
REVIEW
published: 21 January 2021

doi: 10.3389/fcell.2020.614472

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 January 2021 | Volume 8 | Article 614472

Edited by:

David Charles Gershlick,

University of Cambridge,

United Kingdom

Reviewed by:

Christophe Lamaze,

Institut Curie, France

Asier Echarri,

Spanish National Centre for

Cardiovascular Research, Spain

*Correspondence:

Claudia Matthaeus

claudia.matthaeus@nih.gov

Justin W. Taraska

justin.taraska@nih.gov

Specialty section:

This article was submitted to

Membrane Traffic,

a section of the journal

Frontiers in Cell and Developmental

Biology

Received: 06 October 2020

Accepted: 21 December 2020

Published: 21 January 2021

Citation:

Matthaeus C and Taraska JW (2021)

Energy and Dynamics of Caveolae

Trafficking.

Front. Cell Dev. Biol. 8:614472.

doi: 10.3389/fcell.2020.614472

Energy and Dynamics of Caveolae
Trafficking
Claudia Matthaeus* and Justin W. Taraska*

Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD,

United States

Caveolae are 70–100 nm diameter plasma membrane invaginations found in abundance

in adipocytes, endothelial cells, myocytes, and fibroblasts. Their bulb-shaped membrane

domain is characterized and formed by specific lipid binding proteins including Caveolins,

Cavins, Pacsin2, and EHD2. Likewise, an enrichment of cholesterol and other lipids

makes caveolae a distinct membrane environment that supports proteins involved in

cell-type specific signaling pathways. Their ability to detach from the plasma membrane

and move through the cytosol has been shown to be important for lipid trafficking and

metabolism. Here, we review recent concepts in caveolae trafficking and dynamics.

Second, we discuss how ATP and GTP-regulated proteins including dynamin and EHD2

control caveolae behavior. Throughout, we summarize the potential physiological and cell

biological roles of caveolae internalization and trafficking and highlight open questions in

the field and future directions for study.
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INTRODUCTION

Caveolae are 70–100 nm diameter sized plasma membrane invaginations that form bulb shape
invaginations into the cytosol (Figure 1). They are found in a variety of cell types including
adipocytes, endothelial cells, muscle cells, fibroblasts, and astrocytes (Cameron et al., 1997;
Parton, 2003; Parton and Del Pozo, 2013; Parton et al., 2018; Yan et al., 2019). The plasma
membranes of endothelial, muscle, and fat cells are packed with caveolae, suggesting an
important role in specialized functions including homeostasis and metabolism. Caveolae also
comprise a specific lipid environment containing large amounts of cholesterol, sphingomyelin,
and ceramides (Graf et al., 1999; Parton et al., 2020b; Zhou et al., 2020). These lipids accumulate
in caveolae, providing a reservoir for these molecules (Hubert et al., 2020b). Therefore, these
organelles serve as unique scaffolds for plasma membrane proteins involved in signaling pathways
creating unique cell-type specific protein signaling domains. Caveolae are also known to participate
in cellular lipid and fatty acid uptake (Pilch and Liu, 2011; Pilch et al., 2011), endothelial transcytosis
of large molecules (Frank et al., 2009; Cheng and Nichols, 2016), regulation of the endothelial
NO synthase (Förstermann and Sessa, 2012), neurovascular coupling (Chow et al., 2020), viral
internalization (Pelkmans et al., 2001; Xing et al., 2020), and pigmentation in melanocytes
(Domingues et al., 2020). Furthermore, under some cellular membrane tension regimes caveolae
can group into larger clusters at the plasma membrane termed caveolae rosettes (Echarri et al.,
2019; Golani et al., 2019). The wide array of structures and actions of caveolae across many different
tissues and pathways highlights this small organelle’s diverse role in signaling and physiology. Yet,
much remains to be uncovered about their regulation, function, and mode of action.
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The caveolar coat is minimally composed of several
proteins important for forming and stabilizing the bulb-shaped
membrane invagination. The key proteins are Caveolin (three
orthologous in human, Cav1-3), Cavins (Cavin1-4), the BAR
protein domain-containing syndapin/Pacsin2, and the dynamin-
related ATPase EHD2 (see Figure 1, previously reviewed in
the literature; Han et al., 2016b; Lamaze et al., 2017; Parton
et al., 2020c). In vitro and in vivo studies have shown that
Caveolin/cholesterol complexes incorporate into the plasma
membrane forming elongated and rather shallow invaginations
(Fernandez et al., 2002; Hayer et al., 2010a; Ariotti et al., 2015;
Han et al., 2020). Caveolin complexes alone do not form the
typical bulb shape. Therefore, Cavin coat proteins have been
proposed to be essential for generating the classic “cave-like”
invaginations. Specifically, Cavins are recruited from the cytosol,
oligomerize into trimers, and surround the caveolar membrane
resulting in a structured caveolar coat as illustrated in Figure 1A

(Gambin et al., 2014; Kovtun et al., 2015; Ludwig et al., 2016;
Stoeber et al., 2016). Furthermore, it has been shown that Pacsin2
is important for bending the membrane and stabilizing caveolar
invaginations at the plasmamembrane (Hansen et al., 2011; Senju
et al., 2011, 2015; Seemann et al., 2017). A similar function was
found for the ATPase EHD2. EHD2 specifically localizes to the
neck of caveolae (Morén et al., 2012; Stoeber et al., 2012; Ludwig
et al., 2013). Recently, the EHD2 binding partner (EHBP1)
was identified as another stabilizer of caveolae in endothelial
cells (Webb et al., 2020). Finally, a BAR protein, FBP17, was
discovered to be important for the formation of caveolae rosettes
at the plasma membrane (Echarri et al., 2019).

Despite the large number of caveolae in muscle and
endothelial cells or adipocytes, the loss of caveolae due to Cav1
or Cavin1 deletion is not generally lethal (overview of knockout
models reviewed in Le Lay and Kurzchalia, 2005; Hansen et al.,
2013; Cheng and Nichols, 2016). However, investigations of
various Caveolin or Cavin deficient mouse models has indicated
impaired lipid metabolism and lipodystrophy, cardiomyopathies,
blood pressure changes, andmuscular dystrophy in these animals
(Pilch and Liu, 2011; Cheng and Nichols, 2016). It should be
noted that some of these phenotypes could be due to non-
caveolar functions of Cav1 as recently reviewed (Pol et al., 2020).
Additionally, altered Cav1 and Cavin1 expression, mutations in
human Caveolin genes, as well as modified caveolae endocytosis
and trafficking can be linked to metabolic diseases including
obesity and lipodystrophy (Catalán et al., 2008; Kim et al.,
2008; Pilch and Liu, 2011; Schrauwen et al., 2015; Matthaeus
et al., 2020), cancer (Lee et al., 2002; Martinez-Outschoorn
et al., 2015; Ketteler and Klein, 2018) as well as cardiovascular
diseases (Cohen et al., 2004a; Han et al., 2016a; Lian et al.,
2019) or myopathies (Gazzerro et al., 2010; Dewulf et al.,
2019). Therefore, caveolae are currently under investigation as
novel therapeutic targets for disease (Carver and Schnitzer, 2003;
Navarro et al., 2014).

The process of intracellular membrane traffic, including
caveolae endocytosis, transcytosis, transport, and targeting,
requires specific signals and regulatory modules to direct
movement inside the cell. Nucleoside triphosphates Adenosine-
5’-triphosphate (ATP) and Guanosine-5’-triphosphate (GTP)

serve as cellular energy resources to drive, localize, and direct
these actions. Both nucleosides play essential roles during
intracellular trafficking to promote membrane interactions and
deformations, protein-protein interactions, and conformational
changes in molecular machines. Here, we summarize the state of
understanding of caveolae membrane trafficking and highlight
the roles of ATP and GTP-dependent processes within these
specialized membrane structures.

CAVEOLAE TRAFFICKING

How do caveolae move? Caveolae endocytosis and trafficking
has been observed in many cell types although the cellular
consequences of these movements are currently not well-
understood. The role and even occurrence of caveolae traffic
has, indeed, been controversial (Parton and Howes, 2010; Cheng
and Nichols, 2016; Parton et al., 2020a). Several studies have
shown, however, that caveolae endocytosis supports viral entry
and receptor internalization, and caveolae membrane trafficking
has been linked to cellular lipid homeostasis and movement.
Here, we divide caveolar internalization into 5 steps: (1) caveolae
dynamics at the plasma membrane, (2) detachment from the cell
membrane, (3) fusion with endosomes followed by accumulation
in lysosomes or (4) non-endosomal trafficking to intracellular
organelles, and finally (5) recycling of caveolae (see overview in
Figure 2 and the following sections).

With these steps in mind, caveolae internalization and
traffic, however, must be distinguished from caveolae flattening
and disassembly. Several studies have indicated that increased
membrane tension due to osmotic shock and membrane stretch
could lead to caveolar membrane flattening. Here, caveolae
proteins such as Cavins or EHD2 are proposed to be released
into the cytosol and are able to move independently of caveolar
membranes (Sinha et al., 2011; Cheng et al., 2015; Garcia et al.,
2017; Lim et al., 2017; Torrino et al., 2018). However, this
mechano-adaptive caveolae behavior is cargo-independent and
therefore different from classical endocytosis and traffic (Del
Pozo et al., 2021). Recently, it was shown that cellular stress
induced by UV light could also trigger the disassembly of
caveolae and the release of caveolar proteins into the cytosol
(McMahon et al., 2019). Previous studies further showed that
caveolae serve as cellular membrane tension sensors that are
coupled to mechano-transduction pathways such as the Hippo
system involving the transcriptional regulators YAP and TAZ
(Echarri and Del Pozo, 2015; Dewulf et al., 2019; Del Pozo
et al., 2021). Here, caveolae are able to sense changes in plasma
membrane tension and induce transcriptional changes as well as
provide membrane reservoirs to protect the cell frommechanical
stress. These behaviors of caveolae are distinct from the classic
traffic routes we will focus on in this review.

The study of caveolae trafficking has been complicated by
many technical difficulties. To investigate caveolae dependent
endocytosis, cholera toxin and simian virus 40 have been the
standard cargo. Yet, detailed analysis has shown that both cargos
are not exclusively internalized by caveolae. This has led to some
amount of conflicting data (Nichols, 2002; Cheng and Nichols,
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FIGURE 1 | Caveolae structure and components. (A) Caveolae imaged in unroofed mouse embryonic fibroblasts (MEF) by platinum replica EM. The typically caveolae

coat generated by Cavin protein complexes (colored in green) surround the Cav1 induced plasma membrane invaginations. Scale bar 120 nm. (B) 2D TEM image of

caveolae in endothelial cells of blood vessels in mouse heart sections. Scale bar 200 nm. (C) The MEF plasma membrane contains randomly distributed caveolae

(in green) embedded with actin filaments (red). Scale bar 250 nm. (D) Schematic overview of caveolae and its components.

2016). To date, no caveolae-specific cargo has been identified
(Parton et al., 2020a). This makes it challenging to specifically
monitor intracellular caveolae trafficking. Furthermore, non-
caveolar Cav and Cavin localization, and overexpression
effects of Cav/Cavin proteins, makes it difficult to distinguish
between intracellular Cav/Cavin protein migration and caveolae
endocytosis (summarized for Cav1 in Pol et al., 2020, non-
caveolar Cavin function see Jansa et al., 1998; Liu and Pilch,
2016; McMahon et al., 2019). Additionally, the comparison of
Cav1 overexpressing cells with genome-edited Cav1 cells revealed
that only a portion of caveolae are actually motile and the
majority stay immobile at the plasma membrane (Shvets et al.,
2015). In contrast, overexpressed GFP-tagged Cav1 results in
many highly mobile Cav1 molecules in cells which may not be
assigned to caveolae migration. Therefore, caveolae endocytosis
studies should be evaluated with care. Specifically, untangling
the movement of coated caveolae membrane-containing vesicles

from packets of caveolae proteins without membrane is a
challenge. The following section will summarize current caveolae
trafficking concepts while highlighting the distinct steps of
the process.

Caveolae Detachment From the Plasma
Membrane
Caveolae are highly dynamic membrane domains, that are
capable of moving laterally in the plasma membrane, similar
to lipid rafts (Pelkmans and Zerial, 2005; Boucrot et al., 2011;
Shvets et al., 2015). However, it was shown in vitro and in

vivo that EHD2 localizes to caveolar necks. In particular, the
observation of an increased number of static caveolae in cells
overexpressing EHD2 led to the hypothesis that EHD2 stabilizes
caveolae at the plasma membrane (Morén et al., 2012; Stoeber
et al., 2012; Ludwig et al., 2013; Matthaeus et al., 2020).
Besides EHD2, Pacsin2 is also involved in caveolae plasma
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FIGURE 2 | Caveolae endocytosis and trafficking. (A) Classic caveolae

endocytosis from the plasma membrane to early and late endosomes,

followed to lysosomes, occurs in various cell types. Rab5, 7, and 11 are

assigned to caveolae trafficking, ATP (pink triangle) and GTP (green triangle)

dependent processes are illustrated. (B) Caveolae trafficking to endoplasmic

reticulum (ER) and mitochondria is suggested based on initial proteomics data

and detailed EM images. (C) Caveolae trafficking from the plasma membrane

to lipid droplets can be observed in adipocytes and fibroblasts. PM, plasma

membrane; Dyn, Dynamin; ER, endoplasmic reticulum; question mark

indicates unknown processes and proteins.

membrane stabilization (Senju et al., 2011, 2015). Deletion of
either EHD2 or Pacsin2 results in increased caveolae mobility
and internalization. Most likely, EHD2 removal from caveolar
neck promotes caveolae detachment from the plasma membrane
followed by intracellular trafficking. How exactly detachment
occurs is currently unknown. Dynamin has been proposed to
be important for this process (Henley et al., 1998; Oh et al.,
1998, 2012). Yet, clear evidence that dynamin acts alone or in
combination with other proteins, such as intersectin (Predescu
et al., 2003, 2012), is lacking. It is also possible that the fission of
caveolae from the plasma membrane is driven by other proteins.
Indeed, this is common for dynamin independent endocytosis
(e.g., CLICs, Mayor et al., 2014; Sathe et al., 2018) and ESCRT
III complex protein driven invaginations (Hanson et al., 2008;
Rossman and Lamb, 2013).

To study caveolae scission and trafficking, one needs to
differentiate vesicles frommembrane bound caveolae. In the past
this has been difficult for various endocytic pathways due to their
small size and fast dynamics. In fixed cells, however, caveolar
vesicles can be distinguished by EM or electron tomography as
vesicles containing an enclosed lipid bilayer (Popescu et al., 2006;
Hubert et al., 2020b; Matthaeus et al., 2020; Webb et al., 2020).
Novel super resolution imaging techniques such as Stochastic
Optical Reconstruction microscopy (STORM) and Stimulated
Emission Depletion (STED) microscopy with resolution limits
up to 40 nm are also able to identify caveolar vesicles (Platonova
et al., 2015; Tachikawa et al., 2017; Yeow et al., 2017; Khater
et al., 2018; Matthaeus et al., 2019). Of special interest with regard
to caveolar vesicle trafficking is the application of STED and
structured-illumination microscopy (SIM) to live cells allowing
single caveolae to be tracked throughout the cell. Currently,
caveolae trafficking is mainly studied with total internal reflection
fluorescence (TIRF) microscopy. However, TIRF is diffraction
limited in the plane of the cover glass and in the axial plane
limited to signals within ∼200 nm of the plasma membrane.
Therefore, deeper caveolae events cannot be seen. In summary,
rapidly developing imaging techniques will help to further
elucidate the exact caveolar detachment process at the plasma
membrane and allow single organelles to be monitored as they
move through the cytosol. These studies will finally reveal
how caveolae move, where they go, and what pathways they
participate in within living cells and tissues.

Intracellular Caveolae Trafficking
After detachment from the plasma membrane, caveolae
can be internalized and traffic to intracellular organelles.
Which signaling events, cargos, or ligands induce caveolae
internalization are, however, unclear and has led to some
controversy in the field. Thus, the exact role for caveolae traffic
has been difficult to generalize. This is in contrast to clathrin
mediated endocytosis where defined cargos and trafficking
routes are well-established and mainly accepted. Recent data
has suggested that high levels of extracellular cholesterol and
glycosphingolipids are able to stimulate caveolar dynamics
(Hubert et al., 2020b). Also, albumin (Minshall et al., 2000; Botos
et al., 2008), okadaic acid and glycosphingolipids (Parton et al.,
1994; Shvets et al., 2015), cholesterol and long-chain fatty acids
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(Le Lay et al., 2006; Hao et al., 2020), simian virus 40 (Tagawa
et al., 2005), and endothelin (Oh et al., 2012) are thought to be
potential detachment and internalization triggers in some cell
types. Taken together, various tissue and cell specific signaling
events or ligands may trigger caveolae internalization. The
resulting intracellular caveolae trafficking routes include the
conventional endocytic pathway, as well as caveolae migration
to the endoplasmic reticulum and lipid droplets (see overview in
Figure 2, and detailed description below). Likewise, studies have
shown that caveolae detachment and return of caveolae vesicles
to the plasma membrane can occur (Pelkmans and Zerial, 2005;
Hubert et al., 2020a).

Endocytic Caveolae Pathway
When caveolae bud off from the plasma membrane they can
fuse with the early endosome. This is followed by maturation
of these organelles into late endosomes, multivesicular bodies,
and finally degradation of their contents within lysosomes
(Hayer et al., 2010b; Shvets et al., 2015). Previous studies
showed that Cav1 co-localizes with early and late endosomal
markers including Rab5 and Rab7, followed by accumulation
into the lysosomes (Pelkmans et al., 2004; Botos et al., 2008;
Hayer et al., 2010b; Shvets et al., 2015). Notably, Shvets
et al. (2015) determined that caveolae mediated endocytosis
in 3T3 fibroblasts comprises a minor fraction of total cellular
endocytosis (ca. 5–10% of total endocytic vesicles). By using
Cav1 immunogold labeling, Botos et al. (2008) observed an
accumulation of Cav1 in multivesicular bodies after detachment
from the plasma membrane. Furthermore, polarized epithelial
cells contain Cav1 endocytosis and co-localization with the
specific apical recycling marker Rab11a (Lapierre et al.,
2012). In line with these observations, several proteomics
and biochemistry studies showed an enrichment of small Rab
GTPases, SNAP molecules, and the vesicle SNARE protein
VAMP2 in isolated caveolae fractions (Schnitzer et al., 1995;
Aboulaich et al., 2004; McMahon et al., 2006; Wypijewski et al.,
2015). These are necessary for a functional membrane fusion
machinery needed for the endocytic pathway. In summary, these
data illustrate that caveolae are endocytosed. Most likely, viruses
such as the simian virus 40 use this caveolar endocytic path way
to enter and infect cells (Pelkmans et al., 2001; Tagawa et al.,
2005). Furthermore, receptor internalization may be regulated by
this pathway, e.g., TGF-beta type 1 (He et al., 2015) or insulin
receptor (Fagerholm et al., 2009), although distinct caveolar
specific receptors have not been observed.

Caveolae Trafficking to Endoplasmic Reticulum and

Mitochondria
Recent advances in imaging and proteomics have uncovered
novel caveolae trafficking routes outside the classic endocytic
pathway. First, based on the observation of caveolae dependent
cholera toxin and autocrine motility factor accumulation in the
endoplasmic reticulum (ER) and Golgi, it was suggested that
caveolae are able to migrate from the cell surface to the ER
(Pelkmans et al., 2001, 2004; Le and Nabi, 2003). Additionally,
proteomics of isolated caveolar membrane domains showed an
increased amount of ER related proteins (McMahon et al., 2006).

Recently, it was shown that Cav1 impairs the formation of ER-
mitochondria contact sites and is involved in Drp1 mediated
mitochondria fusion (Bravo-Sagua et al., 2019). However, clear
evidence of Cav1 and/or caveolae originating from the plasma
membrane under these circumstances is lacking. Indeed, the
work of Bravo-Sagua et al. (2019) indicates a specific ER related
function of Cav1 independent of caveolae endocytosis.

Caveolae have been proposed to form specific ER membrane
contact sites. A detailed high resolution EM analysis of rat
smooth muscle cells indicated that the majority of caveolae
(either located at the plasma membrane or detached) are close
to the sarcoplasmic reticulum (SR) (Popescu et al., 2006).
The authors further detected electron densities in the caveolae
membrane reaching to the corresponding SR membrane and
containing potential tethers that establish membrane contact
sites. The same observation was found for mitochondria,
although caveolae-mitochondria contact sites are less abundant
(Popescu et al., 2006). Currently it is not known if caveolae
migrate from the plasma membrane to mitochondria. However,
previous studies showed that Cav1 is also found in mitochondria
(Li et al., 2001; Fridolfsson et al., 2012; Foster et al., 2020).

Caveolae Trafficking to Lipid Droplets
Caveolae trafficking to lipid droplets is of particular interest
for lipid homeostasis and metabolism. Initially, Cav1 and
independently Cav2, were found at lipid droplets. It was
suggested that Cav1 or Cav2 originated from the ER andmigrates
to lipid droplets because pharmacological inhibition of ER
vesicle transport was seen to block Cav translocation (Fujimoto
et al., 2001; Ostermeyer et al., 2001; Pol et al., 2001, 2004).
By overexpressing a Cav1 mutant leading to ER accumulation,
Cav1 re-locates to the lipid droplet coat, most likely during lipid
droplet formation (Ostermeyer et al., 2004; Pol et al., 2004).
The lipid droplet coat consists, in contrast to other membrane-
bound organelles, of a phospholipid monolayer, resulting in a
unique set of proteins targeted to this area (Walther and Farese,
2009; Kory andWalther, 2016). The recruitment and localization
of proteins directly from the cytosol to the lipid droplet coat
requires amphipathic helices to ensure correct localization (Kory
andWalther, 2016). Caveolins contain amphipathic lipid binding
domains and therefore are likely able to bind to lipid droplets
(Ariotti et al., 2015; Root et al., 2019).

Cav1 trafficking from the plasma membrane to lipid droplets
was first described in 3T3-L1 adipocytes using immunostaining,
EM, and biochemistry (Le Lay et al., 2006; Blouin et al., 2010).
Blouin et al. (2010) further detected Cavin1, EHD2 and semi-
carbazide-sensitive amine oxidase (SSAO, localizes within the
adipocyte caveolae domain, Souto et al., 2003) at the lipid droplet
coat indicating that not Cav1 alone but caveolae are recruited to
lipid droplets. Interestingly, Cav1 (most likely Cav2 as well) is
recruited to a specific lipid droplet subpopulation (Storey et al.,
2011). The isolation and purification of lipid droplets revealed
a Cav1 positive lipid droplet fraction that is also enriched in
Perilipin1, a protein protecting stored lipids within the droplets
against lipolysis (Sztalryd and Brasaemle, 2017). In contrast, Cav1
negative droplets showed an accumulation of ADRP (adipocyte
differentiation-related protein, Storey et al., 2011). Furthermore,
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Cav1 and Perilipin1 are able to form a complex, indicating that
Cav1 is involved in the regulation of lipolysis of the lipids stored
in the lipid droplets (Cohen et al., 2004b; Storey et al., 2011).

These data suggest that there is direct trafficking from
the plasma membrane. However, how this is carried out
and if Cav1 alone or caveolae vesicles are transferred is
currently not understood in mechanistic detail. Recent data
from Matthaeus et al. (2020) further supported this idea as
increased caveolae mobility and endocytosis resulted in increased
lipid droplet size and increased fatty acid uptake. Additionally,
lipid accumulationwithin caveolarmembrane domains increased
caveolae detachment (Shvets et al., 2015; Hubert et al., 2020b)
indicating the importance of this process. Based on these data, we
propose the following model. Caveolae may serve as lipid sensors
that accumulate specific lipids such as cholesterol, sphingolipids,
and fatty acids. By reaching a critical amount of lipids, the
stability of membrane-attached caveolae decreases and caveolae
detach. This sensing is followed by caveolae traffic to lipid
droplets. However, it is currently unclear how caveolae sense
the accumulation of lipids within their membrane domains, how
EHD2 disassembles, and how this scission is regulated. It is also
unclear if caveolae migrate as vesicles to the lipid droplet coat and
formmembrane contact sites (such as shown for other organelles,
reviewed by Olzmann and Carvalho, 2019; Thiam and Dugail,
2019; Henne, 2020), or if Cav1 alone is able to reach them.

Taken together, there is much data illustrating caveolae
internalization from the plasma membrane followed by
intracellular trafficking. Currently, the conventional pathway
is the best studied. Yet, proteomic approaches suggest caveolae
target to other organelles and these must be evaluated in detail.
Super resolution imaging techniques can help to track the global
movements of caveolae throughout cells. Besides the different
intracellular caveolae trafficking pathways, the initial steps, ATP
dependent EHD2 stabilization at the plasma membrane, and the
GTP dependent dynamin-based scission of the caveolar bulbs,
are all essential for caveolae internalization. Next, we discuss
the function and importance of the energy-dependent enzymes
including EHD2 and dynamin in these specific processes.

ATP DEPENDENT EHD2
OLIGOMERIZATION AT THE CAVEOLAR
NECK

How is EHD2 oligomerization and its effect on caveolae
plasma membrane stabilization and detachment regulated?
Recent structural, cellular, and physiological data indicated
that the ATP-dependent oligomerization of EHD2 is an
important regulator for caveolae traffic. Eps15 homologous
domain containing protein 2 (EHD2) and its related EHD
proteins belong to the dynamin protein family as they share
the same overall domain organization (Daumke et al., 2007).
In mammals, four EHD orthologs are found (EHD1-4) that
show distinct tissue-specific expression, localization, and
functions (Pohl et al., 2000; George et al., 2007). EHD1,
3 and 4 are observed at early and late endosomes and
EHD2 is located primarily at the caveolar neck (reviewed in

Naslavsky and Caplan, 2011; Bhattacharyya and Pucadyil, 2020).
All EHD proteins are able to bind to and bend phospholipid
membranes (Daumke et al., 2007; Melo et al., 2017; Deo et al.,
2018).

Structurally, EHD proteins share sequence similarity of up
to 82% (Pohl et al., 2000) supporting the idea that EHDs
could share a common function and lipid binding mechanism.
EHD1-4 contain a stalk or helical region that is involved in
membrane binding, a G-domain comprising the ATPase and
oligomerization domain, and the specific EH domain, a Eps15
homologous protein sequence (Figure 3A, Daumke et al., 2007;
Shah et al., 2014). EHD proteins are dimers which can be
activated after membrane recruitment followed by ATP binding
(Daumke et al., 2007; Hoernke et al., 2017; Melo et al., 2017).
Mechanistically, the opening of the EHD dimer by repositioning
of the EH domains results in the rearrangement of the stalk,
freeing it to bind to the lipid bilayer. Detailed studies using
EHD2 mutants in liposome binding assays accompanied with in
vivo analysis showed that residues F322 and K327 are essential
for correct membrane binding (Stoeber et al., 2012; Shah et al.,
2014). ATP binding induces the oligomerization of EHD proteins
resulting in liposome tubes that are decorated with EHD ring-like
oligomers (Daumke et al., 2007; Melo et al., 2017). The diameter
of these EHD tubes ranges between 20 and 80 nm indicating
that EHD2 could form a ring surrounding the caveolar bud
neck (Figure 3C). Ludwig et al. (2013) clearly localized EHD2
by immunogold labeling in EM section to the caveolar neck
(Morén et al., 2012; Ludwig et al., 2013). In support of this, high
resolution EM images show a distinct ring-like electron density
at the caveolar neck (Popescu et al., 2006; Richter et al., 2008). A
correlative imaging approach would be important to show that
this density is indeed EHD2.

Upon ATP hydrolysis, the EHD oligomer disassembles
and relocates from the caveolae membrane to the cytosol.
Importantly, the ATP-dependent oligomerization step of EHD2
is key to stabilizing EHD2 at caveolae. Specifically, EHD2
mutants without the ATPase domain fail to oligomerize, and
therefore fail to stabilize caveolae at the plasma membrane
(Morén et al., 2012; Stoeber et al., 2012; Matthaeus et al., 2020).
Furthermore, it was shown that in 3T3 fibroblasts EHD2 loss
can be rescued by other EHD proteins (Yeow et al., 2017).
However, a global EHD2 knockout mouse did not exhibit the
same observations in adipocytes, fibroblasts, or endothelial cells
(Matthaeus et al., 2019, 2020).

This raises the important question, why is EHD2, and
in particular the ATP-dependent oligomerization of EHD2,
essential for correct caveolae function and behavior? Several
cellular studies have shown an increased caveolae mobility,
endocytosis, and removal from the plasma membrane when the
EHD2 gene is deleted or its ATP function impaired (Morén et al.,
2012; Stoeber et al., 2012; Hoernke et al., 2017; Yeow et al., 2017).
Endocytosis of transferrin receptor was not impaired in EHD2
knockout or EHD2 overexpressing cells (Pekar et al., 2012),
highlighting the specific role of EHD2 in regulating caveolae
dependent endocytosis. Additionally, overexpression of EHD2
mutants lacking their lipid binding or ATPase function also
resulted in increased caveolae dynamics as a result of decreased
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FIGURE 3 | EHD2 and dynamin at the caveolar neck. (A) Crystal structure of EHD2 dimer bound with non-hydrolyzing AMPPNP (PDB 2QPT, Daumke et al., 2007).

(B) Crystal structure of nucleotide free dynamin dimer (PDB 3SNH, Faelber et al., 2011). (C) ATP and GTP dependent caveolae stabilization and detachment. After

caveolae formation, EHD2 oligomerizes in an ATP dependent manner in large rings at the neck of caveolae. Disassembly of EHD2 oligomers occurs after ATP

hydrolyzation, followed by dynamin recruitment to the caveolar neck and GTP dependent membrane scission. Membrane binding of EHD2 and dynamin results in

confirmational change in both proteins (membrane bound EHD2 PDB 5MTV, Melo et al., 2017; membrane bound, constricted dynamin PDB 6DLU, Kong et al., 2018).

caveolar membrane stabilization (Stoeber et al., 2012). In the last
few years, two cell based studies showed an involvement of EHD2
in lipid accumulation (Li et al., 2016; Morén et al., 2019). Li et al.
(2016) revealed an increased lipid droplet size in hepatocytes
lacking EHD2. The authors proposed that EHD2 together with
Rab10 and Ehbp1 is involved in lipolysis. Contrary, Moren
et al. (2019) observed that EHD2 silencing in 3T3-L1 derived
adipocytes reduced lipid droplet sizes. Additionally, Yeow et al.
(2017) and Torrino et al. (2018) observed increased vulnerability
to changes in membrane tension in EHD2 lacking fibroblasts or
HeLa cells.

The generation of an EHD2 knockout mouse model helped
to determine EHD2’s caveolae function in vivo. We observed
in mice that globally lacked EHD2 increased lipid droplet sizes
in various tissue types although the total number of lipid
droplets decreased (Matthaeus et al., 2020). Additionally, an
increase in fatty acid uptake was detected in EHD2 knockout
adipocytes and mouse embryonic fibroblasts. Detailed electron
microscopy and tomography further supported the idea that
EHD2 is essential for correct membrane stabilization of caveolae

as EHD2-lacking tissues contained large numbers of detached
caveolae (Matthaeus et al., 2019, 2020; Fan et al., 2020; Webb
et al., 2020). Additionally, we observed an increased detachment
of caveolae due to EHD2 removal resulting in reduced calcium
entry and a resultant lack of activated eNOS and NO generation
in endothelial cells. This lead to reduced blood vessel relaxation
in EHD2 knockout mice and reduced running wheel endurance
(Matthaeus et al., 2019). Taken together, these in vivo data clearly
indicate that EHD2 oligomerization at the caveolar neck is an
essential cell function with severe physiological consequences
when EHD2 is missing or its ATPase function is impaired.

GTP DEPENDENT DYNAMIN FACILITATED
MEMBRANE SCISSION OF CAVEOLAE

Caveolae detachment has been ascribed to dynamin catalyzed
membrane scission. This raises the question of how dynamin
drives fission of caveolae and how it is regulated. Dynamin is
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a well-known lipid binding GTPase that bends membranes and
catalyzes fission. Structurally, it contains the N-terminal GTPase
domain (G domain), followed by the central bundle signaling
element (BSE), the stalk region, and the pleckstrin homology
(PH) domain at the C-terminus (Figure 3B, Faelber et al., 2011).
The stalk domainmediates dimerization, larger oligomers further
include binding between BSE. Dynamin, with its 3 orthologs in
mammalians, is expressed in all cell types from early embryonic
time points on and is essential in clathrin mediated endocytosis
(Ferguson and De Camilli, 2012). In particular, Dyn1 is found
in the brain in high levels, Dyn3 in muscle, testis, brain and lung,
and Dyn2 is a ubiquitous isoform expressed in many cell types. In
clathrin mediated endocytosis, dynamin regulates the scission of
clathrin coated membrane pits from the plasma membrane after
coat assembly and elongation of the neck. However, dynamin
and its related proteins such as interferon-inducible myxovirus
resistance (Mx), Optic atrophy type 1 (Opa1) or Dynamin-
1 like protein (Dnm1l) are involved in various other cellular
processes within different organelles such as mitochondria fusion
(Ferguson and De Camilli, 2012; Daumke and Praefcke, 2016).

How does dynamin facilitate membrane scission at caveolae?
The scission of a phospholipid membrane requires the transition
of the chemical energy gained during GTP hydrolysis into
mechanical constriction to merge the lipid bilayers of the vesicle
neck (Daumke and Praefcke, 2016). It is proposed that the
hydrolysis of a few GTP molecules can provide the necessary
energy for scission (Morlot et al., 2012). Structurally, the
stalk region of dynamin forms ring-like oligomers surrounding
the membrane (Kong et al., 2018). Following GTP binding,
the GTPase domains dimerize, and GTP hydrolysis occurs
resulting in a conformational change within the dynamin
oligomer. This “power-stroke” is thought to pull the adjacent
dynamin filaments along each other and thereby constricting
the underlying membrane (Antonny et al., 2016; Daumke and
Praefcke, 2016). Indeed, several in vivo studies showed the GTP
dependent dynamin oligomerization and membrane scission at
clathrin coated pits (Takei et al., 1995; Iversen et al., 2003;
Grassart et al., 2014). Based on these results, it was concluded
that caveolae detachment from the plasma membrane is also
driven by dynamin. First, Schnitzer et al. (1996) showed a
GTP dependent caveolae scission in a cell free assay indicating
the involvement of a GTP handling enzyme (Schnitzer et al.,
1996). Independently, Oh et al. (1998) and Henley et al. (1998)
then described the GTP dependent caveolae internalization is
mediated by dynamin (Henley et al., 1998; Oh et al., 1998).
Furthermore, the involvement of dynamin was also observed
in caveolae dependent albumin transcytosis (Shajahan et al.,
2004). Importantly, overexpression of the non-GTP hydrolyzing
dynamin mutant (Dyn2-K44A) abolished caveolae mobility,
detachment, and trafficking from the plasma membrane in
several cell types (Pelkmans et al., 2001; Senju et al., 2011; Oh
et al., 2012). Taken together, these data indicated the involvement
of dynamin in caveolae scission and detachment.

Some previous studies struggled to clearly localize dynamin
to caveolar invaginations in different cell types. Using EM
immunogold labeling, however, Dyn2 localization in caveolae
was shown in kidney cells (Yao et al., 2005), and Dyn2

overexpressing MEFs or endothelial cells also showed
co-localization with Cav1 (Shajahan et al., 2004; Matthaeus
et al., 2020). The general difficulty of localizing dynamin could
be caused by the fact that dynamin might only assembles at
the caveolar neck shortly before internalization, followed by a
fast re-location into the cytosol. To overcome this issue, the
accumulation of non-hydrolyzing dynamin mutants at the
caveolar neck was used to visualize dynamin with STORM
microscopy (Platonova et al., 2015). Yao et al. (2005) could
further identify a specific binding interaction between Cav1
and Dyn2. The exact role of dynamin at caveola is, however,
still unclear.

Importantly, oligomerization of dynamin at the plasma
membrane can only occur when thin membrane tubes are
present. As previously described, EHD2 oligomerizes in rings
around lipid bilayers in diameters ranging from 20 to 80 nm.
Therefore, at the caveolar neck, we propose that EHD2 is key
to create the necessary membrane structure for correct dynamin
assembly and subsequent fission of caveolar invaginations (see
model in Figure 3C). It was proposed previously, that EHD
proteins are able to recruit dynamin to membrane tubes
(Jakobsson et al., 2011), indicating an interaction between
these two enzymes. However, based on the steric hindrance
at the caveolar neck due to the large EHD2 oligomer, we
suggest that before dynamin locates to the caveolae, EHD2
must start to disassemble (after ATP hydrolyzation) and
relocate to the cytosol. Then, dynamin would be recruited to
caveolae, followed by its oligomerization around the caveolar
neck. The GTP dependent power stroke of dynamin would
result in membrane scission. Later, detached caveolae would
migrate to other intracellular organelles and dynamin would
relocate to the cytosol. Further experiments, especially live
cell high resolution imaging, are needed to test the temporal
sequence of these events. Taken together, recent data shows
the importance of GTP-dependent dynamin regulation during
caveolae detachment. However, how these spatial and temporal
mechanisms operate at the caveolar neck is still unknown
and requires further study. Cleary, the interplay of EHD2 and
dynamin at the membrane neck of caveolae is of particular
interest for future work.

OTHER REGULATORS FOR CAVEOLAE
TRAFFICKING

Rab GTPases in Caveolae Internalization
and Trafficking
Besides dynamin and EHD2, several other GTP/ATP dependent
proteins were assigned roles in caveolae trafficking. Specifically,
Rab proteins have been linked with caveolae endocytosis. Rab
proteins are small Ras-like GTPases that switch between the
“on,” GTP bound—and the “off”—GDP bound—state and
therefore temporally and spatially regulate the recruitment
of various effector proteins such as vesicle coat proteins,
membrane fusion complexes or motor proteins (see review
Stenmark, 2009). The relatively high cytosolic GTP concentration
(∼0.5mM; Traut, 1994) allows a very fast exchange of GDP

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 January 2021 | Volume 8 | Article 614472

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Matthaeus and Taraska Caveolae Trafficking

with GTP securing the fast switching between the “off” and
“on” state. It can be ventured that local changes in the GTP
concentration might influence the activation of certain Rab
molecules and their binding affinity to corresponding effector
proteins. As Rab molecules are essential vesicle trafficking
regulators it was expected to detect Rabs also at caveolar
vesicles. Indeed, several studies focusing on caveolae endocytosis
revealed that caveolae trafficking depends on Rab5, Rab7, and
Rab11 (Pelkmans et al., 2004; Botos et al., 2008; Hayer et al.,
2010b; Shvets et al., 2015). There, the Rab proteins direct
the traffic of caveolae vesicles to early and late endosome
and lysosome. However, to date, no caveolar specific Rab
molecules were found which makes it challenging to study.
Novel techniques analyzing protein-protein interaction such
as SplitAPEX2 (Han et al., 2019) or fluorescence resonance
energy transfer (FRET) could help to detect caveolae specific
Rab molecules within distinct trafficking routes or organelles.
Additionally, caveolae specific Rabs would help to determine
the cellular implications for controlled caveolae trafficking at
specific organelles.

Regulation of Caveolae Internalization by
Tyrosine Kinases
The characteristic lipid environment of caveolar invaginations
leads to a specific set of membrane proteins including
ATP handling enzymes localized to the caveolar membrane.
One example is the distribution of Na/K-ATPase within
different plasma membrane domains. A non-pumping Na/K-
ATPase subpopulation is found in caveolae (Wang et al.,
2004; Liang et al., 2007). Further, a study revealed the
loss of Cav1 and caveolae at the plasma membrane after
knockdown of Na/K-ATPase (Cai et al., 2008). Additional
binding studies between purified Na/K-ATPase and Cav1
as well as cross-linking experiments demonstrated a direct
interaction although within a low molar stoichiometry (Yosef
et al., 2016; Nie et al., 2020). Knockdown of Na/K-ATPase
also resulted in increased Src levels at the plasma membrane
(Cai et al., 2008). It was shown previously that the tyrosine
kinase Src is able to bind Cav1 leading to phosphorylation
of the Cav1 residue tyrosine 14. After phosphorylation,
Cav1 disassembles from the plasma membrane and caveolae
internalization occurs (Parton et al., 1994; Lee et al., 2001).
Several studies identified Cav1 as a substrate for Src which
can be activated by various ligands and molecules, e.g.,
insulin or okadaic acid (Kiss and Botos, 2009), indicating
that the phosphorylation of Cav1 plays an important role in
caveolae internalization.

Besides Src, the tyrosine kinase Abl is also able to
phosphorylate Cav1 tyrosine 14 in response to oxidative
or tension stress (Sanguinetti and Corley Mastick, 2003).
Interestingly, Abl is involved in the crosstalk between
caveolae and stress fibers. Thereby, Abl together with the
stress fiber regulator mDia1 (formin homology protein)
and the F-BAR protein FBP17 regulates the formation and
stabilization of caveolae at the plasma membrane (Echarri
et al., 2012, 2019). Replica EM showing the cytosolic side

of the plasma membrane (such as in Figure 1) illustrate
that caveolae regularly locate in close proximity to actin
filaments. Indeed, Filamin A was found to connect Cav1
with actin (Stahlhut and Van Deurs, 2000). Several studies
showed that actin filaments are important for Cav1
and caveolae internalization, and that upon disruption
of actin polymerization intracellular Cav1 trafficking is
impaired (see detailed review, Echarri and Del Pozo,
2015). Additional, Pacsin2 and EHBP1 contain actin
binding domains, and thereby both proteins are able to
closely connect actin to caveolar membrane invaginations
(Guilherme et al., 2004; Kostan et al., 2014). Of note, both
proteins locate at the neck of caveolae suggesting that their
actin binding motif might be an important regulator for
caveolae mobility.

CONCLUSION AND OUTLOOK

Caveolae internalization is found in many cells and tissues.
Here, we summarized current concepts in caveolae trafficking
and its role in physiology. As discussed above, essential
steps during the internalization and migration are dependent
on ATP or GTP (see also summary Figure 2). In the past,
the small size of caveolae made it difficult to monitor
their intracellular movements. Therefore, the application of
recently developed high resolution live imaging methods
will enable the full elucidation of intracellular caveolae
trafficking throughout the cell. Novel imaging techniques
such as super resolution light imaging and its combination
with electron microscopy and tomography will allow for
future detailed investigations of the caveolae life cycle and
trafficking routes (Taraska, 2019). Also focus-ion beam scanning
electron microscopy (FIB-SEM) could help to further dissect
intracellular caveolae movement as this technique allows to
visualize complete cell volumes in the highest resolution.
A correlative approach to identify Caveolin and Cavin positive
membranes would help to identify caveolar vesicles in the
FIB-SEM stacks.

Of particular interest is the development or identification of
caveolae specific cargos and receptors that are only internalized
via caveolar endocytosis. This would allow caveolae-specific
intracellular routes to be monitored and further identify
novel factors involved in these pathways. New techniques
for identifying the protein-protein interactions will provide
additional insights in caveolae contact sites between various
organelles. Finding these caveolae contact sites will help to
determine how caveolae are involved in lipid metabolism
and diseases. Another largely unexplored aspect in caveolae
dynamics is the influence of local ATP/GTP concentrations.
These changes can occur due to hypoxia. Indeed, cells growing
under low oxygen levels show altered caveolae behavior. In
adipocytes, it was observed that loss of oxygen results in
decreased Cav1 expression and consequently reduced caveolae
number (Regazzetti et al., 2015; Varela-Guruceaga et al., 2018).
However, hypoxia in cancer cells and in the colon of the
mouse intestine led to increased Cav1 expression (Wang et al.,
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2012; Xie et al., 2014; Bourseau-Guilmain et al., 2016). The
oxygen sensitive transcription factor hypoxia-inducible factor
(HIF1) was assigned to cause the changes in Cav1 gene
expression (Wang et al., 2012; Xie et al., 2014; Bourseau-
Guilmain et al., 2016; Varela-Guruceaga et al., 2018). This
raises the possibility that caveolae could be sensitive to local
ATP/GTP levels due to oxygen and nutrient deficiencies. The
impact of low ATP levels on caveolae in cancer cells are of
particular interest as caveolae are proposed to be involved
in cancer progression. Taken together, energy requirements
in caveolae trafficking are an important regulator for cellular
metabolism and physiology. The extent of these mechanisms
are not yet fully understood. Future work aimed at unraveling
these questions will lead to a deeper understanding of the role
these small plasma membrane organelles play in both health
and disease.
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