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Energy and Bursty Packet Loss Tradeoff Over Fading

Channels: A System-Level Model
M. Majid Butt, Senior Member, IEEE, Eduard A. Jorswieck, Senior Member, IEEE,

and Amr Mohamed, Senior Member, IEEE

Abstract—Energy efficiency and quality of service (QoS) guar-
antees are the key design goals for the 5G wireless communication
systems. In this context, we discuss a multiuser scheduling scheme
over fading channels for loss tolerant applications. The loss tol-
erance of the application is characterized in terms of different
parameters that contribute to quality of experience (QoE) for the
application. The mobile users are scheduled opportunistically such
that a minimum QoS is guaranteed. We propose an opportunistic
scheduling scheme and address the cross-layer design framework
when channel state information (CSI) is not perfectly available
at the transmitter and the receiver. We characterize the system
energy as a function of different QoS and channel state estima-
tion error parameters. The optimization problem is formulated
using Markov chain framework and solved using stochastic opti-
mization techniques. The results demonstrate that the parameters
characterizing the packet loss are tightly coupled and relaxation
of one parameter does not benefit the system much if the other
constraints are tight. We evaluate the energy-performance trade-
off numerically and show the effect of channel uncertainty on the
packet scheduler design.

Index Terms—Cross-layer design, energy efficiency, green
communications, Markov chain, opportunistic scheduling, radio
resource allocation.

I. INTRODUCTION

E NERGY efficient (green) communication is one of the

design principles for the next generation of wireless net-

works. Due to high electricity cost of operating a network,

the revenue generation for the network operators is vanishing

and the network architecture design requires a complete new

design methodology. Energy efficiency can be achieved by trad-

ing bandwidth, delay, or other system performance indicators

[1]. At the same time, energy efficiency can be achieved by

architecture level novel techniques that include switching off

the base stations, cell breathing, and sleep mode design [2], [3].

The QoS for a service is measured by the parameters such

as, throughput, delay, and packet loss tolerance. These param-

eters control the quality of experience (QoE) for the end user.
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For example, if the application is delay sensitive, large amount

of radio resources are required to meet the QoS requirements as

compared to delay tolerant applications. Depending on the net-

work design constraints, these resources result in either large

bandwidth or excessive use of power. As allocated bandwidth

for a system is fixed usually, it is important to exploit any

relaxation in QoS parameters to make the system more energy

efficient.

This work aims at exploiting such relaxed application QoE

requirements to achieve system energy efficiency. In litera-

ture, energy–delay tradeoffs have been addressed in different

settings, e.g., [4]–[6]. However, not much work focuses on

exploiting the loss tolerance of the application in radio resource

allocation mechanisms due to the challenging task of providing

a certain guaranteed QoE. By a service provider’s point of view,

if a user’s application can tolerate a certain amount of data loss

without deteriorating QoE significantly, it is advantageous to

exploit it for overall system efficiency. By the end user’s point

of view, it is not really advantageous to pay for an extra quality

when it is not needed. The application’s loss tolerance acts as a

degree of freedom (DoF) that can be exploited to make system

energy efficient. The dynamically fading wireless channel poses

an interesting challenge of scheduling the packets optimally

such that QoE for the end user remains acceptable (bounded

QoS) while the extra packets are intentionally dropped at the

transmitter to save transmission energy. It should be noted that

random packet dropping with average packet drop rate guaran-

tee cannot promise required QoE as there are additional QoS

key factors involved in perception. For example, bursty packet

loss causes fast degradation in QoE as compared to some ran-

dom packet loss pattern even for the case when the average

packet loss remains the same. In addition to average packet

drop rate, we consider bursty nature of the packet loss as a con-

straint on packet scheduling and analyze our scheme such that

a minimum (promised) QoS is provided and the system energy

efficiency is improved at the same time.

A. Related Works

In literature, packet loss or packet dropping mechanisms are

usually treated as higher layer issues. Though, a lot of work

models and analyzes the effect of packet dropping on QoS, most

of the work focuses on traditional wired networks or protocol-

level mechanisms without taking unpredictable wireless chan-

nel into account. In [7], successive packet loss modeling is

considered using Markov chain analysis. The work in [8] inves-

tigates the sensitivity of the time average of the transmission
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rate on the distribution of losses and the average loss rate for the

flow control using transmission control protocol. The authors

show that the time average of the transmission rate increases

with the burstiness of losses for a given average packet loss

rate. The authors in [9] present an analysis for the effect of

the access router buffer size on packet loss rate and determine

its effect on the QoS of multimedia services when bursty traf-

fic is present. The study shows that the bursty nature of some

applications impairs multimedia traffic especially when a cer-

tain number of bursts overlap. Fangqin et al. discuss a useful

analytical framework to dimension the packet loss burstiness

over generic wireless channels [10]. They propose a new met-

ric to characterize the packet loss burstiness, which is shown

to be more compact and accurate than the metrics proposed

previously.

It is apparent that successive or bursty packet loss has been

investigated quite a bit in the past, but this dimension has not

been the focus of much research in the wireless domain. The

works in [11] and [12] consider intentional packet dropping

mechanisms for delay limited systems to minimize energy con-

sumption over fading channels. Some recent works in [13] and

[14] consider data loss tolerance as an other aspect of the sys-

tem, which can be exploited to save system energy. The authors

in [13] introduce a framework to achieve energy efficiency in a

multiuser multiple access system for an application with aver-

age packet loss and maximum successive packet loss constraint.

This work is generalized to a system with a finite buffer size

in [14] and it analyzes the bounds on buffer size for the loss

tolerance parameters.

B. Contributions and Main Results

The works in [13] and [14] consider perfect channel state

information (CSI) at both transmitter and receiver sides. The

sequence of maximum number of packets allowed to be

dropped successively for a given average packet drop rate θtar is

termed as continuity constraint (CCON) parameter and denoted

by N . Every user of the application is provided a guaranteed

QoS in terms of metrics (N, θtar) with probability one while

the CCON parameter is identical for all users.

This work extends the work in [14] to the cases when CSI

available at the transmitter and the receiver is not perfect, which

logically translates into the problem of providing statistical

guarantees on N to the individual users.

For our problem settings, we have two reasons for a packet

drop.

1) Intentional packet drop at the transmitter depending on

the application loss tolerance to save energy if the appli-

cations’ loss tolerance permits.

2) Packet drop due to imperfect CSI estimate at the trans-

mitter (and receiver) side which implies that the actual

channel state is worse than the estimated one and results

in packet loss after transmission.

The energy efficient scheduling algorithm design for the

packet loss tolerant applications takes the packet loss due to

imperfect CSI into account statistically and adapts its inten-

tional packet drop rate accordingly to maintain a bound on θtar
and N parameters.

The main contributions of this paper are summarized as

follows.

1) We use a packet-level channel model to model the effect

of imperfect CSI on the transmitter side and analyze the

proposed scheduling scheme as a function of different

parameters that govern the QoS.

2) We generalize the framework to the case when the indi-

vidual users have their own CCON parameters and model

it at system level as a Markov decision process. The sys-

tem energy depends on the distribution of the CCON

parameter.

3) Then, the proposed scheme is analyzed when the CSI

estimation error at both transmitter and receiver sides is

modeled by error variance. The energy per transmitted bit

is derived in closed form for a multiuser multiple access

system as a function of error variance.

4) The loss tolerance for the application’s QoE is controlled

by different parameters as we discussed. We study the

coupling effects of these parameters on the system energy

through simulations. The coupling effect implies that a

tight requirement on one of the loss parameters implies

that there is a bound on the maximum exploitation of the

other parameters as well, and further energy efficiency

cannot be achieved by relaxing the other parameters.

This paper is organized as follows. Section II introduces the

system model and key assumptions used in the analysis. We

model the proposed scheduling scheme in Section III. The opti-

mization problem is formulated mathematically in Section IV,

and Section V addresses the generalization of the framework.

The tradeoff between energy and QoS parameters is evaluated

numerically in Section VI, and Section VII concludes with the

main contributions of this work.

II. SYSTEM MODEL

We assume that K users in a multiple access channel (MAC)

are uniformly and randomly distributed in a wireless network

with a base station in the center. The user scheduled in a time

slot is provided an average rate Rk = λk
C
K

where C is the sys-

tem spectral efficiency and λk denotes a random variable [13],

[15].

A. Propagation Channel Model

We consider an uplink scenario where time is slotted such

that each user k experiences a channel gain hk(t) in a time slot

t. Signal propagation is characterized by a distance dependent

path loss factor and a frequency-selective short-term fading.

Thus, hk(t) turns out to be

hk(t) = skfk(t) (1)

where sk and fk(t) denote the path loss and the short-term

fading of user k, respectively.

The users are assumed to be uniformly distributed in a geo-

graphical area but for a forbidden circular region of radius δ
centered around the base station where 0 < δ ≤ 1 is a fixed sys-

tem constant [15]. Using this model, the cumulative distribution
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function (cdf) of path loss is given by

Fs(x) =

⎧

⎨

⎩

0, x < 1

1− x−2/α−δ2

1−δ2
, 1 ≤ x < δ−α

1, x ≥ δ−α

(2)

where the path loss at the cell border is normalized to one. The

path loss is assumed to be constant at the time scale consid-

ered in this work. We assume block fading model such that the

fading remains constant during a single time slot, but changes

with time slot. The fading is independently and identically

distributed (i.i.d.) across both users and time slots.

Thus, the MAC is described by input X and output Y relation

by

Yk(t) =
K
∑

k=1

√

hk(t)Xk(t) + Z(t) (3)

where Z represents additive i.i.d. complex Gaussian random

variable with zero mean and unit variance.

This work focuses on leveraging the analysis of the scheme

proposed in [14] when perfect CSI is not available. Assumption

of perfect CSI helps to perform system analysis and get insights

about different tradeoffs involved in system design. However,

acquisition of CSI is a costly operation and imperfection in CSI

causes performance degradation.

In this work, we consider two cases:

1) imperfect CSI at the transmitter side;

2) imperfect CSI at both transmitter and receiver sides.

The receiver acquires CSI using pilot- or data-aided chan-

nel estimation while acquisition of CSI at the transmitter side

requires feedback from the receiver. Feedback information to

the transmitter requires transmission of a lot of side informa-

tion and has an associated overhead cost. Specially, availability

of CSI at the transmitter side in a fast mobility scenario is

very complex and the cost is enormous. This leads to a tradeoff

between exploration and exploitation [16], [17].

We consider different frameworks to analyze the effect of

imperfection in CSI. We employ a simplified framework for the

case of imperfect CSI at the transmitter side (only). We model

it using a packet-level channel model and adapt our schedul-

ing decisions accordingly. When CSI is not available both at

the transmitter and the receiver sides, we model it by a channel

estimation error variance and compute the resulting energy per

bit as a function of error variance.

B. Packet-Level Channel Model

We assume that CSI is available at the transmitter side, but it

is not perfect. Instead of modeling imperfection statistically, we

model it at packet level. As a result of imperfect CSI, the sched-

uled users are not able to compute the correct power level for

the assigned rate which could result in a packet loss. We model

this by a probability νd that a transmission is not successful.

Furthermore, we assume that if the transmission is not success-

ful, all the scheduled packets are lost. The information about

packet dropping is fedback to the transmitter by the end of time

slot via a perfect channel. This model is termed as packet level

channel model in literature and has been investigated in differ-

ent settings, e.g., [18], [19]. As the one bit delayed feedback

information about the successful/unsuccessful transmission of

the previous packet arrives by the scheduling instance in the

next time slot, the transmitted packet(s) is buffered by then.

If the transmission is successful, it is dropped otherwise, it is

taken into account for the scheduling decision in the next time

slot depending on the buffer capacity as explained later.

C. Statistical Guarantees on CCON

The model considered in [14] assumes that CCON can be

met with probability one. It is not practicable to assume that

a packet can be transmitted with probability one over fading

channels when N packets have been dropped successively. We

generalize this framework in the direction of providing statisti-

cal guarantees on CCON, i.e., a user violates the CCON with a

probability γ. If channel conditions are not good after dropping

N packets successively, the user is still allowed to drop a finite

amount of packets corresponding to γ ≥ 0. We define the event

of violation of CCON as the number of time slots with dropped

packets, after already successively dropping N packets.

We allow multiple users to be scheduled in a single time slot

to minimize γ. If only a single user is scheduled per time slot,

all the users other than the scheduled one may have to drop the

packets (intentionally) which results in increase in γ rapidly.

We have no control over the packets dropped due to channel

impairments, but the packet scheduler can be designed such that

γ is bounded by facilitating maximum scheduling of the users

who already have dropped N packets successively.

The analysis of the scheme is based on the asymptotic user

case which implies that the scheme is applicable to any num-

ber of users scheduled simultaneously. To make it possible, we

perform superposition coding and successive interference can-

celation (SIC) for the successful transmission of data streams

of the simultaneously scheduled users [15].

Let K denote the set of users to be scheduled and Φ be the

permutation of the scheduled user indices that sorts the channel

gains in increasing order, i.e., hΦ1
≤ · · · ≤ hΦk

≤ · · · ≤ hΦ|K|
.

Then, the energy of the scheduled user Φk with rate RΦk
is

given by [15], [20]

EΦk
=

Z0

hΦk

(

2
∑

i≤k RΦi − 2
∑

i<k RΦi

)

(4)

where Z0 denotes the noise power spectral density.

D. Packet Arrival Model in Large User Limit

The design of the scheme presented later in this work is based

on the asymptotic case when the number of the users approach

infinity, i.e., K → ∞. We consider an arbitrary random packet

arrival process for a user k with bounded mean and variance.

At the system level, when an asymptotically large number of

users are present, the “system” packet arrival process can be

modeled with a constant arrival process [21]. Regardless of the

arrival distribution, the system-level arrival rate converges to

statistical average of the arrival process when an infinitely large

number of users are present in the system. For a single user,

this is modeled by the constant arrival of a single packet with
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variable size in each time slot where no arrival is modeled by

arrival of a packet with zero size1 [13].

In the large user limit, multiuser scheduling problem can be

broken into a single user scheduling problem such that every

user takes the scheduling decision independent of the other

users2 [13]. The large system results have been employed suc-

cessfully in communications in different settings to analyze the

systems with dependencies, e.g., [22], [23].

III. MODELING THE SCHEDULING SCHEME

Packet scheduling constrained by average packet drop rate

and maximum successive packet drop belongs to a class of

sequential resource allocation problems, known as restless mul-

tiarmed bandit processes (RMBPs) [24]. In RMBPs, a subset of

the competing users are scheduled in each slot. The states of all

the users in the system stochastically evolve based on the cur-

rent state and the action taken. The scheduled user receives a

reward dependent on its state. The next action depends on the

reward received and the resulting new state. The RMBPs are

characterized by a fundamental tradeoff between the decisions

promising high-immediate rewards versus those that sacrifice

immediate rewards for better future rewards. In contrast to

use of RMBPs to model and analyze the effect of correlation

between channel states [18], [19], our optimization problem is

based on investigating the effect of sequential decisions in terms

of correlation between packet dropping sequences. The one bit

channel feedback does help to make the decision in the next

time slot but it does not give any idea about the channel state in

the next time slot due to block fading model assumption.

The scheduling framework comprises two parts: online

scheduling decisions and the offline optimizations of schedul-

ing thresholds. The scheduling decisions for every user in each

time slot are based on the instantaneous channel condition and

the scheduling thresholds. The thresholds are optimized by

taking into consideration the CCON parameter N , maximum

buffer size B, average packet dropping probability θtar, and the

user’s small scale fading distribution. The number of thresh-

olds equals the number of buffered packets and the scheduler

decides how many packets are scheduled in a single time slot

based on the channel conditions. If no packet is scheduled, all

the packets (including the recently arrived packet) are buffered

if the buffer has capacity. If the buffer is full, the oldest packet

in the buffer is dropped. When the user has dropped N packets

successively (bursty loss), the scheduling of at least a single

packet is maximally prioritized, but it cannot be guaranteed

due to random fading channel. Thus, the lowest scheduling

threshold is dependent on the maximum statistical guarantee

γ that CCON cannot be fulfilled. γ = 0 is a special case where

scheduling threshold is set to zero when N packets have been

dropped successively [14].

1Zero packet size facilitates modeling of the scheme (as explained in next

section) while arrival (and transmission) of a packet with zero rate has no effect

on system energy consumption.
2Though, users’ scheduling decisions decouple as a result of large user limit

assumption, power allocation for the scheduled users requires rate information

of the other scheduled users.

A. Finite State Markov Chain Model

We model the proposed scheduling scheme using a finite

state Markov chain (FSMC). Let i ≤ B and j ≤ N denote the

number of packets buffered and dropped successively at time t.
Then, the Markov chain state p at time t is defined by a variable

from the composite state space such that p = i+ j. At the start

of the process, p equals zero. If a packet is not scheduled, it

is buffered and i = 1 (while j = 0), thereby the system makes

transition to next state q = 1. Remember p(t+ 1) = q(t) in

FSMC. When the buffer is full, an event of not scheduling

a packet results in a packet drop, thereby j starts increasing

and i = B remains fixed until there is a room in the buffer for

unscheduled packets due to scheduling of previously buffered

packets. The event of dropping/buffering of the packet results in

a forward state transition to the next state q = p+ 1. The size of

FSMC is determined by the buffer size and CCON parameters

such that M = B +N .

We consider the event of packet drop due to imperfect CSI in

the state space description next. We assume that feedback for

the successful/unsuccessful transmission (ACK/NACK) arrives

by the end of time slot and the transmitter buffers the sched-

uled packet(s) by then. If the transmitter receives an ACK,

the packets are dropped from the buffer as they have been

received successfully. In case of a NACK, the buffered pack-

ets are treated in the same way as intentional packet dropping,

i.e., buffer if there is a room or drop otherwise. The dropping

of a packet in case of a NACK occurs solely due to insufficient

buffer capacity and affects system performance similar to inten-

tional packet drop scenario. The packet drop due to imperfect

CSI needs to be modeled in the system separately due to its

different effect on system energy. Intentional packet dropping

(without transmission) does not cost any energy to the system

while packets dropped due to imperfect CSI result in waste of

energy without transmitting data successfully.

As explained in Section II-B, the effect of imperfect CSI at

the transmitter side is modeled by packet level description such

that νd denotes packet drop probability and νs = 1− νd is the

probability of a successful transmission.

Thus, we define state transition probability αpq in an FSMC

model as

αpq = Pr(St+1 = q|St = p) (5)

=

⎧

⎪

⎨

⎪

⎩

νsα̂pq, p < M, q ≤ min(p,B)

α̃pq + νd
∑min(p,B)

m=0 α̂pm, p < M, q = p+ 1

0, else

(6)

where

αpq = transition probability from state p to q.

α̂pq = transition probability from state p to q

when scheduling of one or more packets occurs.

α̃pq = transition probability from state p to q when no

packet is scheduled.

To define α̂pq and α̃pq mathematically, we define a scheduling

threshold.
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Fig. 1. Flowchart for the scheduling mechanism.

Definition 1 (Scheduling Threshold κpq): It is defined as the

minimum small-scale fading value f required to make a state

transition from state p to q such that

α̂pq = Pr
(

κpq < f ≤ κp(q−1)

)

0 ≤ q ≤ min(p,B) (7)

where κp0− is defined to be infinity with S0− denoting a

dummy state before S0.

From scheduling point of view, it is advantageous to schedule

more packets for good fading states. Therefore, the scheduling

thresholds quantize the fading vector to optimize the number of

scheduled packets according to the fading.

In a state p ≥ q, the scheduler with fading variable f makes

a state transition to state q such that [14]

q = κpq < f ≤ κp(q−1), 0 ≤ q ≤ min(p,B). (8)

For a state transition from state p to q, the number of scheduled

packets is given by

L(p, f) = min(p,B)− q + 1 (9)

where q is determined uniquely by (8). Note that the num-

ber of scheduled packets cannot exceed min(p,B) because of

finite capacity of buffer. We denote min(p,B) by a variable

µ = min(p,B) in the rest of this paper for convenience.

The probability of not scheduling any packet for transmission

is expressed by

α̃pq = Ff (κpµ), 0 ≤ p < M, q = p+ 1 (10)

= 1−

µ
∑

q=0

α̂pq (11)

where κpµ denotes the minimum thresholds to schedule at least

one packet in state p.

To further explain the online scheduling mechanism, the

flowchart is presented in Fig. 1.

B. Modeling γ in FSMC

Ideally, one would like to schedule a packet with probability

one when p = M and j = N . As explained earlier, this is not

practical due to the following constraints.

Fig. 2. State transition diagram of the scheme for the case B = 2, N = 1.

αMM represents state transition probability related to γ.

1) It is not possible to apply “water filling” principle on any

arbitrary channel due to power limitations of the transmit-

ter. Thus, a packet is not scheduled with probability one

in state M . This is implemented by having κMB > 0 and

not scheduling a packet if fk ≤ κMB .

2) When νd > 0, it cannot be guaranteed with probability

one that the scheduled packets in state M are received by

the receiver error free.

Both of the constraints contribute to statistical guarantee on

CCON with γ > 0.

To handle the event of unscheduled or/and lost head of

line (HOL) packet in state M , we define a self-state transi-

tion αMM where no packet is scheduled in contrast to other

self-state transitions (where a single packet is scheduled) with

α̃MM = Pr(fk ≤ κMB).
Thus, γ is modeled using FSMC model and the constraints

above by

γ = αMMπM =

(

α̃MM + νd

B
∑

q=0

α̂Mq

)

πM (12)

=

(

1− νs

B
∑

q=0

α̂Mq

)

πM (13)

where πM is steady-state transition probability for state M .

Example 1: Let us explain FSMC model with the help of an

example with B = 2, N = 1 as in Fig. 2. For this example, we

evaluate the transition probability matrix Q.

The steady-state transition probability matrix Q is expressed

as

Q = Qs +Qc (14)

where

Qs =

⎛

⎜

⎜

⎝

νsα̂00 α̃01 0 0
νsα̂10 νsα̂11 α̃12 0
νsα̂20 νsα̂21 νsα̂22 α̃23

νsα̂30 νsα̂31 νsα̂32 α̃33

⎞

⎟

⎟

⎠

(15)

and

Qc = νd

⎛

⎜

⎜

⎜

⎝

0
∑0

q=0 α̂0q 0 0

0 0
∑1

q=0 α̂1q 0

0 0 0
∑2

q=0 α̂2q

0 0 0
∑2

q=0 α̂3q

⎞

⎟

⎟

⎟

⎠

. (16)
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Qc captures the effect of imperfect CSI while Qs is optimized

scheduling decision matrix. Note that this model implies that it

is not possible to achieve CCON with probability one if νd > 0
and only statistical guarantees can be provided with γ > 0.

IV. MATHEMATICAL FORMULATION OF THE PROBLEM

The objective of the optimization problem is to minimize

the system energy for a soft average packet drop rate con-

straint and statistical guarantee on CCON. We formulate the

optimization problem using the FSMC model developed in the

previous section. Each scheduled packet is treated as an inde-

pendent virtual user (VU) for the analysis purpose. For the case

of imperfect CSI at the transmitter side, the average system

energy per transmitted information bit at the large system limit

K → ∞ is given by [15]

(

Eb

N0

)

CST

= log(2)

∞
∫

0

2C Ph,VU(x)

x
dPh,VU(x) (17)

where Ph,VU(·) denotes the cdf of the fading of the scheduled

VUs.

The energy expression in (17) requires channel distribution

Ph,VU(x) of the scheduled users. In the large system limit,

Ph,VU(x) depends only on the small-scale fading distribution

because of the fading-dependent scheduling decisions as the

path loss distribution for the VUs is the same as for the mobile

users. The probability density function (pdf) of the small-scale

fading of the scheduled VUs is given by [14]

pf,VU(y) =
M
∑

p=0

cpπpL(p, y) pf (y) (18)

where pf (y) and cp denote the small-scale fading distribu-

tion and a normalization constant, respectively, while L(p, y)
is given by (9). The channel distribution for the scheduled VUs

is computed using fading distribution in (18) and the path loss

distribution in (2).

Thus, the optimization problem is formulated as

min
Q∈Ω

(

Eb

N0

)

CST

(19)

s.t. :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C1 : 0 ≤
∑µ

m=0 αpm ≤ 1, 0 ≤ αpm ≤ 1,

0 ≤ p ≤ M

C2 : θr ≤ θtar, Q ∈ Ω

C3 :
∑M

q=0 αpq = 1, 0 ≤ p ≤ M

C4 : B +N = M, B < ∞, N < ∞

(20)

where Ω denotes the set of permissible matrices for Q and θr is

the average packet drop rate achieved for a fixed Q and given

by

θr =
M−1
∑

p=B

αp(p+1)πp + αMMπM (21)

=
M
∑

p=B

(

1− νs

B
∑

m=0

α̂pm

)

πp. (22)

Equation (21) is a result of combining C1 and C3 in (20).

The forward transition for the states B ≤ p < M and self-

state transition in state M models the events of packet drop

and the summation over the probability for these events mul-

tiplied by the corresponding steady state probabilities results

in the average dropping probability in (21). The summation

starts from state B as the unscheduled packets are buffered

for p < B. For a fixed p, the corresponding channel-dependent

optimal scheduling thresholds can be computed from the opti-

mized 
α∗
p = [α∗

p0, . . . α
∗
pµ] using (7). The violation probability

on CCON γ for fixed B and N parameters is computed from

Q∗ using (13). Let us denote γ for this special case by γm
where the maximum energy efficiency can be achieved for fixed

B,N, θtar parameters and relaxing γ further does not help to

improve energy efficiency due to coupling of γ with N and θtar
parameters.

If the statistical guarantees have to be improved further,

we apply an upper bound on γ such that γ ≤ ǫ where ǫ is a

small constant representing the target statistical guarantee. This

constraint appears as an additional constraint in (20) such that

C5 : γ ≤ ǫ, 0 ≤ ǫ ≤ θtar (23)

because θr =
∑M−1

p=B αp(p+1)πp + γ. Consequently, the

improved γ is achieved at the increased energy cost.

Theoretically, ǫ is upper bounded by θtar, but γm upper

bounds ǫ (tightly) at a value lower than θtar due to the tight

coupling of N and γ parameters.

It is worth noting that increasing both N and γ improves

energy efficiency. However, the effect of both parameters on

QoE is different. On the one side, N bounds the bursty packet

loss. On the other side, γ bounds the events when CCON is

violated. By QoE point of view, bounding γ is as critical as

bounding N itself and characterizing both is important.

To characterize γ as a function of (N,B, θtar) parameters,

we can write γm as

γm = Pr(More than M packets dropped successively)

=

∞
∑

a=M+1

Pr(a packets dropped successively). (24)

As M = N +B where N is a system imposed constraint,

we can increase B to reduce the system energy expenditure.

Suppose B́ = B + 1 and so as Ḿ = M + 1. Using above equa-

tion, it is clear that difference in γm is the probability that

exactly M + 1 packets are dropped successively.

A. Trading Buffer for Improved Guarantees on γ

Let us denote
(

Eb

N0

)

CST
by Eb

N0
for simplicity in rest of this

paper. We would like to achieve ǫ ≤ γm at improved energy by

exploiting buffer size as a degree of freedom and increasing B
for a fixed N .

Let us denote the optimal solution of the programming

problem in previous section by Q∗(B, θtar, ǫ) as a function

of B, θtar and target violation probability on CCON ǫ. Let
Eb

N0
(Q∗(B, θtar, ǫ)) be the corresponding system energy and



BUTT et al.: ENERGY AND BURSTY PACKET LOSS TRADEOFF OVER FADING CHANNELS 7

∆E represents the target energy gain. Now, the optimization is

performed over B ∈ Ψ where Ψ is a set of possible buffer sizes.

For every candidate B ∈ Ψ, optimization in (19) and (20) is

performed again by including C5 also. The aim of the optimiza-

tion is to find minimum value of B which gives energy less than
(

Eb

N0
(Q∗(B, θtar, ǫ))−∆E

)

at ǫ

Find B∗ ∈ Φ s.t. γ (Q∗(B∗, θtar)) ≤ ǫ and (25)

Eb

N0
(Q∗(B∗, θtar, ǫ))−

Eb

N0
(Q∗(B, θtar, ǫ)) ≥ ∆E,B ∈ Ψ.

The suitable value of B is highly dependent on the application.

For example, wireless sensor networks would prefer large B
due to battery requirements whereas multimedia applications

prefer small B due to stringent delay requirements on data

delivery.

B. Stochastic Optimization

The optimization problem formulated in (19) and (20) is

not convex and can be solved using stochastic optimization

techniques. There are a few heuristic techniques in literature

to solve such problems such as genetic algorithm, Q-learning,

neural networks, and so on. We use simulated annealing (SA)

algorithm to solve the problem. As the name suggests, the algo-

rithm originates from the statistical mechanics area and has

been quite useful to solve different combinatorial optimization

problems such as traveling salesman.

In SA algorithm, a random configuration in terms of tran-

sition probability matrix Q is presented in each step and the

system energy as an objective function is evaluated only if

Q fulfills all the constraints in (20). If the system energy

improves the previous best solution, the candidate configuration

is selected as the best available solution. However, a candidate

configuration can be treated as the best solution with a certain

temperature dependent probability even if the new solution is

worse than the best known solution. This step is called mut-

ing and helps the system to avoid local minima. The muting

step occurs frequently at the start of the process as tempera-

ture is selected very high and decreases as the temperature is

decreased gradually. Thus, the term temperature determines the

rate of muting process.

In literature, different cooling temperature schedules have

been employed according to the problem requirements. In this

work, we employ the following cooling schedule, called fast

annealing (FA) [25]. In FA, it is sufficient to decrease the

temperature linearly in each step b such that

Tb =
T0

csa ∗ b+ 1
(26)

where T0 is a suitable starting temperature and csa is a constant

which depends on the problem requirements. The parameters of

the temperature schedule can be computed via experimentation,

e.g., as in [13], [26]. The pseudocode for the optimization of

programming problem using SA is presented in Algorithm 1.

Algorithm 1. Optimization by SA Algorithm

Input: (Q0, Tm, θtar, ǫ);
E0 =Compute energy as a function of initial Q0;

E∗ = E0;Q∗ = Q0;

T = New lower temperature according to FA schedule;

/∗ Perform temperature iterations as long as it.

reaches the lowest temperature Tm. ∗/
while T ≥ Tm do

for i = 0 to n do

Generate a random Q̂;

Compute γ and θr for Q̂;

if (θr < θtarANDγ ≤ ǫ) then

Compute energy Ê as a function of Q̂;

r = A random number in range [0, 1];

if r < exp
(

−(Ê−E∗)
T

)

then

Q∗ = Q̂;

if (Ê ≤ E∗) then

E∗ = Ê;

end if

end if

end if

end for

end while

Output: (E∗,Q∗);

C. Physical Layer Channel Estimation Model

In contrast to packet-level channel model for imperfect CSI

at the transmitter side, the effect of imperfect CSI at both

transmitter and the receiver sides is modeled at physical chan-

nel level by a channel estimation error variance. The receiver

performs pilot (or data)-aided channel estimation by some cri-

terion, e.g., linear minimum mean square error (LMMSE).

The resulting error in estimation is modeled by certain vari-

ance β2 that depends on the pilot signal length and power.

Note that there is no feedback channel available and the user

does not adapt his scheduling decision if a transmitted packet

is dropped. In fact, physical-level channel model is oblivi-

ous of the packet-level scheduling and determines bit-level

performance.

The channel estimation error results in higher energy per bit.

The average system energy per transmitted bit for this case is

derived in the Appendix and given by

(

Eb

N0

)

CSO

= log(2)

∫ ∞

0

2CPh,VU(x)

x
dPh,VU(x) (27)

+ β2 log(2)

∫ ∞

0

22CPh,VU(x)

x2
dPh,VU(x).

Regardless of the scheduling scheme at link layer, the transmit

power can be adapted as a function of error variance β2. To

eliminate the effect of channel estimation error, the user trans-

mits with an extra power margin where margin is calculated as

a function of β2 such that the effect of estimation error can be

removed. We model this scenario by considering νd = 0 (error
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Fig. 3. Markov chain model for a system with B = 1 and the users have CCON

parameters 1 and 2 with probability ζ1 and ζ2, respectively. The system-level

state diagram shows the modeling at system level where N = max{1, 2}.

free transmission) in our scheduling scheme such that the trans-

mission requires
(

Eb

N0

)

CSO
instead of

(

Eb

N0

)

CST
for the same

system parameters.

V. MODELING INDIVIDUAL USER CCON CONSTRAINTS

We generalize our framework to the case when the indi-

vidual users have nonidentical CCON parameter Na, where

a ∈ {1, 2, . . . , A}. To model the general case at system level,

we define a system-level CCON parameter N by

N = max{N1, N2, . . . , NA}. (28)

We denote the probability that a user has a CCON parameter

Na by ζa ≥ 0 such that
∑A

a=1 ζa = 1. Note that ζa can be zero

for some Na.

To explain the concept, let us discuss the example when

the users have CCON parameters 1 and 2 such that ζ1 and ζ2
proportion of the users have constraints 1 and 2, respectively.

Buffer size is fixed to one for both cases. In contrast to the

case with homogenous N , the system-level Markov chain will

be different from the user-level model. The individual users

will have state space model corresponding to B = 1, Na = 1,
and B = 1, Na = 2 cases (as modeled before), but the result-

ing (cumulative) system space model is shown in state diagram

in Fig. 3 such that N = max{1, 2} and ζ1 and ζ2 denote the

respective probabilities of having N1 and N2.

For the individual CCON parameter case, the state transi-

tion probabilities and the resulting steady-state probabilities are

modified. For example,

π2 = ζ2 (1− νs(α̂10 + α̂11))π1 (29)

π3 = ζ1 (1− νs(α̂10 + α̂11))π1 + α23π2 (30)

where the state transition probabilities are calculated in the

same way as in Section IV.

In general,

πp = ζN

(

1− νs

B
∑

q=0

α̂Bq

)

πB , p = B + 1 (31)

πp = α(p−1)pπp−1 + αBpπB , B + 1 < p ≤ M (32)

=

(

1− νs

B
∑

q=0

α̂pq

)

πp−1 + ζM−p+1

(

1− νs

B
∑

q=0

α̂Bq

)

πB

while the steady-state probabilities for the states p ≤ B do not

depend on the distribution of N and calculated as before.

Similarly, the average packet drop rate in (21) is modified as

θr =

M−1
∑

p=B

αp(p+1)πp + αMMπM + πB

M
∑

q=B+2

αBq. (33)

After some mathematical manipulation, it can be shown that

M
∑

q=B+2

αBq =
M
∑

q=B+2

ζM−q+1α̃Bq (34)

= (1− ζN )

(

1− νs

B
∑

q=0

α̂Bq

)

. (35)

The additional term represents the packets dropped as a result

of having Na < N . It is worth noting that θr is the system-

level parameter and an upper bound on θr for the individual

users. The individual users with Na < N may not be able to

fully utilize it completely for achieving energy efficiency as

average energy saturates at lower θr for small values of Na

parameter [14].

It is clear from the system state space model that the proba-

bility distribution of CCON parameter affects the system energy

efficiency. If the probability of having small Na is high as com-

pared to large Na, the average system energy increases. We

evaluate the effect of this distribution on system energy through

numerical simulations in Section VI.

VI. NUMERICAL RESULTS AND DISCUSSION

We assume that the users are placed uniformly at random in

a circular cell except for a forbidden region around the access

point of radius δ = 0.01 according to path loss model in (2).

The path loss exponent equals 2 and the path loss distribution

follows the model in [15]. All the users experience independent

small-scale fading with exponential distribution with mean one.

Spectral efficiency is 0.5 bits/s/Hz for all simulations. In SA

algorithm, 100 temperature values are simulated according to

FA temperature schedule while 50(M + 1) random configura-

tion of transition probability matrix is generated for a single

iteration at temperature Tb. The cooling schedule parameters

in (26) are computed after extensive experimentation such that

muting occurs frequently at high temperature and almost seizes

at low temperature.

Fig. 4 illustrates γm values and the corresponding system

energy (plotted against the right-side y-axis) for different N and

fixed B = 0. To compute γm, we perform optimization in (20)

without applying constraint in (23) and the best3 solution matrix

Q∗ is obtained. The value of γ computed via (13) for Q∗ gives

us γm and upper bounds ǫ. γm decreases exponentially with

increasing N and reaches nearly zero for N = 5 while Eb/N0

remains constant for every (N, γm) tuple. Although, energy per

bit for any two different (N, γm) pairs is the same, their effect

on QoE may vary considerably and dictates which parameter

3We avoid using term energy optimal here as SA is a heuristic algorithm and

solution cannot be proven optimal.
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Fig. 4. γm and
Eb
N0

as a function of N for our proposed scheme. To better

visualize the behavior of γm and
Eb
N0

against N (on x-axis) simultaneously,

we plot both parameters in the same figure such that the color of the curve for

a parameter matches with the color of the corresponding y-axis. B is fixed to

zero while θtar = 0.3 and νd equals 0.02.

needs to be employed. Based on numerical results in Fig. 4, we

evaluate the tradeoffs addressed in Section IV-A.

Fig. 5 exhibits the effect of imposing constraint ǫ ≤ γm on

system performance when θtar = 0.3. We evaluate C5 along

with C1 − C4 in (20) for the candidate Q before evaluation of

(17) in SA algorithm. We observe in Fig. 5(a) that decreasing ǫ
has an associated energy cost and the solution becomes subop-

timal by energy point of view. Moreover, γ can never approach

zero as long as νd > 0 and packet dropping due to imperfect

CSI cannot be completely eliminated. For a given set of param-

eters and fixed νd, the minimum value of achievable ǫ is denoted

by γ0 which lower bounds ǫ such that γ0 ≤ ǫ ≤ γm. The greater

the value of νd, the greater is γ0. For instance, increasing νd
from 0.02 to 0.1 for the case N = 2 raises γm from 0.001 to

0.002 while system energy increases for all values of ǫ as well.

We observe that bounds on ǫ (in the form of γ0 and γm) become

tight as N increases for the fixed θtar. This is due to the fact that

allowing large N increases degrees of freedom for the system

and the effect of parameter ǫ on system energy is minimized.

Correspondingly, Fig. 5(b) demonstrates that achieved aver-

age packet drop rate θr (calculated via (21)) approaches θtar for

large ǫ and remains almost identical thereafter. This implies that

all the extra energy cost is contributed by strict statistical guar-

antees on CCON. When ǫ is very small, the energy optimal Q∗

provides a θr which is much less that θtar and severely subop-

timal. We conclude that a strict statistical guarantee on CCON

has a severe plenty in terms of energy and even other DoF (like

relaxed θtar) cannot be utilized efficiently.

Fig. 6 demonstrates the energy benefit achieved by increas-

ing buffer size as described in Section IV-A. First, we observe

that increasing the value of B for a fixed N increases γm, i.e.,

more flexibility in ǫ. Second, an energy gain by increasing B
for all ǫ and a fixed N is evident. It depends on the system

design that which B needs to be employed for a particular

performance guarantee. Let us discuss the case for parameters

N = 1, θtar = 0.3, ǫ = 0.01. The system with B = 0 provides

system energy of almost −2 dB as shown in Fig. 5(a). If we

Fig. 5. System energy and packet drop behavior as a function of ǫ. θtar is fixed

to 0.3 for all simulations.

Fig. 6. System energy as a function of ǫ when B > 0.

want the same performance at reduced energy, B = 1 provides

a gain of ∆E = 1.9 dB. If ∆E > 1.9 dB is desired, B > 1 is

required. For the same set of parameters, B = 2 provides ∆E
equal to 3.1 dB. A similar comparison can be drawn for N = 2
and B > 0.
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Fig. 7. System energy as a function of CCON parameter distribution. Buffer

size is fixed to one. To focus on the effect of CCON distribution, we set νs = 1

and γ = 0 while CCON parameters are 1 and 2 with probability ζ2 = 1− ζ1.

A comparison of the curves for the cases N = 2, B = 1 and

N = 1, B = 2 (with same M = 3) shows that increasing DOF

in any parameter (B,N) is energy efficient as compared to

the case N = 1, B = 1, but the effect differs widely in many

ways, e.g., value of γm for both cases. Similarly, increasing B
to reduce system energy affects system cost while increasing N
costs performance loss in terms of jitter. Thus, system’s energy,

packet loss, and latency requirements determine the parameters

required to achieve performance in terms of statistical guarantee

on CCON.

In Fig. 7, we evaluate the effect of CCON parameter distri-

bution on system energy. We confine ourselves to the case of

CCON parameters 1 and 2 with probability ζ2 = 1− ζ1. We see

that system energy decreases as ζ2 increases. Note that ζ2 = 0
implies that all the users have CCON parameter 1 while large

ζ2 implies more users with CCON parameter 2 and more DoF

in energy efficient packet scheduling.

We demonstrate the effect of estimation error variance on

system energy in Fig. 8 when imperfect CSI at both transmitter

and receiver sides is modeled at physical layer level. We assume

that the effect of error variance remains fixed for all (high and

low) SNRs. As error variance increases,
(

Eb

N0

)

CSO
increases

correspondingly. Note that error variance model does not cap-

ture packet-level performance and its effect on other packet

dropping parameters cannot be determined. The scheduling

decisions are adapted in packet-level model as a function of

packet loss probability νd and, therefore, both
(

Eb

N0

)

CST
and

the packet drop design parameters (e.g., γm, γ0) change as well.

In a physical layer model, no adaptive action is taken by the

scheduler and only
(

Eb

N0

)

CSO
is affected by error variance. The

effect of estimation error can be eliminated by transmitting with

an extra power margin. It can be observed from Fig. 8 that the

power margin is high if error variance is large and the increase

is exponential.

A. Discussion

One of the key features of 5G wireless networks is the

availability of services with highly variable QoS parameters in

Fig. 8. System energy as a function of estimation error variance β2. The

parameter ǫ = 0.3 while γ = γm.

terms of delay and loss requirements. This work establishes

a framework where individual demands on QoS of the end

users are satisfied and energy is saved by exploiting the relax-

ation in service guarantees. We deal with the scenarios with

erroneous CSI and limited feedback, which reduce the control

traffic significantly.

The analysis of the framework is based on the case with

large number of users in the system, which helps to decouple

the scheduling decisions. This implies that the scheme does not

suffer from scalability issues, and actually benefits from more

users. However, due to superposition coding, a central unit is

required for sharing CSI information [14]. As the user thresh-

old optimization is based on the channel distribution and not the

actual realization, the users perform optimization offline and

make simple comparison of thresholds with the available chan-

nel state realization to make the scheduling decisions. Thus,

the complexity of the online user scheduling decisions is very

small.

VII. CONCLUSION

We address the problem of energy efficient multiuser

scheduling over fading channels for the loss tolerant appli-

cants. The packet loss tolerance is characterized by different

parameters controlling the QoE for a specific application. A

cross-layer framework is proposed and an optimization prob-

lem is formulated with the goal to minimize system energy such

that application loss tolerance parameters are satisfied while

scheduling is performed opportunistically over fading channels.

We model the framework using FSMC and solve the optimiza-

tion problem using SA optimization technique. We consider

the effect of channel uncertainties on the performance using

both channel- and packet-level methods. Then, the framework

is generalized to the case when bursty packet drop protection

varies with the users and model its effect at the system level.

The results demonstrate the system energy as a function of

loss tolerance parameters. We show that buffer size can be

treated as a degree of freedom to improve the QoE for the appli-

cation constrained by loss tolerance bounds. As loss tolerance

parameters are coupled, it is not possible to achieve energy
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efficiency beyond certain limits by relaxing other parameters

if one of the bounds is tight. We conclude that it is impor-

tant to exploit DoF available through application loss tolerance

to maximize the energy efficiency, and it is equally important

to determine the practical limits on all the parameters which

control QoE of the applications.

APPENDIX

In [27], a lower bound on the achievable rate region for a

two-user MAC with imperfect CSI is derived. Let us denote the

channel estimation error variance as β2 and the channel gains

by hk for k = 1, . . . ,K. For K users with fixed power allo-

cation, the achievable rate region is characterized in [27, Sec.

III-B] for all subsets S ⊆ {1, . . . ,K} by

∑

k∈S

Rk ≤
1

2
log

(

1 +

∑

k∈S hkEk

Z0 + β2
∑

k∈{1,...,K} Ek

)

. (36)

Similar to [28], it can be shown that the minimum energy

for fixed-rate requirements is achieved for a decoding order

in which the channel gains h1, . . . , hK are sorted in increas-

ing order. The corresponding power region for the fixed rates

R1, . . . , RK ≥ 0 is given by the solution of the following linear

system of equations:

E∗ = Z0

[

β2R+B
]−1

ρ (37)

with rate allocation vector ρ = [ρ1, . . . , ρK ] and ρk = 2Rk − 1,

coupling matrix B

B =

⎛

⎜

⎜

⎜

⎝

h1 −ρ1h2 −ρ1h3 ... −ρ1hK

0 h2 −ρ2h3 ... −ρ2hK

...
. . .

...

0 ... 0 0 hK

⎞

⎟

⎟

⎟

⎠

(38)

and rate matrix R

R =

⎛

⎜

⎜

⎜

⎝

ρ1 ρ1 ... ρ1
ρ2 ρ2 ... ρK
...

. . .
...

ρK ρK ... ρK

⎞

⎟

⎟

⎟

⎠

. (39)

For perfect CSI, i.e., β = 0, the corresponding required trans-

mit power is given by (17). Let us denote the required transmit

power as a function of the channel estimation error by E∗(β).
For perfect CSI, the transmit power in (17) is given by E∗(0).

Since R is rank 1, the transmit power in (37) can be rewritten

as

E∗(β) = Z0B
−1ρ+

Z0β
2B−1RB−1

1− β2tr(RB−1)
ρ

= E∗(0) +
Z0β

2B−1RB−1

1− β2tr(RB−1)
ρ. (40)

This clearly shows the additional power required for imperfect

CSI. In order to approximate the second additional term in (40),

we apply the approximation ABAx ≈ 1/K · tr(AB)Ax. The

required transmit power reads

E∗(β) ≈

(

1 +
1

K

x

1− x

)

E∗(0). (41)

For small estimation errors, only the first-order term of the

Taylor series of 1
1−x

is kept and we obtain the approximation

E∗(β) ≈

(

1 +
1

K
β2tr(RB−1)

)

E∗(0). (42)

The trace can be directly evaluated as tr(RB−1) =
∑K

k=1
ρk

hk
.

Using the partial rates (as in [15]) Rk = λk
C
K

, we obtain

E∗(β) =

(

1 + β2 1

K

K
∑

k=1

exp
[

λk
C
K

]

hk

)

1

C

×
K
∑

k=1

1

hk

exp

[

C

K

∑

i<k

λi

]

(

exp

[

λk

C

K

]

− 1

)

.

(43)

For large K, exp
[

λk
C
K

]

≈ λk
C
K

and using [15, Lemma 1], we

derive the limiting representation of
(

Eb

N0

)

CSO
in (27).
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