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Energy and angular momentum of the gravitational field in the teleparallel geometry
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The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of
energy, momentum and angular momentum of the gravitational field arise from the integral form of the
constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of
scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is
investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external
event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The
gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell.
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I. INTRODUCTION

Teleparallel theories of gravity have been considere
long time ago in connection with attempts to define the
ergy of the gravitational field@1#. By studying the properties
of solutions of Einstein’s equations that describe the grav
tional field of isolated material systems, it is concluded tha
consistent expression for the energydensityof the gravita-
tional field would be given in terms of second order deriv
tives of the metric tensor. It is known that there exists
covariant, nontrivial expression constructed out of the me
tensor, both in three and in four dimensions, that conta
such derivatives. However, covariant expressions that c
tain second order derivatives of tetrad fields are feasi
Thus it is legitimate to conjecture that the difficulties rega
ing the problem of defining the gravitational energ
momentum is related to the geometrical description of
gravitational field, rather than being an intrinsic drawback
the theory@2#.

It is usually asserted in the literature that the principle
equivalence prevents the localizability of the gravitation
energy. However, an expression for the gravitational fi
energy has been pursued since the early days of general
tivity. A considerable amount of effort has been devoted
finding viable expressions other than pseudotensors~more
recently the idea of quasilocal energy, i.e., energy associ
to a closed spacelike two-surface, in the context of
Hilbert-Einstein action integral, has emerged as a tenta
description of the gravitational energy@3#!. The search for a
consistent expression for the gravitational energy is undo
edly a long-standing problem in general relativity. The arg
ment based on the principle of equivalence regarding
nonlocalizability of the gravitational energy is controvers
and not generally accepted@2#. The principle of equivalence
does not preclude the existence of scalar densities on
space-time manifold, constructed out of tetrad~or triad!
fields, that may eventually yield the correct description of

*Email address: wadih@fis.unb.br
†Present address: Instituto de Fı´sica Teo´rica, Universidade Es-

tadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo, SP, Bra-
zil.
0556-2821/2002/65~12!/124001~12!/$20.00 65 1240
a
-

-
a

-
o
ic
s
n-
e.
-

e
f

f
l
d
la-

o

ed
e
e

t-
-
e

l

he

e

energy properties of the gravitational field. Such densit
may be given in terms of the torsion tensor, which cannot
made to vanish at a point by a coordinate transformati
Mo” ller @1# was probably the first one to notice that the tetr
description of the gravitational field allows a more satisfa
tory treatment of the gravitational energy-momentum.

The dynamics of the gravitational field can be describ
in the context of the teleparallel geometry, where the ba
geometrical entity is the tetrad fielde m

a @a and m are
SO~3,1! and space-time indices, respectively#. Teleparallel
theories of gravity are defined on the Weitzenbo¨ck space-
time @4#, endowed with the affine connection

Gmn
l 5eal]mean . ~1.1!

The curvature tensor constructed out of Eq.~1.1! vanishes
identically. This connection defines a space-time w
teleparallelism, or absolute parallelism@5#. This geometrical
framework was considered by Einstein@6# in his attempt at
unifying gravity and electromagnetism.

Gravity theories in this geometrical framework are co
structed out of the torsion tensor. An infinity of such theor
defined by a Lagrangian density, quadratic in the torsion t
sor, has been investigated by Hayashi and Shirafuji@7# ~who
denotee m

a asparallel vector fields!. Among such infinity of
theories a particular one is distinguished, because the te
fields that are solutions of this particular theory yield a m
ric tensor that is a solution of Einstein’s equations. T
teleparallel equivalent of general relativity~TEGR! @8–14#
constitutes an alternative geometrical description of E
stein’s equations.

A simple expression for the gravitational energy arises
the Hamiltonian formulation of the TEGR@13# in the frame-
work of Schwinger’s time gauge condition@15#. The energy
density is given by a scalar density in the form of a to
divergence that appears in the Hamiltonian constraint of
theory@16#. The investigations carried out so far confirm th
consistency and relevance of this energy expression.

A recent approach to the localization of the gravitation
energy has been considered in the Lagrangian framewor
the TEGR by Andrade, Guillen and Pereira@17#. The exis-
tence of an expression for the gravitational energy den
©2002 The American Physical Society01-1
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that is a true space-time tensor, and that reduces to Møl
energy-momentum density of the gravitational field w
shown in@17#.

The Hamiltonian formulation of the TEGR, with noa
priori restriction on the tetrad fields, has recently been es
lished @18#. Its canonical structure is different from that o
tained in Ref.@13#, since it is not given in the standar
Arnowitt-Deser-Misner~ADM ! form @19#. In this framework
we again arrive at an expression for the gravitational ene
in strict similarity with the procedure adopted in Ref.@16#,
namely, by interpreting the Hamiltonian constraint equat
as an energy equation for the gravitational field. Likewi
the gravitational momentum can be defined. The constr
algebra of the theory suggests that certain momentum c
ponents are related to the gravitational angular momentum
turns out to be possible to define, in this context, the ang
momentum of the gravitational field.

In this article we investigate the definition of gravitation
energy that arises in Ref.@18#, in the framework of the Kerr
metric tensor@20#. The whole formulation developed in Re
@18# is carried out without enforcing the time gauge con
tion. It turns out, however, that consistent values for
gravitational energy are achieved by requiring the tetrad fi
to satisfy(a posteriori) the time gauge condition.

We investigate the irreducible massMirr of the Kerr black
hole. It is the total mass of the black hole at the final stage
Penrose’s process of energy extraction, considering tha
maximum possible energy is extracted. It is also related
the energy contained within the external event horiz
E(r 1) of the black hole~the surface of constant radiusr
5r 1 defines the external event horizon!. Every expression
for local or quasilocal gravitational energy must necessa
yield the value ofE(r 1) in close agreement with 2Mirr ,
since we know beforehand the value of the latter as a fu
tion of the initial angular momentum of the black hole@21#.
The evaluation of 2Mirr is a crucial test for any expressio
for the gravitational energy.E(r 1) has been obtained b
means of different energy expressions in Ref.@22#. Our ex-
pression for the gravitational energy is the only one t
yields a satisfactory value forE(r 1), strikingly close to
2Mirr , and that arises in the framework of the Hamiltoni
formulation of the gravitational field.

In the Hamiltonian formulation of the TEGR@18# there
arises a set of primary constraintsG ik that satisty the angula
momentum algebra. Following the prescription for defini
the gravitational energy, the definition of the gravitation
angular momentum arises by suitably interpreting the in
gral form of the constraint equationG ik50 as an angular
momentum equation. We apply this definition to the gravi
tional field of a thin, slowly rotating mass shell. In the lim
of slow rotation we obtain a realistic measure of the angu
momentum of the field in terms of the moment of inertia
the source.

Notation: space-time indicesm,n, . . . and SO~3,1! indi-
ces a,b, . . . run from 0 to 3. Time and space indices a
indicated according tom50,i , a5(0),(i ). The tetrad field
e m

a yields the definition of the torsion tensor:Tmn
a 5]me n

a

2]ne m
a . The flat, Minkowski space-time metric is fixed b

hab5eamebngmn5(2111).
12400
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II. THE HAMILTONIAN CONSTRAINT EQUATION
AS AN ENERGY EQUATION FOR THE

GRAVITATIONAL FIELD

We summarize here the Hamiltonian formulation obtain
in Ref. @13#, where Schwinger’s time gauge is assumed. T
Hamiltonian density constructed out of triadse( i ) j restricted
to the three-dimensional spacelike hypersurface, and of
momenta canonically conjugatedP ( i ) j , is given by

H5NC1NiCi1SmnP
mn

1
1

8pG
]k~NeTk!1]k~P jkNj !, ~2.1!

whereN and Ni are lapse and shift functions,Smn52Snm
are Lagrange multipliers,G is the gravitational constant an
P i j 5e(k)

iP (k) j . The constraints are defined by

C5] j~2keTj !2keSki jTki j

2
1

4keS P i j P j i 2
1

2
P2D , ~2.2!

Ck52e( j )k] iP
( j ) i2P ( j ) iT( j ) ik , ~2.3!

wheree5det(e( i ) j ) andk51/16pG. The tensorSki j reads

Ski j5
1

4
~Tki j1Tik j2Tjki !1

1

2
~gk jTi2gkiTj !. ~2.4!

The trace of the torsion tensor isTi5gikTk
5gike(m) jT(m) jk . The definition ofSki j yields

Ski jTki j5
1

4
Tki jTki j1

1

2
Tki jTik j2TiTi .

The first two terms on the right-hand side of Eq.~2.2! are
equivalent to the scalar curvatureR(e( i ) j ) on the three-
dimensional spacelike hypersurface,

2] j~eTj !2eSki jTki j5eR~e( i ) j !. ~2.5!

The integral form of the Hamiltonian constraint equati
C(x)50 can be interpreted as an energy equation@16#,

E d3x] j~2keTj !5E d3xH keSki jTki j

1
1

4keS P i j P j i 2
1

2
P2D J . ~2.6!

We identify Eq.~2.6! as an energy equation because the
tegral of the left-hand side of this equation over the wh
three-dimensional space yields the Arnowitt-Deser-Mis
energy@19#,

1

8pGE d3x] j~eTj !5
1

16pGE
S
dSk~] ihik2]khii !

5EADM . ~2.7!
1-2
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The right-hand side of Eq.~2.7! is obtained by requiring the
asymptotic behavior

e( i ) j.h i j 1
1

2
hi j S 1

r D , ~2.8!

in the limit r→`. h i j is the spatial sector of Minkowski’s
metric tensor andhi j is the first term in the asymptotic ex
pansion ofgi j . Therefore we define the gravitational ener
enclosed by a volumeV of the three-dimensional space
@16#

Eg5
1

8pGE
V
d3x] j~eTj !. ~2.9!

The expression above has been applied to several config
tions of the gravitational field. The most relevant applicati
is the evaluation of the irreducible mass of the Kerr bla
hole @23#.

III. GRAVITATIONAL ENERGY EXPRESSION IN TERMS
OF TETRAD FIELDS

An expression for the gravitational energy density a
arises in the framework of the Hamiltonian formulation
general relativity in the teleparallel geometry@18#, without
posing anya priori restriction on the tetrad fields, again in
terpreting the integral form of the constraint equations
energy-momentum equations for the gravitational field.

The Hamiltonian formulation developed in Ref.@18# is
obtained from the Lagrangian density in empty space-t
defined by

L~e!52keS 1

4
TabcTabc1

1

2
TabcTbac2TaTaD , ~3.1!

where e5det(e m
a ), Tabc5eb

mec
nTamn , and the trace of

the torsion tensor is given byTb5T ab
a . The Hamiltonian is

obtained by just rewriting the Lagrangian density in the fo
L5pq̇2H. It has not been made use of any kind of proje
tion of metric variables to the three-dimensional space
hypersurface. Since there is no time derivative ofea0 in Eq.
~3.1!, the corresponding momentum canonically conjuga
Pa0 vanishes identically. Dispensing with surface terms
total Hamiltonian density reads@18#

H~eai ,P
ai!5ea0Ca1a ikG ik1bkG

k, ~3.2!

where $Ca,G ik and Gk% constitute a set of primary con
straints, anda ik and bk are Lagrange multipliers. Explici
details are given in Ref.@18#. The first term of the constrain
Ca is given by a total divergence in the formCa52]kP

ak

1•••. In similarity with Eq. ~2.6! we identify this total di-
vergence on the three-dimensional spacelike hypersurfac
the energy-momentum density of the gravitational field. T
total energy-momentum is defined by

Pa52E
V
d3x] iP

ai, ~3.3!
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whereV is an arbitrary space volume. It is invariant und
coordinate transformations on the spacelike manifold, a
transforms as a vector under the global SO~3,1! group ~we
will return to this point later on!. The definition above gen
eralizes expression~2.9! to tetrad fields that are not restricte
by the time gauge condition. However, both expressions
equivalent, as we will see ahead, if the time gauge condi
is imposed. After implementing the primary constraintsG ik

andGk, the expression of the momentaPak reads

Pak5ke$g00~2gk jT 0 j
a 2ea jT 0 j

k 12eakT 0 j
j !1g0k~g0 jT 0 j

a

1ea jT 0 j
0 !1ea0~g0 jT 0 j

k 1gk jT 0 j
0 !22~ea0g0kT 0 j

j

1eakg0 jT 0 j
0 !2g0igk jT i j

a 1eai~g0 jT i j
k 2gk jT i j

0 !

22~g0ieak2gikea0!T ji
j %. ~3.4!

With appropriate boundary conditions, expression~3.3!
yields the ADM energy. Let us consider asymptotically fl
space-times and assume that in the limitr→` the tetrad
fields have the asymptotic behavior

eam.ham1
1

2
hamS 1

r D , ~3.5!

whereham is Minkowski’s metric tensor andham is the first
term in the asymptotic expansion ofgmn . Asymptotically flat
space-times are defined by Eq.~3.5! together with]mgln

5O(1/r 2), or ]mean5O(1/r 2). Considering thea5(0)
component in Eq.~3.3! and integrating over the whole three
dimensional spacelike hypersurface, we find, after a long
straightforward calculation, that

P(0)5E52E
V→`

d3x]kP
(0)k

522kE
V→`

d3x]k~egike(0)0Tji
j !

5
1

16pGE
S→`

dSk~] ihik2]khii !5EADM . ~3.6!

We will prove that expressions~2.9! and~3.3! coincide if
we require the time gauge condition. In order to prove it,
us rewriteP (0)k as

P (0)k5e i
(0) P ( ik)1e i

(0) P [ ik]1e 0
(0) P0k, ~3.7!

where (•••) and @•••# denote symmetric and anti
symmetric components, respectively. In the time gauge c
dition we havee( j )

05e i
(0) 50, and therefore Eq.~3.7! re-

duces toP (0)k5e 0
(0) P0k. An expression forP0k can be

obtained by requiring the vanishing of the constraintGk @18#,

Gk5P0k12ke~gk jg0iT i j
0 2g0kg0iT i j

j

1g00gikT i j
j !. ~3.8!

In the time gauge we haveT i j
0 50 and therefore fromGk

50 we arrive at
1-3



-

e

o

s

ite
i

fo

d
e

ce
ra
n

su

er
il

-
d

i

vi
fo
sic
o

de

le

ase
ate

-

ds

mi-
e,
the

an-
a-

ge
f

ified
ibit
he
rad
ure

pri-
is

flat
this
ce-
at

ship

-
ys-
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P0k52ke~g0kg0i2g00gik!T i j
j . ~3.9!

All quantities in Eq.~3.9! are four-dimensional field quanti
ties. Let us now rewrite Eq.~3.9! in terms of field quantities
restricted to the three-dimensional spacelike hypersurfac
means of the lapse and shift functions,N and Ni , respec-
tively. In view of the relationse5N( 3e), g0i5Ni /N2, and
gik53gik2(NiNk)/N2, Eq. ~3.9! can be written as

P0k5
2

N
k~3e!~3gik!T i j

j .

The superscript 3 indicates that the quantity is projected
the spacelike hypersurface. Note thatT i j

j is still given in
terms of four-dimensional field quantities.

We make use of a 311 decomposition for the tetrad field
according toeai53eai1(Ni /N)ha, e i

a 5 3e i
a , ha52Nea0,

and e 0
a 5haN1 3e i

a Ni . The tetrad fields3eai and 3eai are
related to each other by means of the metric tensorgi j and its
inverse3gi j . With the help of these relations we can rewr
T i j

j in terms of quantities on the spacelike hypersurface
the time gauge condition, in which case we haveha5d (0)

a

ande 0
(0) 5N. We eventually arrive at

P (0)k52kegikgjme m
( l ) T( l ) i j , ~3.10!

where we have eliminated the superscript 3. It is straight
ward to verify thatP (0)k522kTk, whereTk and T( l ) i j are
precisely the same quantities that appear in Sec. II, an
particular in expression~2.9!. Therefore in the time gaug
condition we have

P(0)52E
V
d3x] iP

(0)i5
1

8pGE
V
d3x] j~eTj !. ~3.11!

Differently from the quasilocal energy expressions@3#,
Eq. ~3.11! is an integral of a scalar density over finite spa
volumes, which can be transformed into a surface integ
Therefore our expression is not bound, in principle, to belo
to any class of quasilocal energies. There is no need of
traction terms in the present framework. And yet Eq.~3.11!
does satisfy the usual requirements for a quasilocal en
expression. According to the latter requirements the quas
cal energy expression must~i! vanish for the Minkowski
space-time;~ii ! yield the ADM and Bondi mass in the appro
priate limits; ~iii ! yield the appropriate value for weak an
spherically symmetric gravitational fields; and~iv! yield the
irreducible mass of the Kerr black hole. The Bondi energy
the TEGR has been discussed in Ref.@24#, and the latter
requirement is discussed in Sec. V.

IV. THE DETERMINATION OF TETRAD FIELDS

In the framework of the teleparallel geometry, the gra
tational field can be described by an anholonomic trans
mation between a reference space-time and the phy
space-time. We will briefly recall the difference between h
lonomic and anholonomic transformations. Let us consi
two sets of coordinates,qa5(t,x,y,z) and xm5(t,r ,u,f),
12400
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related by the coordinate transformationdqa5e m
a dxm such

that

e m
a 5

]qa

]xm

5S 1 0 0 0

0 sinu cosf r cosu cosf 2r sinu sinf

0 sinu sinf r cosu sinf r sinu cosf

0 cosu 2r sinu 0
D .

~4.1!

The relationdqa5e m
a dxm can be integrated over the who

space-time, and therefore the transformationqa→xm corre-
sponds to a single-valued global transformation. In this c
the transformation is called holonomic and both coordin
sets describe the same space-time.

However, in the general case the relationdqa5e m
a dxm

cannot be globally integrated, sincee m
a may not be a gradi-

ent function of the type]mqa. If the quantitiesem
a are such

that ]me n
a 2]ne m

a 5” 0, then the transformation is called an
holonomic.

For the tetrads given by Eq.~4.1! the torsion tensor
T mn

a 5]me n
a 2]ne m

a vanishes. It is known thatT mn
a vanish

identically if and only ife m
a are gradient vectors@25#. In the

framework of the TEGR the gravitational field correspon
to a configuration such thatT mn

a 5” 0. Thus every gravita-
tional field is described by a space-time that is anholono
cally related to the four-dimensional Minkowski space-tim
which is taken as the reference space-time. Consequently
tetrad fields to be considered must necessarily yield a v
ishing torsion tensor in the limit of vanishing physical p
rameters~such as mass, angular momentum and charge!, in
which case the tetrad field must reduce to expression~4.1!,
or, in the case of arbitrary coordinates, to the forme m

a

5]mqa.
The idea of describing the gravitational field as the gau

field of the Poincare´ group is rather widespread. In view o
the general acceptance of this idea, there is an unjust
prejudice against gravitational theories that do not exh
local SO~3,1! symmetry. Rather than being a drawback of t
present formulation, the requirement of a global set of tet
fields for the description of the space-time is a natural feat
of teleparallel theories@6# and of the teleparallel geometry.

Before addressing the problem of obtaining the appro
ate set of tetrad fields out of a given metric tensor, it
instructive to analyze the construction of tetrads for the
space-time, since a number of features that take place in
context carry over to the general case of an arbitrary spa
time metric tensor. We will consider two sets of tetrads th
describe the flat space-time, and that reveal the relation
between the reference space-time with coordinatesqa and
the physical space-time with coordinatesxm.

For a given arbitrary functionv(t) let us consider a trans
formation between two rotating Cartesian coordinate s
1-4
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tems, q05t, q15x1 cosv(t)2x2 sinv(t), q25x1 sinv(t)
1x2 cosv(t), q35x3. The tetrads are given by

e m
a ~ t,x,y,z!

5S 1 0 0 0

2~x1 sinv1x2 cosv!v̇ cosv 2sinv 0

~x1 cosv2x2 sinv!v̇ sinv cosv 0

0 0 0 1

D .

~4.2!

These tetrads describe a flat space-time with Cartesian c
dinatesxm that is rotating with respect to the reference spa
time with coordinatesqa. We notice the appearance of an
symmetric components in the spatial sector ofe m

a . This is a
general feature in Cartesian coordinates: under an infinit
mal rotation, a rotated vectorṼ is related to the vectorV by
means of the relationṼ5RV; the rotation matrix is given by
R511v iX

i , wherev i are arbitrary parameters and the ge
eratorsXi are anti-symmetric matrices. Therefore the em
gence of anti-symmetric components in the sec
e( i ) j (t,x,y,z) is expected if the two space-times are rotati
with respect to each other.

Another transformation of general character is a Lore
boost, q(0)5g@ t1(v/c2)x1#, q(1)5g(x11vt), q(2)5x2,
andq(3)5x3, whereg51/A12v2/c2 ~assuming the velocity
of light c5” 1). The two space-times have different tim
scales. The tetrads read

e m
a ~ t,x,y,z!5S g ~v/c2!g 0 0

vg g 0 0

0 0 1 0

0 0 0 1

D . ~4.3!

The tetrads above do not satisfy the time gauge condi
because of the emergence of the terme 1

(0) 5(v/c2)g. Under
an arbitrary boost transformation there will arise terms s
that e k

(0) 5” 0, which violate the time gauge conditione( i )
0

50. The main feature of the time gauge condition is to lo
the time axes of the reference space-time and of the phy
space-time.

In the absence of the gravitational field,e m
a (t,x,y,z)

5dm
a is the unique set of tetrads that describes a refere

space-time with coordinatesqa that is neither related by a
boost transformation nor rotating with respect to the phys
space-time with coordinatesxm. The features above shoul
also carry over to the case of an arbitrary gravitational fie
As we will see, they are essential in the description of
energy properties of the gravitational field. Likewise, for
given space-time metric tensor the set of tetrad fields tha
Cartesian coordinates satisfy the properties

e( i ) j5e( j ) i , ~4.4a!
12400
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050, ~4.4b!

establish auniquereference space-time that is neither relat
by a boost transformation, nor rotating with respect to
physical space-time. Equation~4.4b! fixes six degrees of
freedom of the tetrad field. The importance of Eq
~4.4a!,~4.4b! to the definition of the gravitational energy wi
be discussed at the end of Sec. V.

Let us consider now the Kerr space-time. In terms
Boyer-Lindquist@26# coordinates the Kerr metric tensor
given by

ds252
c2

r2 dt22
2x sin2u

r2
dfdt1

r2

D
dr2

1r2du21
S2 sin2u

r2
df2, ~4.5!

where r25r 21a2 cos2u, D5r 21a222mr, x52amr
and

S25~r 21a2!22Da2 sin2u,

c25D2a2 sin2u.

Each set of tetrad fields defines a teleparallel geome
For a given space-time metric tensorgmn , there exists an
infinite set of tetrad fields that yieldgmn . From the point of
view of the metrical properties of the space-time, any t
sets of tetrads out of this infinity correspond to viable~but
distinct! teleparallel configurations@12#. However, the de-
scription of the gravitational field energy requires at le
boundary conditions. In the framework of the teleparal
geometry the correct description of the gravitational ener
momentum singles out a unique set of tetrad fields. In
following we will consider the most relevant tetrad config
rations. The first one is based on the weak field approxim
tion first suggested by Møller, given by expression~3.5!,

eam
M .ham1

1

2
ham , ~4.6a!

together with the symmetry condition onham ,

ham5hma . ~4.6b!

Note that Eq.~4.6a! is demanded not only in the asymptot
limit, but at every space-time point. Although the weak fie
limit fixes the expression ofeam

M , the resulting expression i
taken to hold in the strong field regime. The expression t
satisfies Eq.~4.6! and that yields Eq.~4.5! is given by
1-5
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eam
M 51

2
c

r
A11M2y2 0 0 2

xNy

cr
sin2u

xy

Sr
sinu sinf

r

AD
sinu cosf r cosu cosf 2

S

r
A11M2N2y2 sinu sinf

2
xy

Sr
sinu cosf

r

AD
sinu sinf r cosu sinf

S

r
A11M2N2y2 sinu cosf

0
r

AD
cosu 2r sinu 0

2 , ~4.7!
fi

where

y25
2NA11M22~11N2!

4M2N22~12N2!2 ,

M5
x

Sc
sinu,

N5
cr

S
.

The second set of tetrad fields to be considered satis
the weak field approximation
rg
tin
na

12400
es

e( i ) j.h i j 1
1

2
hi j , ~4.8a!

hi j 5hji , ~4.8b!

together with Schwinger’s time gauge condition,e(k)
0

5e j
(0) 50 @Eq. ~4.4b!#. Note that Eqs.~4.8a!,~4.8b! are es-

sentially equivalent to Eq.~4.4a!. Conditions~4.8! are as-
sumed to fix the expression ofe m

a also in the strong field
regime. The set of tetrad fields that satisfies Eqs.~4.8!, ~4.4b!
and that yields Eq.~4.5! reads
eam
S 51

2
1

r
Ac21

x2

S2 sin2u 0 0 0

x

Sr
sinu sinf

r

AD
sinu cosf r cosu cosf 2

S

r
sinu sinf

2
x

Sr
sinu cosf

r

AD
sinu sinf r cosu sinf

S

r
sinu cosf

0
r

AD
cosu 2r sinu 0

2 . ~4.9!
We note finally that both Eqs.~4.7! and ~4.9! reduce to Eq.
~4.1! if we makem5a50.

V. THE IRREDUCIBLE MASS OF THE KERR BLACK
HOLE

In this section we will apply expression~3.3! to the evalu-
ation of the irreducible massMirr of the Kerr black hole.
This is the most important test for any gravitational ene
expression, local or quasilocal, since the geometrical set
corresponds to an intricate configuration of the gravitatio
y
g
l

field, and since the value ofMirr is known from the work of
Christodoulou@21#.

In order to obtainMirr we will calculate thea5(0) com-
ponent of Eq.~3.3! by fixing V to be the volume within the
r 5r 1 surface, wherer 15m1Am22a2 is the external ho-
rizon of the Kerr black hole. Therefore we will consider

P(0)5E52E
S
dSiP

(0)i52E
S
dudfP (0)1~r ,u,f!,

~5.1!

where the surfaceS is determined by the conditionr 5r 1 .
1-6



-
e

e

ENERGY AND ANGULAR MOMENTUM OF THE . . . PHYSICAL REVIEW D 65 124001
FIG. 1. Energy within the external event ho
rizon of the Kerr black hole as a function of th
angular momentum. The figure displays«5E/m
againstl for expressions~5.3! and ~5.4!. The
lower curve represents 2Mirr given by Eq.~5.5!.
The one right above it, almost coinciding with th
lower curve, corresponds to Eq.~5.4!. The upper
curve corresponds to Eq.~5.3!.
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The expression ofP (0)1 will be obtained by considering Eq
~4.7!. In view of Eq.~3.11! there is no need to calculate E
~5.1! out of Eq. ~4.9!, since it has already been evaluat
@23#.

In the Appendix we present the expressions of the co
ponents of the torsion tensor constructed out of the te
configuration Eq.~4.7!. The componentP (0)1 is then ob-
tained from the definition~3.4! by means of simple~albeit
long! algebraic manipulations. The expression
P (0)1(r ,u,f) for the tetrad expression~4.7! reads

P (0)15
kSy

r
sinuH 22S 11NV1

r2

yS D1
2AD

S
] rS

1
ADN

V S M2

x
] rx1

2

S
] rS D J , ~5.2!

where the definitions ofy, N, andM are given after expres
sion ~4.7! and

V5A11M2.

On the surfacer 5r 1 we haveD(r 1)50, M2(r 1)521,
andV(r 1)50. Therefore the last term in Eq.~5.2! is indefi-
nite. It must be calculated by taking the limitr→r 1 . We
find

lim
r→r 1

ADN

V S M2

x
] rx1

2

S
] rS D

52
a2 sin2u

m SAm22a2

2mr1
1

r 1

2mr12a2 sin2u D .

The other terms in Eq.~5.2! do not pose any problem, an
thus we can obtain the expression of the energy conta
within the external event horizon of the Kerr black hole, th
follows from the tetrad configuration~4.7!. The final expres-
sion arises as a function of the angular momentum per
massa. It is given by~we are assumingG51!
12400
-
d

f

ed
t

it

E@eam
M #5

m

4 E0

p

du sinuFAp21l2 cos2u

1
py

Ap21l2 cos2u
1

2p3y

~p21l2 cos2u!3/2

2
y~p21!Ap21l2 cos2u

2 G , ~5.3!

where

p511A12l2, a5lm, 0<l<1.

For the tetrad configuration Eq.~4.9! we have@23#

E@eam
S #5mFA2p

4
1

6p2l2

4l
lnSA2p1l

p D G . ~5.4!

Expressions~5.3! and ~5.4! must be compared with
2Mirr , whereMirr is given by@21# Mirr 5 1

2 Ar 1
2 1a2. In our

notation we have

2Mirr 5mA2p. ~5.5!

In the limit a→0 all energy expressions yield 2m, which is
the value obtained by several different approaches@22#. In
Fig. 1 we have plotted«5E/m againstl, where 0<l<1.
Each value ofl characterizes an angular momentum state
the black hole. The hope was that the tetrad field given
Eq. ~4.7! would explain the tiny difference between the n
merical values of Eqs.~5.4! and ~5.5!. However, the devia-
tion of expression~5.3! from 2Mirr indicates that the tetrad
configuration Eq.~4.7! is not appropriate to the descriptio
of gravitational energy. The latter is most correctly describ
by requiring the tetrad configuration Eq.~4.9!, that satisfies
Schwinger’s time gauge condition together with Eq.~4.4a!.
1-7
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The choice of the tetrad field given by Eq.~4.9! amounts
to choosing the unique reference space-time that is ne
related by a boost transformation nor rotating with respec
the physical space-time.

For an arbitrary space volumeV the gravitational energy
is defined relationally, in the sense that it depends on
choice of the reference space-time. If the tetrad fields
required to satisfy conditions~4.4a!,~4.4b! for a metric tensor
that exhibits asymptotic boundary conditions similar to E
~3.5!, then for asymptotically flat space-times the physi
space-time coincides with the reference space-time in
limit r→`. If, however, we choose a reference space-ti
that is, for instance, rotating~about thez axis, say! with
respect to the space-time defined by the Kerr solution, t
the irreducible mass of the black hole, calculated with
spect to this reference space-time, will be different from
pression~5.4!, the difference residing in rotational effect
Therefore in similarity to the ordinary concept of energy, t
gravitational energy depends on the rotational state of
reference frame. Rotational and boost effects are elimin
by requiring conditions~4.4a!,~4.4b! on the tetrad fields.

The agreement between Eqs.~5.4! and ~5.5! is the most
important result so far obtained from definitions~2.9! and
~3.3!. To our knowledge, the latter are the only energy de
nitions that yield a value satisfactorily close to 2Mirr , and
that arise from the structure of the Hamiltonian formulati
of the theory.

Before closing this section we note that the time gau
condition~4.4b! breaks the SO~3,1! symmetry group into the
global SO~3!. Therefore in this casePa given by Eq.~3.3! is
no longer a true SO~3,1! vector.

VI. ANGULAR MOMENTUM OF THE GRAVITATIONAL
FIELD

In the context of Einstein’s general relativity, rotation
phenomena is certainly not a completely understood is
The prominent manifestation of a purely relativistic rot
tional effect is the dragging of inertial frames. If the angu
momentum of the gravitational field of isolated systems ha
meaningful notion, then it is reasonable to expect the latte
be somehow related to the rotational motion of the phys
sources.

The angular momentum of the gravitational field has be
addressed in the literature by means of different approac
The oldest approach is based on pseudotensors@27,28#, out
of which angular momentum superpotentials are construc
An alternative approach assumes the existence of ce
Killing vector fields that allow the construction of conserv
integral quantities@29#. Finally, the gravitational angular mo
mentum can also be considered in the context of Poinc´
gauge theories of gravity@30#, either in the Lagrangian or in
the Hamiltonian formulation. In the latter case it is requir
that the generators of spatial rotations at infinity have w
defined functional derivatives. From this requirement a c
tain surface integral arises, whose value is interpreted as
gravitational angular momentum.

The main motivation for considering the angular mome
tum of the gravitational field in the present investigation
12400
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sides in the fact that the constraintsG ik @18#,

G ik52Gki

52P [ ik]22ke@2gimgk jT m j
0

1~gimg0k2gkmg0i !T m j
j #, ~6.1!

satisfy the angular momentum algebra,

$G i j ~x!,Gkl~y!%5~gil G jk1gjkG i l

2gikG j l 2gjl G ik!d~x2y!. ~6.2!

Following the prescription for defining the gravitation
energy out of the Hamiltonian constraint of the TEGR, w
interpret the integral form of the constraint equationG ik50
as an angular momentum equation, and therefore we de
the angular momentum of the gravitational fieldMik accord-
ing to

Mik52E
V
d3xP [ ik]

52kE
V
d3xe@2gimgk jT m j

0

1~gimg0k2gkmg0i !T m j
j #, ~6.3!

for an arbitrary volumeV of the three-dimensional space.
In Einstein-Cartan type theories there also appear c

straints that satisfy the Poisson bracket given by Eq.~6.2!.
However, such constraints arise in the formP [ ik]50, and so
a definition similar to Eq.~6.3!, i.e., interpreting the con-
straint equation as an equation for the angular momentum
the field, is not possible.

Since definition~6.3! is a three-dimensional integral w
will consider a non-singular space-time metric that exhib
rotational motion. One exact solution that is everywhe
regular in the exterior and interior regions of the rotati
source is the metric associated to a thin, slowly rotating m
shell as described by Cohen@31#. In the limit of small angu-
lar momentum this metric corresponds to the asympto
form of Kerr’s metric tensor. The main motivation for con
sidering this metric is the construction of a realistic sou
for the exterior region of the Kerr space-time, and theref
to match the latter region to a singularity-free space-tim
For a shell of radiusr 0 and total massm52a as seen by an
observer at infinity, the metric reads

ds252V2dt21c4@dr21r 2du2

1r 2 sin2u~df2Vdt!2#, ~6.4!

where
1-8
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V5
r 02a

r 01a
,

c5c0511
a

r 0
, V5V05const,

for r ,r 0, and
th

-

ul

ex
m

12400
V5
r 2a

r 1a
,

c511
a

r
, V5S r 0c0

2

rc2 D 3

V0 ,

for r .r 0.
The set of tetrad fields that satisfy conditions~4.4a!,~4.4b!

is given by
eam5S 2V 0 0 0

Vrc2 sinu sinf c2 sinu cosf rc2 cosu cosf 2rc2 sinu sinf

2Vrc2 sinu cosf c2 sinu sinf rc2 cosu sinf rc2 sinu cosf

0 c2 cosu 2rc2 sinu 0
D . ~6.5!
ing

i-

s
the
of a

-
as-
n.
, we
tric
The determinant ofeam is e5Vr2c6 sinu.
The nonvanishing components of the torsion tensor

are needed in the following read

T 12
(1) 5r ] rc

2 cosu cosf,

T 12
(2) 5r ] rc

2 cosu sinf,

T 12
(3) 52r ] rc

2 sinu,

T 13
(1) 52r ] rc

2 sinu sinf,

T 13
(2) 5r ] rc

2 sinu cosf.

The anti-symmetric componentsP [ ik] can be easily evalu
ated. We obtain

P [13]~r ,u,f!54ka
V

V
c sinu,

for r .r 0 , P [13](r ,u,f)50 for r ,r 0, and P [12](r ,u,f)
5P [23](r ,u,f)50 for any value ofr. In Cartesian coordi-
nates the only nonvanishing component of the total ang
momentum is given by

M1252E d3xP [12]~x,y,z!

54pE
0

p

duE
0

`

drr sin2uP [13]~r ,u,f!

5aE
0

p

du sin3uE
r 0

`

drrc
V

V
. ~6.6!

The integral above is finite, well behaved and can be
actly computed. However, we are interested only in the li
r 0@a, in which case Cohen identifiesJ51/2(r 0c0

2)3V0 as
at

ar

-
it

the Newtonian value for the angular momentum of a rotat
mass shell@31#. In this limit the calculation is straightfor-
ward. We find

M12.
8a

3r 0
J5

4m

3r 0
J. ~6.7!

We identify M12 as the angular momentum of the grav
tational field. Substituting the expression ofJ in Eq. ~6.7!
and considering that in the limitr 0@a we have c051
1a/r 0.1, we arrive at

M125S 2

3
mr0

2DV0 . ~6.8!

V05V(r 0) is the induced angular velocity of inertial frame
inside the shell@32#. The term between the parentheses in
expression above corresponds to the moment of inertia
rotating shell of radiusr 0 and massm. For smalla, V0
and the angular velocity of the shellvs are related viaV0
5vs(4m/3r 0) @32#. Therefore in the Newtonian limitr 0

@a we haveM125(V0 /vs)J, whereJ5(2/3)mr0
2vs .

The metric tensor~6.4! is likely to be the only exact so
lution of Einstein’s equations whose expression for the cl
sical angular momentum of the source is precisely know

In order to assess the significance of the above result
will evaluate the angular momentum associated to the me
tensor~6.4! by means of Komar’s integralQK @29#,

QK5
1

8p R
S
A2g«abmn¹ [ajb]dxm`dxn, ~6.9!

whereS is a spherical surface of radiusR→`, jm is the
Killing vector field jm5d3

m and¹ is the covariant derivative
constructed out of the Christoffel symbolsGmn

l . The integral
QK reduces to
1-9



th

ke

di

e
a

ro

n
b

as

io
tin

th
la
tri

,
n

i-

y.

the
ent
ike

ical
m-
e
a
m-
ss
he
ive

n-
at

ve
ula-
e
e

n-
e
cide
ed

-

ue
l-

are

of
dy

MALUF, da ROCHA-NETO, TORI´BIO, AND CASTELLO-BRANCO PHYSICAL REVIEW D65 124001
QK5
1

2p R
S
A2gg0mGm3

1 dudf. ~6.10!

By substituting Eq.~6.4! and taking the limitS→` we ob-
tain

QK5
4

3
~r 0c0

2!3V0.
4

3
r 0

3V05
16

9
mr0

2vs5
8

3
J. ~6.11!

In the equation above we are consideringr 0@a. We observe
that definitions~6.3! and~6.9! yield distinct results. In order
to make clear the distinction it is useful to rewrite bo
espressions~6.7! and ~6.11! in laboratory~CGS! units. Thus
we makem5(G/c2)M andvs5Vs /c, whereM is given in
grams, andVs in radians per second. In addition, we ma
the replacement 1/(16p)→c3/(16pG) in the multiplicative
factor of both expressions, in order to yield the correct
mension to the integrals. We arrive at

M125S G

c2D 4M

3r 0
S 2

3
Mr 0

2VsD , ~6.78 !

QK5
8

3 S 2

3
Mr 0

2VsD . ~6.118!

We note thatG/c250,74310228 g/cm. Both expressions
have angular momentum units.

One expects the gravitational angular momentum to b
the order of magnitude of the intensity of the gravitation
field. We observe that Komar’s integral yields a value p
portional to the angular momentum of thesource, whereas
M12 is much smaller thanQK . Indeed, the gravitational field
of a mass shell of typical laboratory values is negligible, a
consequently the gravitational angular momentum should
negligible as well. ThereforeM12 yields a realistic value for
the angular momentum of the gravitational field, in contr
to QK .

The advantage of definition~6.4! is that it does not de-
pend on the existence of Killing vector fields. The conclus
is that the angular momentum of the space-time of a rota
mass shell, according to the definition~6.3!, is proportional
to the induced angular velocityV0 of inertial frames.

The investigations carried out so far in the context of
Kerr solution are not yet conclusive. Although the calcu
tions in the Boyer-Lindquist coordinates are extremely in
cate, the indications are thatM12 diverges. Considering the
metric tensor given by Eq.~4.5! and the related definitions
we calculate the antisymmetric components of the mome
P [ ik] in the time gauge, i.e., out of tetrads~4.9!. They are
given by

P [12]~r ,u,f!50, ~6.12a!

P [13]~r ,u,f!5
kx sinu

Ac2S21x2 sin2u

3S 11
r2

S
2

AD

S
] rS D , ~6.12b!
12400
-

of
l
-

d
e

t

n
g

e
-
-

ta

P [23]~r ,u,f!5
kx

AD~c2S21x2 sin2u!

3FcosuS r2

S
21D2

sinu

S
]uSG .

~6.12c!

Transforming to Cartesian coordinates we obtain

M125E d3xP [12]~x,y,z!

52pE
0

`

drE
0

p

du@r sinuP [13]~r ,u,f!

1r 2 sinu cosuP [23]~r ,u,f!#, ~6.13!

and M135M2350. The evaluation of Eq.~6.13! out of ex-
pressions~6.12! yields a divergent result. The latter is pos
tively and negatively divergent in the external (r 1) and in-
ternal (r 2) horizons of the black hole, respectivel
Moreover, in the regionr 2,r ,r 1 , M12 acquires an
imaginary component. A possible interpretation is that
Boyer-Lindquist coordinates are not suitable to the pres
analysis. In any way, integration over the whole spacel
section of the Kerr space-time is a nontrivial operation.

It must be noted that the Kerr black hole has no class
analog. The interpretation of the angular momentum para
etera of the Kerr solution is not straightforward, since in th
Newtonian theory of gravitation the gravitational field of
body does not depend on its rotational motion. The para
etera is identified with the angular momentum per unit ma
of the source only after reducing the exterior region of t
Kerr metric to a Lense-Thirring type metric by success
approximations@33#.

VII. DISCUSSION

In this paper we have investigated the definitions of e
ergy and angular momentum of the gravitational field th
arise in the Hamiltonian formulation of the TEGR. We ha
compared the most important achievement, i.e., the calc
tion of the irreducible mass of the Kerr black hole, with th
result previously obtained in the framework of the sam
theory, but with the Hamiltonian formulation established u
der thea priori imposition of the time gauge condition. Th
two results agreed. In fact, both energy expressions coin
by requiring the time gauge condition, if the latter is impos
a posteriori in the a5(0) component of expression~3.3!.

The relevance of Eq.~5.4! is further enhanced if we ob
serve that the Brown-York method@3# for the evaluation of
quasilocal gravitational energy fails in obtaining a val
close to the irreducible mass of the Kerr black hole. A
though the calculations in the framework of this method
quite intricate, recently it has been carried out@34#. It has
been shown that the gravitational energy withinr 1 is close
to 2Mirr only for a/m,0.5 ~Fig. 1 of Ref.@34#!.

Definitions for the gravitational energy in the context
the teleparallel equivalent of general relativity have alrea
1-10
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been proposed in the literature. In Ref.@11# an expression for
the gravitational energy arises from the surface term of
total Hamiltonian@Eqs. ~3.18! and ~3.19! of Ref. @11##. A
similar quantity is suggested in Ref.@35#, according to Eq.
~3.8! of the latter reference. Both expressions are equiva
to the integral form of the total divergence of the Ham
tonian density developed in Ref.@18# @Eq. ~27! of the latter
reference#,

E5E
V→`

d3x]k~ea0Pak!5 R
S→`

dSk~ea0Pak!.

The three expressions yield the same value for thetotal en-
ergy of the gravitational field. However, since these th
expressions contain the lapse function in the integrand, n
of them is suitable to the calculation of the irreducible ma
of the Kerr black hole, in which case we consider a fin
surface of integration, because the lapse funtion vanishe
the external event horizon of the black hole~recalling the
311 decomposition in Sec. III,e 0

a 5haN13e i
a Ni . In the

time gauge we haveha5d (0)
a ande i

(0) 50). The energy ex-
pressions of Refs.@11,35# are not to be applied to a finit
surface of integration; rather, they yield the total energy
the space-time.

The energy expression~3.3! is defined with respect to a
given reference space. Tetrad fields that satisfy conditi
~4.4a!,~4.4b! establish a unique reference space-time tha
neither boost related nor rotating with respect to the phys
space-time. These conditions uniquely associate a set o
rad fields to an arbitrary metric tensor. Therefore in t
present framework it does not suffice to assert that the re
ence space-time is Minkowski’s space-time. It is also nec
sary to enforce the soldering of the reference space-tim
the physical space-time by means of Eqs.~4.4a!,~4.4b!. We
conjecture that for a given space volume the latter conditi
yield theminimumvalue for the energy expression~3.3!.
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APPENDIX

We present here the components of the torsion tensor
tained out of the tetrad configuration Eq.~4.7!, which satis-
fies Mo” ller’s weak field approximation:
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