. teleparallelism, or absolute paralleligi)|. This geometrical
It is usually asserted in the literature that the principle offramework was considered by Einstdi] in his attempt at
equivalence prevents the localizability of the gravitationalunifying gravity and electromagnetism.
energy. However, an expression for the gravitational field Gravity theories in this geometrical framework are con-
energy has been pursued since the early days of general rektructed out of the torsion tensor. An infinity of such theories
tivity. A considerable amount of effort has been devoted todefined by a Lagrangian density, quadratic in the torsion ten-
finding viable expressions other than pseudotengmmsre  sor, has been investigated by Hayashi and Shirffijiwho
recently the idea of quasilocal energy, i.e., energy associata:ﬂenoteeaﬂ asparallel vector fields Among such infinity of
to a closed spacelike two-surface, in the context of theheories a particular one is distinguished, because the tetrad
Hilbert-Einstein action integral, has emerged as a tentativéields that are solutions of this particular theory yield a met-
description of the gravitational ener¢$]). The search for a ric tensor that is a solution of Einstein’s equations. The
consistent expression for the gravitational energy is undoubteleparallel equivalent of general relativitfEGR) [8—14]
edly a long-standing problem in general relativity. The argu-constitutes an alternative geometrical description of Ein-
ment based on the principle of equivalence regarding thatein’'s equations.
nonlocalizability of the gravitational energy is controversial A simple expression for the gravitational energy arises in
and not generally accept¢d]. The principle of equivalence the Hamiltonian formulation of the TEGRL3] in the frame-
does not preclude the existence of scalar densities on thgork of Schwinger’s time gauge conditi¢@5]. The energy
space-time manifold, constructed out of tetreat triad density is given by a scalar density in the form of a total
fields, that may eventually yield the correct description of thedivergence that appears in the Hamiltonian constraint of the
theory[16]. The investigations carried out so far confirm the
consistency and relevance of this energy expression.
*Email address: wadih@fis.unb.br A recent approach to the localization of the gravitational
"Present address: Instituto désiéan Tesica, Universidade Es- energy has been considered in the Lagrangian framework of
tadual Paulista, Rua Pamplona 145, 01405-908 Fszulo, SP, Bra- the TEGR by Andrade, Guillen and Perefr/]. The exis-
zil. tence of an expression for the gravitational energy density
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that is a true space-time tensor, and that reduces to Mgller’s 1l. THE HAMILTONIAN CONSTRAINT EQUATION
energy-momentum density of the gravitational field was AS AN ENERGY EQUATION FOR THE
shown in[17]. GRAVITATIONAL FIELD

The Hamiltonian formulation of the TEGR, with na
priori restriction on the tetrad fields, has recently been esta
lished[18]. Its canonical structure is different from that ob-
tained in Ref.[13], since it is not given in the standard
Arnowitt-Deser-MisnefADM) form [19]. In this framework
we again arrive at an expression for the gravitational energ)F,n
in strict simi_larity Wi'_th the procec_jure_ adopted ir! REL6], _ H=NC+NC+3, 1™
namely, by interpreting the Hamiltonian constraint equation
as an energy equation for the gravitational field. Likewise, 1 i
the gravitational momentum can be defined. The constraint +%3k('\'e-‘k)+f9k(n Nj), 2.9
algebra of the theory suggests that certain momentum com-
ponents are related to the gravitational angular momentum. {thereN andN' are lapse and shift function,,,= —>m
turns out to be possible to define, in this context, the angulasre Lagrange multiplierss is the gravitational constant and

b- We summarize here the Hamiltonian formulation obtained
in Ref.[13], where Schwinger’s time gauge is assumed. The
Hamiltonian density constructed out of triag); restricted
to the three-dimensional spacelike hypersurface, and of the

omenta canonically conjugatdt(’)l, is given by

momentum of the graVitational field. H'J :e(k)iH(k)j_ The constraints are defined by
In this article we investigate the definition of gravitational _ )
energy that arises in Rdf18], in the framework of the Kerr C=&j(2ke'l")—ke2k”Tkij

metric tensof20]. The whole formulation developed in Ref.

[18] is carried out without enforcing the time gauge condi- Nl = 118 s S E 2

; . IV 114, (2.2
tion. It turns out, however, that consistent values for the 4ke 2

gravitational energy are achieved by requiring the tetrad field N N

to satisfy(a posteriori)the time gauge condition. Ci=—edi IV =TTy, (2.3

We investigate the irreducible malsk,, of the Kerr black -
hole. It is the total mass of the black hole at the final stage ovvheree=det(e(;);) andk=1/167G. The tenso*'/ reads
Penrose’s process of energy extraction, considering that the
maximum possiblg energy i_s extracted. It is also reIath to Ekij:E(Tkij+-|—ikj_Tjki)_i_l(gkj-l—i_gki-l—j). (2.4
the energy contained within the external event horizon 4 2
E(r,) of the black hole(the surface of constant radius . o
—r, defines the external event horidofEvery expression 1he trace of the torsion tensor isT'=g'T
for local or quasilocal gravitational energy must necessarily=9" €™ T . The definition of£* yields
yield the value ofE(r,) in close agreement with\;,, ,
since we know beforehand the value of the latter as a func- kij _:} KijT. .. 1 KijT.  _TiT.

. L. 2 Tk” T Tk|1+ T le] TTI'

tion of the initial angular momentum of the black hRi]. 2

The evaluation of ®1,,, is a crucial test for any expression ] . )

for the gravitational energyE(r,) has been obtained by  The first two terms on the right-hand side of ER.2) are
means of different energy expressions in R&g]. Our ex-  €quivalent to the scalar curvatuie(eg;) on the three-
pression for the gravitational energy is the only one thagdimensional spacelike hypersurface,

yields a satisfactory value foE(r.), strikingly close to ; ki

2M;,, , and that arises in the framework of the Hamiltonian 29;(eT) —ex Ty =eR(eg)). 29
formulation of the gravitational field.

In the Hamiltonian formulation of the TEGRL8] there
arises a set of primary constraifit& that satisty the angular
momentum algebra. Following the prescription for defining _ -
the gravitational energy, the definition of the gravitational f d3xaj(2ke'|1):f d3x(ke2k”Tk”-
angular momentum arises by suitably interpreting the inte-
gral form of the constraint equatioii’*=0 as an angular . 1
momentum equation. We apply this definition to the gravita- +4_ke( VI — EHZ) ] (2.6
tional field of a thin, slowly rotating mass shell. In the limit

of slow rotation we obtain a realistic measure of the angulaiye identify Eq.(2.6) as an energy equation because the in-
momentum of the field in terms of the moment of inertia Oftegral of the left-hand side of this equation over the whole

The integral form of the Hamiltonian constraint equation
C(x)=0 can be interpreted as an energy equafids],

the source. o o three-dimensional space yields the Arnowitt-Deser-Misner
Notation: space-time indiceg, v, ... and S@,1) indi-  energy[19],

cesa,b, ... run from 0 to 3. Time and space indices are

indicated according tee=0,i,, a=(0),(i). The tetrad field 1 3 i 1

e®, yields the definition of the torsion tensofz = d,e, anG | dxdi(eT)=16—= Ldsx(ﬂihik_akhii)

—aveaﬂ. The flat, Minkowski space-time metric is fixed by

Nab=€au€0,9""=(—+++). =Enom- 2.7
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The right-hand side of E|2.7) is obtained by requiring the whereV is an arbitrary space volume. It is invariant under
asymptotic behavior coordinate transformations on the spacelike manifold, and
transforms as a vector under the global(3@ group (we
_) 2.9 will return to this point later on The definition above gen-
r)’ : eralizes expressiof2.9) to tetrad fields that are not restricted
by the time gauge condition. However, both expressions are
in the limit r—oo. 7; is the spatial sector of Minkowski’s equivalent, as we will see ahead, if the time gauge condition
metric tensor andh; is the first term in the asymptotic ex- is imposed. After implementing the primary constraifit$
pansion ofg;; . Therefore we define the gravitational energyandI'¥, the expression of the momeriE reads

enclosed by a volum& of the three-dimensional space as . 00 ciea - i 0k, Oiva
[16] [T =ke{g™(— g"T%; —e¥IT ;+ 26T/ y) + g7 (9" T,

1
€=+ 5

Ey=g f d3xa;(eT) (2.9 + T +e™(g0 T+ 91T %) — 2(e™g™ Ty,
=——| d%o, : : . o o .

97 8+G v j +eakgOJT00j)_gO|ngTaij+ea|(gOJTkij_ngTOij)
The expression above has been applied to several configura- —2(90ieak—gikea0)Tjji}- (3.4

tions of the gravitational field. The most relevant application _ . _
is the evaluation of the irreducible mass of the Kerr blackWith appropriate boundary conditions, expressit®3)

hole[23]. yields the ADM energy. Let us consider asymptotically flat
space-times and assume that in the limit the tetrad
IIl. GRAVITATIONAL ENERGY EXPRESSION IN TERMS fields have the asymptotic behavior
OF TETRAD FIELDS 1 1
An expression for the gravitational energy density also Cau™ Nan ™ §hau<?)v (3.9

arises in the framework of the Hamiltonian formulation of

general relativity in the teleparallel geomefd8], without ~ where ,,, is Minkowski’'s metric tensor and,, is the first

posing anya priori restriction on the tetrad fields, again in- term in the asymptotic expansion @f, . Asymptotically flat

terpreting the integral form of the constraint equations aspace-times are defined by E@®.5 together withd,g,,

energy-momentum equations for the gravitational field. =0(1/r?), or &Mea,,ZO(lll'z). Considering thea=(0)
The Hamiltonian formulation developed in R¢fi8] is  component in Eq(3.3) and integrating over the whole three-

obtained from the Lagrangian density in empty space-timealimensional spacelike hypersurface, we find, after a long but

defined by straightforward calculation, that
1 1
L(e)=—ke| 7T Tapet 5T Tpae=T°Ta|, (3. PO=E=- fv%oﬁxakn((’)k
where e= det(eaM),_ Tabc= eb“ecv;l'aw, and thg tra_ce pf _ —2kf dsxak(egike(o)o-r}i)
the torsion tensor is given b,=T%,,. The Hamiltonian is VA

obtained by just rewriting the Lagrangian density in the form 1
L=pqg—H. It has not been made use of any kind of projec- = dS«(dihik— dhii))=Eapu. (3.6
tion of metric variables to the three-dimensional spacelike 167G Js .o

hypersurface. Since there is no time derivativeegf in Eq. . . L
(3.1), the corresponding momentum canonically conjugated We W_'” prove that expressmr@.Q) and(3.3 coincide '.f
we require the time gauge condition. In order to prove it, let

I129 vanishes identically. Dispensing with surface terms the L (0)k
total Hamiltonian density read4.8] us rewritelT*>" as

i i (O)k—= a(0) 17(ik) 4 a(0) T7lik] 4 a(0) 7Ok
H(eaiaHal):eaOCaJ"aikFIk"',Bkaa (32) II =e iHI +e iHI +e OH ) (37)

where (--) and [---] denote symmetric and anti-

where {C3,T'% and I'"} constitute a set of primary con- : ; .
symmetric components, respectively. In the time gauge con-

straints, andaj, and B, are Lagrange multipliers. Explicit >’ 0 (0) _
details are given in Ref18]. The first term of the constraint dition we h(%;{(ee(jeo)— 80ki—0, and therefore EO%S'?) re-
C is given by a total divergence in the for@f= — g,J12k ~ duces tollT7F=e"7II™" An expression forlI™™ can be
+---. In similarity with Eq. (2.6) we identify this total di- obtained by requiring the vanishing of the constrdih{18],
vergence on the three-dimensional spacelike hypersurface as

k_ 770k KjyOiTO _ ~Ok~OiTi
the energy-momentum density of the gravitational field. The =117+ 2ke(gg ™ T — 970" T

total energy-momentum is defined by _,_googikTJ'ij)' (3.9
Pa:_j d3xa 118 (3.3 In the time gauge we hav'éoij:o and therefore fronT™®
v =0 we arrive at
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H0k=2ke(g0k90i—googik)'riij ] (3.9 related by the coordinate transformatidqazeaﬂdxf‘ such
that
All quantities in Eq.(3.9) are four-dimensional field quanti-
ties. Let us now rewrite Eq3.9) in terms of field quantities a
restricted to the three-dimensional spacelike hypersurface byga :‘?i
means of the lapse and shift functioié,and N', respec- mooogxH
tively. In view of the relationee=N(3e), g®=N/N?, and 1 0 0 0

g'*=3g'*— (N'N%)/N?, Eq. (3.9 can be written as
0 sinfcos¢p rcosfcos¢y —rsindsing

2 o — . . . .
HOk:Nk(3e)(3glk)TJij_ 0 sinfsing rcosfsing rsingcosg
0 cos6 —rsiné 0

The superscript 3 indicates that the quantity is projected on
the spacelike hypersurface. Note tﬁléitj is still given in 4.1
terms of four-dimensional field quantities.

We make use of a-81 decomposition fgr the tetrad fields 4,4 remiondqa:eaﬂdxﬂ can be integrated over the whole

H ai_ 3,ai i a na _ 3 a_ _ a X X
accorgmg taoe e T(N IN)7?, e5="€%, 7 - I;!e ' space-time, and therefore the transformatign-x* corre-
ande®y= 7N+ “e%N'. The tetrad f"3|d9°’ea_i and “e*’ are  gponds to a single-valued global transformation. In this case
related to each other by means of the metric teggoand itS  the transformation is called holonomic and both coordinate
inverse3g'l. With the help of these relations we can rewrite sets describe the same space-time.
TJ”- in terms of quantities on the Spacelike hypersurface in However, in the genera| case the re|atbqa: ea’udxﬂ

the time gauge condition, in which case we hay®=5(,  cannot be globally integrated, sine, may not be a gradi-

0) _ : . ..
ande!”;=N. We eventually arrive at ent function of the type?,g?. If the quantitiese?, are such
o thatg,e® —o,e? +0, then the transformation is called an-
o)k _ K 0 . ,
1%=2ked"gMe mT (i » (3.10 holongmivc. "

where we have eliminated the superscript 3. It is straightfor- aFo_r thea tetrad: given by Ec{.4.1) the tors:on teqsor
ward to verify thatlT®%= —2kT*, whereT* and T,y; are ur = 0u€, = 0,87, vgm;shes. Itis known thal”,, vanish
precisely the same quantities that appear in Sec. II, and iffféntically if and only ife”, are gradient vectorf25]. In the
particular in expressioii2.9). Therefore in the time gauge framework of the TEGR the gravitational field corresponds
condition we have to a configuration such thai[awﬁéo. Thus every gravita-

tional field is described by a space-time that is anholonomi-
: 1 _ cally related to the four-dimensional Minkowski space-time,
PO)=— jvdgwiﬂ(o)'Z%Ldgwj(eﬁ)- (3.1)  which is taken as the reference space-time. Consequently the
tetrad fields to be considered must necessarily yield a van-
Differently from the quasilocal energy expressidis, ishing torsion tensor in the limit of vanishing physicgl pa-
Eq. (3.11) is an integral of a scalar density over finite Spacerameters(such as mass, angular momentum and chaige
volumes, which can be transformed into a surface integral’Vhich case the tetrad field must reduce to expres@lob),
Therefore our expression is not bound, in principle, to belond’: i the case of arbitrary coordinates, to the foef),
to any class of quasilocal energies. There is no need of sub- %qa-_ o o _
traction terms in the present framework. And yet Egj1)) ~ The idea of describing the gravitational field as the gauge
does satisfy the usual requirements for a quasilocal energield of the Poincargroup is rather widespread. In view of
expression. According to the latter requirements the quasiloh® general acceptance of this idea, there is an unjustified
cal energy expression mugt) vanish for the Minkowski prejudice against gravitational theorle.s that do not exhibit
space-time(ii) yield the ADM and Bondi mass in the appro- local SQ3,1) symmetry. Rathe_r than being a drawback of the
priate limits; (i) yield the appropriate value for weak and Present formulation, the requirement of a global set of tetrad
spherically symmetric gravitational fields; afigt) yield the  fields for the descrlptlon of the space-time is a natural feature
irreducible mass of the Kerr black hole. The Bondi energy inof teleparallel theorief6] and of the teleparallel geometry.

the TEGR has been discussed in Rgf4], and the latter Before addressing the problem of obtaining the appropri-
requirement is discussed in Sec. V. ate set of tetrad fields out of a given metric tensor, it is

instructive to analyze the construction of tetrads for the flat
space-time, since a number of features that take place in this
context carry over to the general case of an arbitrary space-
In the framework of the teleparallel geometry, the gravi-time metric tensor. We will consider two sets of tetrads that
tational field can be described by an anholonomic transfordescribe the flat space-time, and that reveal the relationship
mation between a reference space-time and the physichetween the reference space-time with coordinafesind
space-time. We will briefly recall the difference between ho-the physical space-time with coordinates
lonomic and anholonomic transformations. Let us consider For a given arbitrary functiom(t) let us consider a trans-
two sets of coordinateqj®=(t,x,y,z) and x*=(t,r,0,¢), formation between two rotating Cartesian coordinate sys-

IV. THE DETERMINATION OF TETRAD FIELDS
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tems, q°=t, q'=x'cosw(t)—X’sinw(t), g*=x'sinw(t) e;,’=0, (4.4b
+x2cosw(t), g*=x>. The tetrads are given by
establish ainiquereference space-time that is neither related

e (1,X,Y,2) by a boost transformation, nor rotating with respect to the
"“ physical space-time. Equatiof#.4b fixes six degrees of

1 0 0 0 freedom of the tetrad field. The importance of Egs.
1 5 . _sin 0 (4.49,(4.4Db to the definition of the gravitational energy will
_| ~(x'sino+x"cosw)w  €OSw  —sinw be discussed at the end of Sec. V.
(x!cosw—x?sinw)w Sinw cosw 0 ' Let us consider now the Kerr space-time. In terms of
0 0 0 1 Boyer-Lindquist[26] coordinates the Kerr metric tensor is
given by
4.2
These tetrads describe a flat space-time with Cartesian coor- d<2— Y di2— 2xsir’e XSY L st d
dinatesx* that is rotating with respect to the reference space- 02 v pdt +dr
. . . . . P
time with coordinateg)®. We notice the appearance of anti-
symmetric components in the spatial sectoe%J. This is a - 3.2 sirfe 5
general feature in Cartesian coordinates: under an infinitesi- +p°dé +Td¢ ) (4.5

mal rotation, a rotated vectdf is related to the vectov by

means of the relatiol =R V: the rotation matrix is given by where p2=r2+a2co20.  A=r2+a2—2mr —2amr
R=1+w;X', wherew; are arbitrary parameters and the gen-_ g P ' X
eratorsX' are anti-symmetric matrices. Therefore the emer-
gence of anti-symmetric components in the sector

€ (t,x,y,2) is expected if the two space-times are rotating 32=(r2+a?)2— Aa?sirto,
with respect to each other.

Another transformation of general character is a Lorentz
boost, q©=9[t+ (v/c?)x], qM=y(x*+vt), qP=x?
andq®=x3, wherey=1/\1—v?%/c? (assuming the velocity
of light c#1). The two space-times have different time ] ]
scales. The tetrads read Each set of tetrad fields defines a teleparallel geometry.

For a given space-time metric tensgy,, there exists an
infinite set of tetrad fields that yield,,, . From the point of

J?=A—a’sirte.

y (vic®)y 0 O view of the metrical properties of the space-time, any two

oy y 00 sets of tetrads out of this infinity correspond to viakbeit

e® (t,x,y,2)= (4.3  distinch teleparallel configuration§l2]. However, the de-
. 0 0 10 scription of the gravitational field energy requires at least
0 0 0 1 boundary conditions. In the framework of the teleparallel

geometry the correct description of the gravitational energy-

omentum singles out a unique set of tetrad fields. In the

Th . he i . _ ! ’ r
besaLest(raang tr?ebz\r/r?e?oe:(?; g?:lr?éytélﬂi tlzrrze /S?)ugeuﬁgg?noﬁgllowmg we will consider the most relevant tetrad configu-
9 1=\ V- rations. The first one is based on the weak field approxima-

an arbitrary boost transformation there will arise terms suc
that e, #0, which violate the time gauge conditicoa@i)0 rﬂon first suggested by Mller, given by expressi6ib),
=0. The main feature of the time gauge condition is to lock
the time axes of the reference space-time and of the physical 1
space-time. €= Tap+ 5has (4.63
In the absence of the gravitational field® L(6X,Y,2)
= 5"" is the unique set of tetrads that descnbes a reference
space-time with coordinates? that is neither related by a together with the symmetry condition dny,,
boost transformation nor rotating with respect to the physical
space-time with coordinateg*. The features above should
also carry over to the case of an arbitrary gravitational field. hap=hpa- (4.6b
As we will see, they are essential in the description of the
energy properties of the gravitational field. Likewise, for aNote that Eq(4.63 is demanded not only in the asymptotic
given space-time metric tensor the set of tetrad fields that ifmit, but at every space-time point. Although the weak field

Cartesian coordinates satisfy the properties limit fixes the expression a8}, , the resulting expression is
taken to hold in the strong field regime. The expression that
€)= €(j)i » (4.49 satisfies Eq(4.6) and that yields Eq(4.5) is given by
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N
Y Ay 0 0 e
p vp
Xy . . p . 2 2 2 2 . -
=—sinfsing ——=sinfcos¢ pCcosHcos¢y — —\J1+M-N<y“sinfsing
2p JA p
M
ol XY gin 0 cose P sin gsing pcosfsing —\1+M?N?y?sinfcose
2p VA p
p .
0 —cos6 —psing 0
VA
|
where 1
)= 7+ 5 hij, (4.8a
, 2NVTHMZ—(1+N?) 2
~ AMPN®—(1-N%)?
hij=h;i , (4.8b
M= Eiwsin 0,
together with Schwinger’s time gauge conditiOH(k)O
o =e(®,=0 [Eqg. (4.4b]. Note that Eqs(4.89,(4.8b are es-
N= S sentially equivalent to Eq(4.43. Conditions(4.8) are as-

sumed to fix the expression ef‘M also in the strong field
The second set of tetrad fields to be considered satisfieggime. The set of tetrad fields that satisfies ES), (4.4b

the weak field approximation and that yields Eq(4.5) reads
1 X°
—;\/¢2+?S|r120 0 0 0
isims?sin(j) Lsin0c03¢ pcosfcosgp — zsinﬁsinq&
2p JA P
eguz X . p d) P . osi ¢ COSHSin¢ 2 ino ¢ . (49)
— <—sinfdcos —=siné#sin P —sin#cos
2p VA p
p .
0 —cosé —psing 0
VA

We note finally that both Eq$4.7) and(4.9) reduce to Eq. field, and since the value &f;,, is known from the work of
(4.1) if we makem=a=0. Christodouloy 21].
In order to obtairM;,, we will calculate thea=(0) com-
ponent of Eq.(3.3) by fixing V to be the volume within the
V. THE IRREDUCIBLE MASS OF THE KERR BLACK r=r, surface, where , =m+m°—a“ is the external ho-
HOLE rizon of the Kerr black hole. Therefore we will consider

In this section we will apply expressidB.3) to the evalu- .
ation of the irreducible masMl;,, of the Kerr black hole. P(O):E:_Ldsn(o)lz - jsd6d¢n(o)l(r’0’ b).
This is the most important test for any gravitational energy (5.1)
expression, local or quasilocal, since the geometrical setting
corresponds to an intricate configuration of the gravitationalvhere the surfac& is determined by the condition=r , .
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2 Y

FIG. 1. Energy within the external event ho-
rizon of the Kerr black hole as a function of the
angular momentum. The figure displays-E/m
against\ for expressions5.3) and (5.4). The
lower curve represents\2;,, given by Eq.(5.5).
The one right above it, almost coinciding with the
lower curve, corresponds to E.4). The upper
curve corresponds to E¢.3).

0 0.2 0.4 .\ 0.6 0.8

The expression ofl (9! will be obtained by considering Eq.

(4.7). In view of Eq.(3.1]) there is no need to calculate Eq.
(5.1 out of Eq. (4.9, since it has already been evaluated

[23].

In the Appendix we present the expressions of the com-
ponents of the torsion tensor constructed out of the tetrad

configuration Eq.(4.7). The componeniI(®? is then ob-
tained from the definition3.4) by means of simpldalbeit
long) algebraic manipulations. The
1©%r,9,¢) for the tetrad expressiof.7) reads

2\A
ey

pz
1+NQ+ —
vy

k3,
H(°)1=Tysin 0{ -2

JAN (M2 2
+ T 7(%)(4‘ g(?rz

}, (5.2

where the definitions of, N, andM are given after expres-
sion (4.7) and

O=\1+M2

On the surface =r, we haveA(r,)=0, M?(r,)=—1,
andQ(r,)=0. Therefore the last term in E¢5.2) is indefi-
nite. It must be calculated by taking the limrit>r . We
find

\/KN(MZ

—— | —dxt <=2
Y rX S o

a’sirfe m2—a2+ r,
m 2mr,  2mr,—a’sirfg)"

expression  of

mio(
E[eg"ﬂ]zzfo désing| \p?>+ 12 coso
py 2p’y

" Vp?+A%coso i (p®+\?cos'6)%*
y(p—1)Vp?+\2cose
a 2

: (5.3

where

a=\m, O0s\<l1.

p=1+ I X2,

For the tetrad configuration E¢4.9 we have[23]

V2p 6p—\2 [2p+A
7 + In 0 .

4\

E[e],]=m (5.4)

Expressions(5.3) and (5.4) must be compared with
2M;,; , whereM;,, is given by[21] M;,, =%\/r2++a2. In our
notation we have

2Mirr:m\/ﬁ- (5.9

In the limit a— 0 all energy expressions yieldh® which is

the value obtained by several different approadi&®. In

Fig. 1 we have plotte@& =E/m against\, where O=A<1.
Each value of\ characterizes an angular momentum state of
the black hole. The hope was that the tetrad field given by
Eq. (4.7) would explain the tiny difference between the nu-

The other terms in Eq5.2) do not pose any problem, and merical values of Eq95.4) and (5.5. However, the devia-
thus we can obtain the expression of the energy containetion of expression(5.3) from 2M;,, indicates that the tetrad
within the external event horizon of the Kerr black hole, thatconfiguration Eq(4.7) is not appropriate to the description

follows from the tetrad configuratiof#.7). The final expres-

of gravitational energy. The latter is most correctly described

sion arises as a function of the angular momentum per uniby requiring the tetrad configuration E@.9), that satisfies

massa. It is given by(we are assuminG=1)

Schwinger’s time gauge condition together with E443.
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The choice of the tetrad field given by E@.9) amounts  sides in the fact that the constraift& [18],
to choosing the unique reference space-time that is neither
related by a boost transformation nor rotating with respect to _ _
the physical space-time. [ik=—rk
For an arbitrary space voluméthe gravitational energy - L
is defined relationally, in the sense that it depends on the =2H[Ik]_2ke[_glmgkrr0mj
choice of the reference space-time. If the tetrad fields are im0k _ ~km Oi\Ti
required to satisfy conditiong.4a,(4.4b) for a metric tensor (g7 Tl €D
that exhibits asymptotic boundary conditions similar to Eq.
(3.5), then for asymptotically flat space-times the physicalsatisfy the angular momentum algebra,
space-time coincides with the reference space-time in the
limit r—oo. If, however, we choose a reference space-time . W R
that is, for instance, rotatingabout thez axis, say with {CY (%), IS(y)p=(g" I+ g"T
respect to the space-time defined by the Kerr solution, then _ ikl _ il ik _
the irreducible mass of the black hole, calculated with re- g~ dx—y). (62
spect to this reference space-time, will be different from ex-
pression(5.4), the difference residing in rotational effects.  Following the prescription for defining the gravitational
Therefore in similarity to the ordinary concept of energy, theenergy out of the Hamiltonian constraint of the TEGR, we
gravitational energy depends on the rotational state of théiterpret the integral form of the constraint equatiofi=0
reference frame. Rotational and boost effects are eliminte@s an angular momentum equation, and therefore we define
by requiring conditiong4.4a,(4.4b) on the tetrad fields. the angular momentum of the gravitational fied“ accord-
The agreement between Ed5.4) and (5.5 is the most INg to
important result so far obtained from definitiof.9) and
(3.3). To our knowledge, the latter are the only energy defi-
nitions that yield a value satisfactorily close t®1%, , and Mikzzf d3xI1likI
that arise from the structure of the Hamiltonian formulation v
of the theory.
Before closing this section we note that the time gauge :2kf d3xe[ —gMmgkiTo_.
condition(4.4b breaks the S(3,1) symmetry group into the v m
global SG3). Therefore in this casB? given by Eq.(3.3) is _ o
no longer a true S@,1) vector. +(g"™Mg%*—g g™ T i1, (6.3

for an arbitrary volumeV/ of the three-dimensional space.

In Einstein-Cartan type theories there also appear con-
straints that satisfy the Poisson bracket given by B®).

In the context of Einstein’s general relativity, rotational However, such constraints arise in the foftHi*! =0, and so
phenomena is certainly not a completely understood issue definition similar to Eq(6.3), i.e., interpreting the con-
The prominent manifestation of a purely relativistic rota- straint equation as an equation for the angular momentum of
tional effect is the dragging of inertial frames. If the angularthe field, is not possible.
momentum of the gravitational field of isolated systems has a Since definition(6.3) is a three-dimensional integral we
meaningful notion, then it is reasonable to expect the latter tavill consider a non-singular space-time metric that exhibits
be somehow related to the rotational motion of the physicatotational motion. One exact solution that is everywhere
sources. regular in the exterior and interior regions of the rotating

The angular momentum of the gravitational field has beersource is the metric associated to a thin, slowly rotating mass
addressed in the literature by means of different approacheshell as described by Cohéal]. In the limit of small angu-
The oldest approach is based on pseudoter®2§, out lar momentum this metric corresponds to the asymptotic
of which angular momentum superpotentials are constructedorm of Kerr’s metric tensor. The main motivation for con-
An alternative approach assumes the existence of certagidering this metric is the construction of a realistic source
Killing vector fields that allow the construction of conserved for the exterior region of the Kerr space-time, and therefore
integral quantitie$29]. Finally, the gravitational angular mo- to match the latter region to a singularity-free space-time.
mentum can also be considered in the context of PoincarEor a shell of radius, and total massn=2« as seen by an
gauge theories of graviy80], either in the Lagrangian or in observer at infinity, the metric reads
the Hamiltonian formulation. In the latter case it is required
that the generators of spatial rotations at infinity have well
defined functional derivatives. From this requirement a cer- ds?=—V2dt?+ ¢ dr?+r2d¢?
tain surface integral arises, whose value is interpreted as the .
gravitational angular momentum. P +r2sig(d¢—Qdy?], 6.4

The main motivation for considering the angular momen-
tum of the gravitational field in the present investigation re-where

VI. ANGULAR MOMENTUM OF THE GRAVITATIONAL
FIELD
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2\ 3
r
. =1+, n=(%’§) Q,
¢/J=z//o:1+r—, Q=0Qy=const,
0

for r>ry.
The set of tetrad fields that satisfy conditiqds4a,(4.4b
for r<rg, and is given by
|
-V 0 0 0
Qry?sindsing  Y?sinfcos¢ riy?cosdcosey —ry?sindsing
€au=| —Qry®sinfcosep ¢?sinfsing ry?cosdsing ry?sinfcose |- (6.5
0 ? cos@ —ry?sing 0
|
The determinant oé,,, is e=Vr2y®sine. the Newtonian value for the angular momentum of a rotating
The nonvanishing components of the torsion tensor thamass shel[31]. In this limit the calculation is straightfor-
are needed in the following read ward. We find
TM =10,y cosé cosg, 8a . 4m

Mlz— B_rOJ: 3_|'0J (67)
T@ ,=ra,y? cosdsin ¢,
We identify M2 as the angular momentum of the gravi-

T®) = —ra,y?sing, tational field. Substituting the expression dfn Eq. (6.7)
and considering that in the limitg>a we have ¢y=1
TW = —rg,4?sindsing, +alry=1, we arrive at
T@ =ra,¢?sin 6 cose. 2
15 1Y ¢ M12= §mr§ Q. (6.9

The anti-symmetric componeni3’*] can be easily evalu-

ated. We obtain Qo=9Q(r,) is the induced angular velocity of inertial frames

Q inside the shell32]. The term between the parentheses in the
13(r, 6, ) =4ka— i siné, expression above corresponds to the moment of inertia of a
\ rotating shell of radius, and masan. For smalla, Qg
(23] 2] and the angular velocity of the shell; are related vid)
for r>ro IT5(r, 0,4)=0 for r<ro, andIT"7(r,0,¢) = (4m/3ry) [32]. Therefore in the Newtonian limit,
=T1112%(r,0,$)=0 for any value ofr. In Cartesian coordi- 5.4 we haveM 2= (Q/wJ)J, whered= (2/3)mr2w;.
nates the or_lly r_10nvan|sh|ng component of the total angular The metric tensof6.4) is likely to be the only exact so-
momentum is given by lution of Einstein’s equations whose expression for the clas-
sical angular momentum of the source is precisely known.
Mlzzzj d3xH[12](x,y,z) In order to assess the significance of the above result, we
will evaluate the angular momentum associated to the metric
. - tensor(6.4) by means of Komar's integrdy [29],
=4’n’f0 defo drr siP6I11%%(r, 0, ¢)

1
= — L gBlgxm v
_ . Q Qxk = fﬁs\/ 08 4,V YEP AXEAAXY, (6.9
=aJ d65|n36J drry; - (6.6)
0 r
’ whereS is a spherical surface of radil®—, &* is the
The integral above is finite, well behaved and can be exKilling vector field &= 65 andV is the covariant derivative

actly computed. However, we are interested only in the limitconstructed out of the Christoffel symde%V. The integral
ro>«, in which case Cohen identifiek= 1/2(r0¢3)390 as Qg reduces to
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1 Ky
Qk=5— jl; V—gg%T!,dode. (6.10 1231 9. )=

2m Js " 0 R site)
By substituting Eq(6.4) and taking the limitS—« we ob- p? siné
tain X|cosl| = —1|——<—dg2|.

2 2
4 4 16 8 (6.129
Qk=3(rov))*Qo=31500=g Mrows=3J. (6.11

Transforming to Cartesian coordinates we obtain

In the equation above we are considering «. We observe
that definitions(6.3) and(6.9) yield distinct results. In order M12=J d3xI1*(x,y,2)
to make clear the distinction it is useful to rewrite both

espression$6.7) and(6.11) in laboratory(CGS units. Thus o w _

we makem=(G/c?)M and ws=Q/c, whereM is given in =27Tf0 drfo dé[r singI1*3)(r, 6, 4)

grams, and), in radians per second. In addition, we make

the replacement 1/(%6— c3/(16mwG) in the multiplicative +r2sin@cosoIl?®l(r,0,4)], (6.13
factor of both expressions, in order to yield the correct di-

mension to the integrals. We arrive at and M¥=M23=0. The evaluation of Eq(6.13 out of ex-

pressiong6.12) yields a divergent result. The latter is posi-

M 12— G| am EM 20, 6.7 tively and negatively divergent in the external,{ and in-
~1c?/3ryl3 Fotts (6.7 ternal ¢_) horizons of the black hole, respectively.
Moreover, in the regionr_<r<r,, M acquires an
8 5 imaginary component. A possible interpretation is that the
Qk=3 §MrOQs)' (6.17)  Boyer-Lindquist coordinates are not suitable to the present

analysis. In any way, integration over the whole spacelike

We note thatG/c?=0,74x 10 2 g/cm. Both expressions section of the Kerr space-time is a nontrivial operation.
have angular momentum units. It must be noted that the Kerr black hole has no classical
One expects the gravitational angular momentum to be ofhalog. The interpretation of the angular momentum param-
the order of magnitude of the intensity of the gravitational€t€ra of the Kerr solution is not straightforward, since in the
field. We observe that Komar's integral yields a value pro-Néwtonian theory of gravitation the gravitational field of a
portional to the angular momentum of tseurce whereas body does not depend on its rotational motion. The param-
M12is much smaller thaQ . Indeed, the gravitational field eterais identified with the angular momentum per unit mass
of a mass shell of typical laboratory values is negligible, ancPf the source only after reducing the exterior region of the
consequently the gravitational angular momentum should berr metric to a Lense-Thirring type metric by successive
negligible as well. Therefor!2 yields a realistic value for aPproximationg33J.
the angular momentum of the gravitational field, in contrast
to Qk . VII. DISCUSSION

The advantage of definitio(.4) is that it does not de- In this paper we have investigated the definitions of en-

pend on the existence of Killing vector fields. The conclusion rgy and angular momentum of the gravitational field that

is that the angular momentum of the space-time of a rotating 77 L .
mass shell, according to the definitié.3), is proportional rise in the Hamiltonian formulation of the TEGR. We have

to the induced angular veloci), of inertial frames, ﬁgnmg?t[ﬁg Erridrngisglémrﬁgg?gtf ?r?g |§\$rm belggklﬁaleth(\jvi(t:r?ltcﬁelza_
The investigations carried out so far in the context of theresult reviously obtained in the framework of ihe same
Kerr solution are not yet conclusive. Although the CaICUIa_theo IObut with )t/he Hamiltonian formulation established un-
tions in the Boyer-Lindquist coordinates are extremely intri- Iy, S " ) "
N 12 4 S der thea priori imposition of the time gauge condition. The

cate, the indications are th&*“ diverges. Considering the : L

. . S two results agreed. In fact, both energy expressions coincide
metric tensor given by Eq4.5 and the related definitions, requiring the time gauge condition, if the latter is imposed
we calculate the antisymmetric components of the momentgy quiring gaug ’ . P

a posterioriin the a=(0) component of expressidi3.3).

[T in the time gauge, i.e., out of tetra@é.9). They are The relevance of Eq5.4) is further enhanced if we ob-

given by serve that the Brown-York methd@®] for the evaluation of
12(r, 6, 4)=0, (6.123 quasilocal gravitational energy fails in obtaining a value
close to the irreducible mass of the Kerr black hole. Al-
Ky sin @ thqugh the calculations i_n the framework of this method are

13(r, 9, ) = X quite intricate, recently it has been carried ¢84]. It has

VP22 + x? sirfe been shown that the gravitational energy within is close
5 to 2M;,, only for a/m<0.5 (Fig. 1 of Ref.[34]).
14 P Ea 2) (6.125 Definitions for the gravitational energy in the context of
r ' .

X . L
DI the teleparallel equivalent of general relativity have already
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been proposed in the literature. In Riglf1] an expression for
the gravitational energy arises from the surface term of tha(©),,= \/1+M?y? =
total Hamiltonian[Egs. (3.18 and (3.19 of Ref. [11]]. A

similar quantity is suggested in RdB5|, according to Eq.

1
hp— ;&rw

(3.9 of_the latter reference. Both e_xpressions are equival_ent _ &(ya M+Md,y),
to the integral form of the total divergence of the Hamil- pV1+M?y?
tonian density developed in RdflL8] [Eq. (27) of the latter
referencé o _YNx ., (1 1 L S
T 13~ plﬂ' sin“@ y&ry-i- X(?,-X'f’ N&rN p(?rp ¢&,1/f y
E= fv%daxak(eaonak): iﬁmds((eaoﬂa"). 10 =YX psi (1a i iyt 132)
01~ pzsm sing Y rX y rY P dp— S

The three expressions yield the same value fortthal en-

ergy of the gravitational field. However, since these three_ ,
expressions contain the lapse function in the integrand, non
of them is suitable to the calculation of the irreducible mass
of the Kerr black hole, in which case we consider a finite p
surface of integration, because the lapse funtion vanishes oHM1,=cos6 cose| dyp—

the external event horizon of the black hdlecalling the \/Z
3+1 decomposition in Sec. lllg?,=7*N+3€*N". In the

time gauge we have?®= &7 ande!”,=0). The energy ex- T ,=sindsine

YXx .
=— 2Zsinf cosg,
03= " S ¢

1
——=Sin# cos¢dyp,

JA
3 1 1
——;\/1+ N?M?y7<2 3 — ;o"rp)

pressions of Refd11,35 are not to be applied to a finite VA
surface of integration; rather, they yield the total energy of
the space-ti ’ Y ¥ IN*M%y? (1 1 1
pacetlme. _ — 0. N+ —0 M+_(9y
The energy expressiof8.3) is defined with respect to a pV1+N?M2y2\N ' M ' y "l

given reference space. Tetrad fields that satisfy conditions
(4.49,(4.4b establish a unique reference space-time that is[(z)
neither boost related nor rotating with respect to the physical 01
space-time. These conditions uniquely associate a set of tet-
rad fields to an arbitrary metric tensor. Therefore in the_,, ~  Yx . .
present framework it does not suffice to assert that the refer- 03~ p—Esmasmd),

ence space-time is Minkowski's space-time. It is also neces-

sary to enforce the soldering of the reference space-time to p 1

the physical space-time by means of E¢s4a,(4.4h. We  T)12=C0s6sin¢| \/_K _\/_Ksm gsingdyp,
conjecture that for a given space volume the latter conditions
yield the minimumvalue for the energy expressi@8.3).

L 0 (16' +15 10" 1(92)
_pzsm cos¢ X rX y ry p rP s =)

T ;= —sinf cos¢

1
b %m(gu
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1
APPENDIX +§(9ry :

We present here the components of the torsion tensor ob-
tained out of the tetrad configuration E@.7), which satis- 1) = —sing| 3,p— —= | — —— cosfa,p.
fies Mdller's weak field approximation: JA] A
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