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Abstract We propose a new turbulence closure model based on the budget equations for
the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising
the turbulent total energy: TTE=TKE+TPE) and vertical turbulent fluxes of momentum
and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take
into account the non-gradient correction to the traditional buoyancy flux formulation. The
proposed model permits the existence of turbulence at any gradient Richardson number,
Ri. Instead of the critical value of Richardson number separating—as is usually assumed—
the turbulent and the laminar regimes, the suggested model reveals a transitional interval,
0.1 < Ri < 1, which separates two regimes of essentially different nature but both turbulent:
strong turbulence at Ri � 1; and weak turbulence, capable of transporting momentum but
much less efficient in transporting heat, at Ri > 1. Predictions from this model are con-
sistent with available data from atmospheric and laboratory experiments, direct numerical
simulation and large-eddy simulation.
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168 S. S. Zilitinkevich et al.

1 Introduction

Most of practically-used turbulence closure models are based on the concept of downgradi-
ent transport. Accordingly the models express turbulent fluxes of momentum and scalars as
products of the mean gradient of the transported property and the corresponding turbulent
transport coefficient (eddy viscosity, KM , heat conductivity, K H , or diffusivity, K D). Fol-
lowing Kolmogorov (1941), turbulent transport coefficients are taken to be proportional to
the turbulent velocity scale, uT , and length scale, lT :

KM ∼ K H ∼ K D ∼ uT lT . (1)

Usually u2
T is identified with the turbulent kinetic energy (TKE) per unit mass, EK , and

is calculated from the TKE budget equation using the Kolmogorov closure for the TKE
dissipation rate:

εK ∼ EK/tT , (2)

where tT ∼ lT/uT is the turbulent dissipation time scale. This approach is justified when it
is applied to neutral stability flows, where lT can be taken to be proportional to the distance
from the nearest wall.

However, this method encounters difficulties in stratified flows (both stable and unsta-
ble). The turbulent Prandtl number PrT = KM/K H exhibits essential dependence on the
stratification and cannot be considered as constant. Furthermore, as follows from the bud-
get equations for the vertical turbulent fluxes, the velocity scale uT , which characterises the
vertical turbulent transport, is determined as the root mean square (r.m.s.) vertical velocity
uT ∼ √

Ez (where Ez is the energy of the vertical velocity fluctuations). In neutral stratifi-
cation Ez ∼ EK , which is why the traditional equation uT ∼ √

EK holds true. However, in
strongly stable stratification this equation is insufficiently accurate because of the stability
dependence of the anisotropy of turbulence Az ≡ Ez/EK , e.g., Az generally decreases with
increasing stability.

To reflect the effect of stratification, the turbulent length scales for the momentum, lT M ,
and heat, lT H , are taken to be unequal. As a result, the above-described closure scheme (for-
mulated by Kolmogorov for neutral stratification and well-grounded only in this case) loses
its constructiveness: the unsolved part of the problem is merely displaced from {KM , K H }
to {lT M , lT H }. In that case, the TKE budget equation becomes insufficient to determine
additional unknown parameters.

Numerous alternative turbulence closures have been formulated using the budget equations
for other turbulent parameters (in addition to the TKE) together with heuristic hypotheses and
empirical relationships. However no consensus has been reached (see overviews by Weng
and Taylor 2003; Umlauf and Burchard 2005).

In this study we analyse the effects of density stratification on turbulent energies and ver-
tical turbulent fluxes in stably stratified atmospheric (or oceanic) boundary layers, in which
the horizontal variations of the mean velocity and temperature are much weaker than the ver-
tical variations. The proposed theory provides realistic stability dependencies of the turbulent
Prandtl number, the vertical anisotropy, and the vertical turbulent length scale. Our work is
presented in meteorological terms, but all the results can be easily reformulated in terms of
water currents in oceans or lakes. In this case buoyancy is expressed through temperature
and salinity instead of temperature and humidity.

We consider a minimal set of the budget equations for the second-order moments, namely
equations for the vertical fluxes of buoyancy (proportional to the potential temperature) and
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Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows 169

momentum, the TKE and the turbulent potential energy (TPE), proportional to the mean
squared potential temperature fluctuation. In these equations we account for some com-
monly neglected effects but leave a more detailed treatment of the third-order transports and
the pressure–velocity correlations for future analysis. In particular, we advance the familiar
“return to isotropy” model in order to more realistically determine the stability dependence
of the vertical anisotropy, Az . We also take into account a non-gradient correction to the
traditional, downgradient formulation for the turbulent flux of potential temperature. This
approach allows us to derive a reasonably simple turbulence closure scheme including real-
istic energy budgets and stability dependence of PrT .

We consider the total (kinetic + potential) turbulent energy (TTE), derive the TTE budget
equation, and demonstrate that the TTE in stably stratified sheared flows does not completely
decay even in very strong static stability. This conclusion, which is deduced from the general
equations independently of the concrete formulation for the turbulent length scale, refutes
the widely accepted concept of the critical Richardson number.

For the reader’s convenience we recall that the gradient Richardson number, Ri, is defined
as the squared ratio of the Brunt–Väisälä frequency, N , to the velocity shear, S:

Ri =
(

N

S

)2

, (3a)

S2 =
(

∂U

∂z

)2

+
(

∂V

∂z

)2

, (3b)

N 2 = β
∂�

∂z
, (3c)

where z is the vertical coordinate, U and V are the mean velocity components along the
horizontal axes x and y,� is the mean potential temperature, β = g/T0 is the buoyancy
parameter, g = 9.81 m s−1 is the acceleration due to gravity, and T0 is a reference absolute
temperature. As originally proposed by Richardson (1920), the Richardson number quanti-
fies the effect of static stability on turbulence. Subsequent researches in the theory of stably
stratified turbulent flows focussed on the question whether or not stationary turbulence can
be maintained by the velocity shear at very large Richardson numbers.

A widely accepted opinion is that turbulence decays when Ri exceeds some critical value,
Ric (with the frequently quoted estimate of Ric = 0.25). However, the concept of a critical Ri
was neither rigorously derived from basic physical principles nor demonstrated empirically;
indeed, it contradicts long standing experimental evidence.

It is worth emphasizing that turbulence closure models based on the straightforward appli-
cation of the TKE budget equation and Kolmogorov’s closure hypotheses, Eqs. (1) and (2),
imply the existence of Ric. In practical atmospheric modelling these closures are not accept-
able. In particular, they lead to unrealistic decoupling of the atmosphere from the underlying
surface when the Richardson number in the surface layer exceeds Ric. Since the milestone
study of Mellor and Yamada (1974), in order to prevent the undesirable appearance of Ric,
turbulence closures in practical use have been equipped with correction coefficients specify-
ing the ratios KM (uT lT )−1 and K H (uT lT )−1 in the form of different single-valued functions
of Ri. Usually these functions are not derived in the context of the closure in use, but are either
determined empirically or taken from independent theories. Using this approach, modellers
ignore the fact that corrections could be inconsistent with the formalism of the basic closure
model.
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170 S. S. Zilitinkevich et al.

2 Reynolds equations and budget equations for second moments

We consider atmospheric flows in which typical variations of the mean wind velocity
U = (U1, U2, U3) = (U, V, W ) and potential temperature � (or virtual potential tem-
perature involving specific humidity) in the vertical direction [along the x3 (or z) axis] are
much larger than in the horizontal direction [along the x1, x2 (or x, y) axes], so that the terms
proportional to their horizontal gradients in the budget equations for turbulent statistics can
be neglected. � is defined as � = T (P0/P)1−1/γ , where T is the absolute temperature, P is
the pressure, P0 is its reference value, and γ = cp/cv = 1.41 is the ratio of specific heats.

We also assume that the vertical scale of motions (which is limited to the height scale
of the atmosphere or the ocean, H ∼ 104 m) is much smaller than the horizontal scale, so
that the mean flow vertical velocity is typically much smaller than the horizontal velocity.
In this context, to close the Reynolds equations we need only the vertical component, Fz ,
of the potential temperature flux, Fi , and two components of the Reynolds stresses, τi j , that
represent the vertical turbulent flux of momentum: τ13 and τ23.

The mean flow is determined by the momentum equations:

DU1

Dt
= f U2 − 1

ρ0

∂ P

∂x
− ∂τ13

∂z
, (4)

DU2

Dt
= − f U1 − 1

ρ0

∂ P

∂y
− ∂τ23

∂z
, (5)

and the thermodynamic energy equation:

D�

Dt
= −∂ Fz

∂z
+ J, (6)

where D/Dt = ∂/∂t + Uk∂/∂xk, τi j = 〈
ui u j

〉
, Fi = 〈uiθ〉, t is the time, f = 2	 sin ϕ,

with 	i the earth’s rotation vector parallel to the polar axis (|	i | ≡ 	 = 0.76 × 10−4 s−1),
ϕ is the latitude, ρ0 is the mean density, J is the heating/cooling rate (J = 0 in adiabatic
processes), P is the mean pressure, u = (u1, u2, u3) = (u, v, w) and θ are the velocity
and potential–temperature fluctuations. The angle brackets denote the ensemble average [see
Holton (2004) or Kraus and Businger (1994)].

The budget equations for the TKE, EK = 1
2 〈ui ui 〉, the “energy” of the potential tempera-

ture fluctuations, Eθ = 1
2

〈
θ2

〉
, the potential temperature flux, Fi = 〈ui θ〉 [with the vertical

component F3 = Fz = 〈wθ〉], and the Reynolds stress τi j = 〈
ui u j

〉
[with the components

τi3 = 〈uiw〉 (i = 1, 2) representing the vertical flux of momentum] read (see, e.g., Kaimal
and Finnigan (1994), Kurbatsky (2000) and Cheng et al. (2002)):

DEK

Dt
+ ∇ · �K = −τi j

∂Ui

∂x j
+ βFz − εK (7a)

or approximately

DEK

Dt
+ ∂�K

∂z
≈ −τi3

∂Ui

∂z
+ βFz − εK , (7b)

DEθ

Dt
+ ∇ · Φθ = −Fz

∂�

∂z
− εθ , (8a)

123



Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows 171

or approximately

DEθ

Dt
+ ∂�θ

∂z
= −Fz

∂�

∂z
− εθ , (8b)

DFi

Dt
+ ∂

∂x j
�

(F)
i j = βi

〈
θ2〉 + 1

ρ0
〈θ∇i p〉 − τi j

∂�

∂z
δ j3 − Fj

∂Ui

∂x j
− ε

(F)
i , (9a)

and for F3 = Fz

DFz

Dt
+ ∂

∂z �F = β
〈
θ2

〉 + 1
ρ0

〈
θ ∂

∂z p
〉 − 〈

w2
〉

∂�
∂z − ε

(F)
z

≈ Cθβ
〈
θ2

〉 − 〈
w2

〉
∂�
∂z − ε

(F)
z , (9b)

Dτi j

Dt
+ ∂

∂xk
�

(τ)
i jk = −τik

∂U j

∂xk
− τ jk

∂Ui

∂xk
+

[
β(Fjδi3 + Fiδ j3) + Qi j − ε

(τ)
i j

]
(10a)

and for τi3 (i = 1, 2)

Dτi3

Dt
+ ∂

∂z
�

(τ)
i = − 〈

w2〉 ∂Ui

∂z
−

[
−βFi − Qi3 + ε

(τ)
i3

]
≈ −〈w2〉∂Ui

∂z
− εi3, (10b)

where βi = βei and e is the vertical unit vector, Fi = 〈ui θ〉 (i = 1, 2) are the horizontal
fluxes of potential temperature, −τi j∂Ui/∂x j is the TKE production rate, and δi j is the unit
tensor (δi j = 1 for i = j and δi j = 0 for i 	= j).

Here, �K , �θ , etc. are the third-order moments representing the turbulent transports of
the TKE and the “energy” of potential temperature fluctuations:

ΦK = 1
ρ0

〈p u〉 + 1
2

〈
u2 u

〉
, that is �K = 1

ρ0
〈p w〉 + 1

2

〈
u2 w

〉
, (11a)

Φθ = 1
2

〈
θ2 u

〉
, that is �θ = 1

2

〈
θ2 w

〉
, (11b)

and the turbulent transports of the fluxes of potential temperature and momentum:

�
(F)
i j = 1

2ρ0
〈p θ〉 δi j + 〈

ui u j θ
〉
, �

(F)
33 = �F = 1

2ρ0
〈p θ〉 + 〈

w2 θ
〉
, (12)

�
(τ)
i jk = 〈

ui u j uk
〉 + 1

ρ0

(〈pui 〉 δ jk + 〈
pu j

〉
δik

)
, (13a)

�
(τ)
i33 = �

(τ)
i = 〈

uiw
2〉 + 1

ρ0
〈pui 〉 , (i = 1, 2). (13b)

Qi j are correlations between the fluctuations of pressure, p, and the velocity shears:

Qi j = 1

ρ0

〈
p

(
∂ui

∂x j
+ ∂u j

∂xi

)〉
. (14)

In the above equations, εk , ε
(τ)
i j , εθ and ε

(F)
i are operators including the molecular transport

coefficients:

εK = ν

〈
∂ui

∂xk

∂ui

∂xk

〉
, ε

(τ)
i j = 2ν

〈
∂ui

∂xk

∂u j

∂xk

〉
, (15a)

εθ = −κ 〈θ � θ〉 , ε
(F)
i = −κ (〈ui � θ〉 + Pr 〈θ � ui 〉) , (15b)
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where ν is the kinematic viscosity, κ is the temperature conductivity, and Pr = ν/κ is the
Prandtl number. Of these terms, εK , ε

(τ)
i i (that is the diagonal elements ε

(τ)
11 , ε

(τ)
22 , ε

(τ)
33 ), εθ

and ε
(F)
i are essentially positive and represent the dissipation rates for EK , τi i , Eθ and F (F)

i ,
respectively. Following Kolmogorov (1941), they are taken to be proportional to the ratios
of the dissipating statistical moment to the turbulent dissipation time scale, tT :

εK = EK

CK tT
, ε

(τ)
i i = τi i

CK tT
, εθ = Eθ

CP tT
, ε

(F)
i = Fi

CF tT
, (16)

where CK , CP and CF are dimensionless constants.
The physical mechanisms of dissipation of the non-diagonal components of the Reynolds

stress, τi j (i 	= j), are more complicated. The terms ε
(τ)
i j = 2ν

〈
∂ui
∂xk

∂u j
∂xk

〉
in Eq. (10b) are

comparatively small and are not even necessarily positive, whereas the dissipative role is to a
large extent performed by the pressure-shear correlations and the horizontal turbulent trans-
port of the potential temperature. Moreover, our analysis does not account for the vertical
transport of momentum (that is for the contribution to τi3) due to internal gravity waves [see,
e.g., Sect. 9.4 in Holton (2004)]. Leaving the detailed analyses of the τi3 budget for future
work, we now introduce the following “effective dissipation rate” for the Reynolds stress:

εi3(eff) ≡ ε
(τ)
i3 − βFi − Qi3 + (unaccounted factors), i = 1, 2; (17)

and apply to it the Kolmogorov closure hypothesis whereby εi3(eff) ∼ τi3/tτ , and tτ is an

“effective dissipation time scale” [the term ε
(τ)
i3 is estimated as ε

(τ)
i3 ∼ O(Re−1/2) and can be

neglected]. Accounting for the difference between tτ and the Kolmogorov dissipation time
scale, tT [see Eq. (16)], our effective dissipation rates become

εi3(eff) = τi3

�τ tT
, (18)

where �τ = tτ /tT is an empirical dimensionless coefficient. There are no grounds a prior
to assume that this coefficient is constant. Coefficient �τ can depend on the static stability
but is neither zero nor infinite, and it is also conceivable that this stability dependence is
monotonic.

In further analysis we employ the approximate version of Eq. (9b). As shown in Appendix
A, the second term on the r.h.s. of Eq. (9b), namely ρ−1

0 〈θ∂p/∂z〉, is essentially negative and
scales as β

〈
θ2

〉
. On these grounds, in its approximate version the sum β

〈
θ2

〉+ρ−1
0 〈θ∂p/∂z〉

is replaced by Cθβ
〈
θ2

〉
, where Cθ < 1 is an empirical dimensionless constant.

3 Turbulent energies

We first consider the concept of turbulent potential energy (TPE). Using the state equation
and the hydrostatic equation, the density and the buoyancy in the atmosphere are expressed
through potential temperature, θ , and specific humidity, q (in the ocean, through θ and salin-
ity, s). These variables are adiabatic invariants that are conserved in the vertically displaced
portions of fluid, so that the density is also conserved. This allows us to determine density
fluctuations, ρ′ = (∂ρ/∂z)δz, and the fluctuations of potential energy per unit mass:

δEP = g

ρ0

z+δz∫
z

ρ′ dz = 1

2

b′2

N 2 . (19)
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Let us consider the thermally stratified atmosphere, where the buoyancy, b, is expressed
through the potential temperature, b = βθ . Consequently the TPE is proportional to the
energy of the potential temperature fluctuations:

E p =
(

β

N

)2

Eθ = 1

2

(
β

N

)2 〈
θ2〉 . (20)

Then by multiplying Eq. (8b) by (β/N )2 = (∂�/∂z)−1 and assuming that N changes only
slowly compared to turbulent variations we arrive at the following TPE budget equation1:

DEP

Dt
+ ∂

∂z
�P = −βFz − εP = −βFz − EP

CP tT
, (21)

where �P = (β/N )2�θ and εP = (β/N )2εθ . The term βFz appears in Eqs. (7b) and (21)
with opposite signs and describes the energy exchange between TKE and TPE.

The sum of the TKE and TPE is simply the total turbulent energy (TTE):

E = EK + EP = 1

2

(〈
u2〉 +

(
β

N

)2 〈
θ2〉

)
, (22)

and the TTE budget equation is immediately derived by summing up Eqs. (7b) and (21).
Generally speaking, the time-scale constants CK and CP in Eq. (16), which characterise
the kinetic and the potential energy dissipation rates, can differ. Here, for simplicity, we use
CK = CP . Then the TTE budget equation becomes

DE

Dt
+ ∂

∂z
�T = −τi3

∂Ui

∂z
− E

CK tT
, (23)

where �T = �K + �P is the TTE vertical flux.
In the steady state, Eq. (23) reduces to a simple balance between the TTE production =

τ S (where τ 2 = τ 2
13 + τ 2

23) and the TTE dissipation ∼ Et−1
T , which yields E ∼ τ StT . In

Section 5 we demonstrate that for a very large Ri the ratios τ/E, EK /E and Ez/EK tend to
become non-zero constants. In that case estimating tT through the turbulent length scale, lz ,
as tT ∼ lz E−1/2

z ∼ lz E−1/2 yields an asymptotic large-Ri estimate, E ∼ (lz S)2 > 0. This
reasoning does not allow the existence of the critical Richardson number.

As a matter of interest, traditional analyses of the turbulent energy have been basically
limited to using TKE budget, Eq. (7b). Equation (8b) for the squared potential temperature
fluctuations, although it is well-known for decades, has been ignored in the operationally
used turbulent closure models. Only rather recently, Eθ has been treated in terms of the TPE,
see Dalaudier and Sidi (1987), Hunt et al. (1988), Canuto and Minotti (1993), Schumann
and Gerz (1995), Hanazaki and Hunt (1996,2004), Keller and van Atta (2000), Stretch et al.
(2001), Canuto et al. (2001), Cheng et al. (2002), Luyten et al. (2002, p. 257), Jin et al. (2003),
Umlauf (2005) and Rehmann and Hwang (2005). Zilitinkevich (2002) employed the TKE
and the TPE budget equations on equal terms to derive an energetically consistent turbulent
closure model, avoiding the traditional hypothesis K H ∼ KM ∼ EK tT (which leads to a
dead end, at least in stable stratification). All three budgets, for TKE, TPE and TTE have
been considered by Canuto and Minotti (1993) and Elperin et al. (2002).

1 Alternatively the TPE budget equation can be derived from the equation for the fluctuation of buoyancy,
b, namely, by multiplying this equation by bN−2, and then applying statistical averaging. It follows then that
Eq. (21) holds true independently of the assumption that N changes slowly.
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4 Local model for the steady-state, homogeneous regime

4.1 Anisotropy of turbulence

In this section we consider the equilibrium turbulence regime and neglect the third-order
transport terms, so that the left-hand sides (l.h.s.) in all budget equations become zero. We
limit our analysis to boundary-layer type flows, in which the horizontal gradients of the mean
velocity and temperature are negligibly small. For these conditions the TKE production rate
becomes

� = −τ · ∂U
∂z

= τ S, (24)

where τ = (τxz, τyz, 0), and τ ≡ |τ|. It goes without saying that � is determined differently
in other types of turbulent flows, in particular in the wave boundary layer below the ocean
surface or in the capping inversion layer above the long-lived atmospheric stable bound-
ary layer, where the TKE is at least partially produced by the breaking of surface waves
in water or internal gravity waves in the atmosphere. Note that in the laboratory conditions
these mechanisms are similar to the oscillating-grid generation of turbulence rather than to
turbulence generation by shear.

Taking CP = CK [see discussion of Eq. (23) in Sect. 3], Eqs. (19)–(23) yield the following
expressions for the turbulent energies:

E = CK tT �, (25a)

EP = −CK tT βFz = ERi f , (25b)

EK = CK tT (� + βFz) ≡ CK tT �(1 − Ri f ) = E(1 − Ri f ), (25c)

where Ri f is the familiar flux Richardson number defined as the ratio of the TKE consumption
needed for overtaking buoyancy forces to the TKE production by the velocity shear:

Ri f ≡ −βFz

�
= Ri

PrT
= EP

E
. (26)

The above analysis implies that Ri f is then the ratio of TPE to TTE, a fact that has been over-
looked until recently.2 Ri f is equal to zero in neutral stratification, monotonically increases
with increasing stability, but obviously cannot exceed unity. Hence, for very strong static sta-
bility (at Ri → ∞) it must approach a non-zero, positive limit, Ri∞f < 1. This conclusion by
no means supports the existence of the critical gradient Richardson number. Indeed, Ri f is an
internal parameter that is controlled by turbulence in contrast to Ri = (β∂�/∂z)/(∂U/∂z)2,
which is an “external” parameter that characterises the mean flow.

It is worth recalling that the key parameter characterising vertical turbulent transports
is the TKE of the vertical velocity fluctuations, Ez = 1

2

〈
w2

〉
, rather than the full TKE. In

order to determine Ez , we need to consider all three budget equations (10a) for the diagonal
Reynolds stresses, τ11 = 2E1 = 2Ex = 〈

u2
〉
, τ22 = 2E2 = 2Ey = 〈

v2
〉

and τ33 = 2E3 =
2Ez = 〈

w2
〉
. In the steady state these budget equations become

Ei

CK tT
= −τi3

∂Ui

∂z
+ 1

2
Qii , i = 1, 2, (27a)

Ez

CK tT
= E3

CK tT
= βFz + 1

2
Q33. (27b)

2 Taking into account that CP and CK can differ, Ri f is proportional rather than equal to EP/E .
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The sum of the pressure-velocity shear correlation terms,
∑

Qii = ∑
ρ−1

0 〈p∂ui/∂xi 〉, is
zero because of the continuity equation,

∑
∂ui/∂xi = 0. Hence, they are neither productive

nor dissipative; they simply describe the conversion of the energy of “rich” components into
the energy of “poorer” components.

In order to determine Q11, Q22 and Q33, we generalize the familiar “return-to-isotropy”
hypothesis as follows:

Q11 = − 2Cr

3CK tT
(3E1 − EK �1), (28a)

Q22 = − 2Cr

3CK tT
(3E2 − EK �2), (28b)

Q33 = − 2Cr

3CK tT
(3E3 − EK �3). (28c)

Here, Cr and �i (i = 1, 2, 3) are dimensionless empirical coefficients; Cr accounts for
the difference between the relaxation-time and the dissipation-time scales (as a first approx-
imation, we take these two time scales to be proportional, tr ∼ tT , so that Cr = tr/tT =
constant); �i govern redistribution of TKE between the components. When �i = 1 the above
relations reduce to their original form (Rotta 1951) and are known to be a good approximation
for neutrally stratified flows. In stable stratification, we need to leave room for their possible
stability dependence. As a first approximation, we assume

�i = 1 + Ci Ri f , i = 1, 2, 3, (29)

where Ri f is the flux Richardson number, and Ci are empirical constants. Their sum must
be zero, C1 + C2 + C3 = 0, in order to satisfy the condition

∑
Qii = 0 (which is needed

to guarantee that EK = E1 + E2 + E3). Linear functions of Ri f on the r.h.s. of Eq. (29)
are taken as simple approximations providing the only possible (from the physical point of
view) finite, non-zero limits: �i = 1 at Ri = 0, and �i → 1 + Ci Ri∞f at Ri → ∞.

Because the energy exchange between the horizontal components of TKE, E1 and E2,
is not directly affected by the stable stratification, we take the first two energy-exchange
constants to be equal, C1 = C2. Then, the condition C1 + C2 + C3 = 0 implies that only
one of the three constants is independent and C1 = C2 = − 1

2 C3.
Equations (27)–(28) yield

Ei = Cr

3(1 + Cr )
EK �i − CK

1 + Cr
tT τi3

∂Ui

∂z
, i = 1, 2, (30a)

Ez = Cr

3(1 + Cr )
EK �3 + CK

1 + Cr
tT βFz . (30b)

In the plain-parallel neutral boundary layer with U = (U, 0, 0), Eqs. (30a) and (30b) reduce
to

Ex

EK
= 3 + Cr

3(1 + Cr )
, (31a)

Ey

EK
= Ez

EK
= Cr

3(1 + Cr )
. (31b)

Given the vertical component of TKE, Ez , the turbulent dissipation time scale, tT = lT E−1/2
K ,

can alternatively be expressed through the vertical turbulent length scale lz :

tT = lz

E1/2
z

. (32)
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Then eliminating tT from Eq. (25c) and Eq. (30b), and substituting Eq. (29) for �3 yields

Ez =
[

CK Cr�3

3(1 + Cr )

(
� +

(
3

Cr�3
+ 1

)
βFz

)
lz

]2/3

, (33a)

�3 = 1 + C3Ri f . (33b)

This formulation recovers the traditional return-to-isotropy formulation when C3= 0.
In order to close the system, the horizontal components of the TKE, Ex and Ey , are not

required. We leave the discussion of these components to a separate paper, in which our
closure is extended to passive scalars and applied to turbulent diffusion.

4.2 Vertical turbulent fluxes of momentum and potential temperature

Of the non-diagonal Reynolds stresses we consider only those representing the vertical fluxes
of momentum τ13 = τxz = 〈uw〉 and τ23 = τyz = 〈vw〉 which are needed to close the
momentum equations (4)–(5) and are determined by Eq. (10b). In the steady state, using Eqs.
(17)–(18) for the effective Reynolds-stress dissipation rate, we obtain the following relation
for the non-diagonal Reynolds stresses:

τi3 = −2�τ E1/2
z lz

∂Ui

∂z
. (34)

Likewise, of the three components of the potential-temperature flux, we consider only the
vertical flux F3 = Fz that is needed to close the thermodynamic energy Equation (6). The
vertical flux Fz is determined by Eq. (9b). Taking βEθ = (N 2/β)EP = −CK N 2lz Fz/E1/2

z

[after Eqs. (25b) and (32)], the steady-state version of Eq. (9b) becomes

Fz = − 2CF E1/2
z lz

1 + 2CθCF CK (Nlz)2 E−1
z

(
∂�

∂z

)
. (35)

Substituting here N 2 = β∂�/∂z shows that Fz depends on ∂�/∂z weaker than linearly
and at ∂�/∂z → ∞ tends to a finite limit:

Fz,max = − E3/2
z

CθCK βlz
. (36)

It follows then that Fz in a turbulent flow cannot be considered as a given external param-
eter. This conclusion is consistent with our reasoning in Sect. 4.1 that the flux Richardson
number Ri f = −βFz(τ S)−1 is an internal parameter of turbulence that cannot be arbitrarily
prescribed. According to Eq. (36), the maximum value of the buoyancy flux βFz , in the
strong stability limit, is proportional to the dissipation rate, E3/2

z l−1
z , of the energy of vertical

velocity fluctuations.3

Equations (34) and (35) allow us to determine the eddy viscosity and conductivity:

KM ≡ −τi3

∂Ui/∂z
= 2�τ E1/2

z lz, (37a)

K H ≡ −Fz

∂�/∂z
= 2CF E1/2

z lz

1 + 2CθCF CK (Nlz)2 E−1
z

. (37b)

3 A principally similar analysis of the budget equation for Fz has been performed by Cheng et al. (2002).
Their Eq. (15i) implies the same maximum value of Fz as our Eq. (36). It worth noting that Eq. (35) imposes
an upper limit on the downward heat flux in the deep ocean (which is known to be a controlling factor of the
rate of the global warming).
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Consequently, the Kolmogorov closure hypothesis applied to the effective Reynolds-stress
dissipation rate, Eqs. (17)–(18), yields the eddy-viscosity formulation, Eq. (37a), basically
similar to the traditional formulation, Eq. (1), whereas Eq. (37b) for eddy conductivity differs
essentially from this formulation.

It may appear that our derivation of Eq. (37a) essentially depends on the hypothetical
concept of the effective dissipation rate, Eqs. (17)–(18). Actually we employ this merely for
the reader’s convenience, to avoid overly complex derivations. Principally, the same result,
namely the downgradient momentum-flux formulation equivalent to Eqs. (34) and (37a),
follows from analyses of the budget equations for the Reynolds stresses in the k-space using
the familiar “τ -approximation” (see, e.g., Elperin et al. 2002, 2006).

Recall now that �τ is a dimensionless, non-zero, bounded coefficient that can only mono-
tonically depend on the static stability [see Eqs. (17)–(18) and their discussion in Sect. 2].
Let us approximate the stability dependence of �τ by the following linear function of the
flux Richardson number, Ri f :

�τ = Cτ1 + Cτ2Ri f , (38)

where Cτ1 and Cτ2 are dimensionless constants to be determined empirically. Equation (38)
provides the only physically meaningful, finite, non-zero limits, namely, �τ = Cτ1 at Ri = 0,
and �τ → Cτ1 + Cτ2Ri∞f at Ri → ∞ [cf. our argument in support of Eq. (29)].

4.3 Turbulent Prandtl number and other dimensionless parameters

The system of Eq. (33a)–(35), although unclosed until we determine the vertical turbulent
length scale lz , reveals a “partial invariance” with respect to lz and allows determining the
turbulent Prandtl number, PrT , the flux Richardson number, Ri f , and other dimensionless
characteristics of turbulence in the form of universal functions of the gradient Richardson
number, Ri. Obviously such universality is relevant only to the steady-state homogeneous
regime. In non-steady, heterogeneous regimes, all these characteristics are not single-valued
functions of Ri.

Recalling that � = KM S2 and Ri f ≡ −βFz/�, Eqs. (33a) and (37a) give

Ez

(Slz)2 = �(Ri f ) ≡ 2CK Cr�3�τ

3(1 + Cr )

[
1 −

(
3

Cr�3
+ 1

)
Ri f

]
, (39)

where �3 and �τ are linear functions of Ri f given by Eqs. (33b) and (38). Then dividing
KM [determined by Eq. (37a)] by K H [determined by Eq. (37b)] and expressing Ez through
Eq. (39) yields the following surprisingly simple expressions:

PrT ≡ KM

K H
= Ri

Ri f
= �τ

CF
+ 3(1 + Cr )Cθ

Cr�3
Ri

[
1 −

(
3

Cr�3
+ 1

)
Ri f

]−1

, (40)

and

1

Ri
= CF�−1

τ

Ri f
− 3CF (1 + Cr )Cθ�

−1
τ

Cr�3(1 − Ri f ) − 3Ri f
, (41)

which do not include lz . Equation (41) together with Eqs. (33b) and (38) specify Ri as a single-
valued, monotonically increasing function of Ri f determined in the interval 0 < Ri f < Ri∞f ,
where Ri∞f is given by Eq. (45). Therefore, the inverse function, namely,

Ri f = �(Ri), (42)

is a monotonically increasing function of Ri, changing from 0 at Ri = 0 to Ri∞f at Ri → ∞.
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According to the above equations, the Ri dependencies of Ri f and PrT (which is also
a monotonically increasing function of Ri) are characterised by the following asymptotic
limits:

PrT ≈ �
(0)
τ

CF
+

(
3Cθ (1 + Cr )

Cr
+ Cτ2

CF

)
Ri → Pr(0)

T = �
(0)
τ

CF
, (43a)

Ri f ≈ CF

�
(0)
τ

Ri at Ri � 1, (43b)

PrT ≈ 1
Ri∞f

Ri, (44a)

Ri f → Ri∞f at Ri  1, (44b)

where

Ri∞f = Cr�
∞
3

Cr�
∞
3 + 3[1 + Cθ (1 + Cr )] , (45)

and the superscripts “(0)” and “∞” mean “at Ri = 0” and “at Ri→ ∞”, respectively.
Equations (33a)–(35) allow us to determine, besides PrT , three other dimensionless param-

eters the vertical anisotropy of turbulence:

Az ≡ Ez

EK
= Cr�3

3(1 + Cr )

[
1 −

(
3

Cr�3
+ 1

)
Ri f

]
(1 − Ri f )

−1, (46)

the squared ratio of the turbulent flux of momentum to the TKE (which characterises the
correlation between vertical and horizontal velocity fluctuations):

(
τ

EK

)2

= 2�τ Az

CK (1 − Ri f )
, (47)

and the ratio of the squared vertical flux of potential temperature to the product of the TKE
and the “energy” of the potential temperature fluctuations:

F2
z

EK Eθ

= 2�τ Az

CK PrT
. (48)

Equations (41), (46)–(48) determine the Ri dependencies of Az, τ
2 E−2

K and F2
z (EK Eθ )

−2,
which are characterised by the following asymptotic limits:

Az → A(0)
z = Cr

3(1 + Cr )
, (49a)

(
τ

EK

)2

→ 2�
(0)
τ A(0)

z

CK
, (49b)

F2
z

EK Eθ

→ 2CF A(0)
z

CK
at Ri � 1, (49c)
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Az → A∞
z = Cθ Ri∞f (1 − Ri∞f )

−1
, (50a)(

τ

EK

)2

→ 2�∞
τ A∞

z

CK (1 − Ri∞f )
, (50b)

F2
z

EK Eθ

→ 2�∞
τ A∞

z

CK Pr∞T
at Ri  1. (50c)

It must be noted that the turbulent velocity scale in Eqs. (34)–(37a) is
√

Ez rather than
√

EK .
However, in a number of currently used turbulence closure models the stability dependence
of Az = Ez/EK is neglected and

√
EK is taken as an ultimate velocity scale to characterise

the vertical turbulent transports. This is done unfortunately without serious theoretical or
experimental grounds. On the contrary, Eq. (46) implies an essential Ri dependence of Az ,
which is in agreement with currently available data [see Mauritsen and Svensson (2007) and
our data analysis in Sect. 5 below].

4.4 Vertical turbulent length scale

Two basic factors impose limits on the vertical turbulent length scale, lz , in geophysical flows:
the height over the surface (the geometric limit) and the stable stratification.

In neutral stratification, lz is restricted by the geometric limit4:

lz ∼ z. (51)

For the strong stable stratification limit, different formulations have been proposed. Monin
and Obukhov (1954) proposed the following length scale widely used in boundary-layer
meteorology:

L ≡ τ 3/2

−βFz
= τ 1/2

SRi f
. (52)

Our local closure model is consistent with this limit: Eqs. (34), (39) and (52) yield

lz = Ri f

(2�τ )1/2�1/4 L . (53)

Furthermore any interpolation formula for lz linking the limits lz ∼ z and lz ∼ L should
have the form

lz = z�l(Ri f ), (54)

where �l is a function of Ri f .

Well-known alternatives to L are the Ozmidov scale: ε
1/2
K N 3/2 (Ozmidov 1990); the local

energy balance scale: E1/2
z N−1 (e.g., Table 3 in Cuxart et al. 2006); and the shear sheltering

scale: E1/2
z S−1 (Hunt et al. 1985, 1988). Using our local closure equations (Sect. 4.1–4.3)

the ratio of each of these scales to L can be expressed through a corresponding function
of Ri f . Hence, any interpolation linking the neutral stratification limit, lz ∼ z, with all the
above limits will still have the same form as Eq. (54).

4 In rotating fluids, the direct effect of the angular velocity, 	, on turbulent eddies is characterised by the

rotational limit, E1/2
z /	. In geophysical, stably stratified flows it has only a secondary importance. We leave

the discussion of this effect for future work.
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Consequently, Eq. (54) represents a general formulation for the vertical turbulent length
scale in the steady-state, homogeneous, stably stratified flows. In other words, the stabil-
ity dependence of lz is fully characterised by the universal function �l(Ri f ). This function
should satisfy the following physical requirements: in neutral stratification it attains the
maximum value, �l (0) = 1 [the omitted empirical constant combines with the coefficients
CK = CP , CF and �τ in Eqs. (16) and (18)], and with increasing Ri f it should monotoni-
cally decrease. Finally, at Ri f → Ri∞f this function should tend to zero [otherwise Eq. (33a)
would give Ez > 0 at Ri f → Ri∞f , which is physically senseless].

We propose a simple approximation to satisfy these requirements:�l =
(

1 − Ri f /Ri∞f
)n

,

where n is a positive constant. Using an empirical value of n = 4/3 (see the next Section) we
arrive at the following relation for lz :

lz = z

(
1 − Ri f

Ri∞f

)4/3

. (55)

Obviously, in non-steady, heterogeneous regimes lz should be determined through a prog-
nostic equation accounting for its advection and temporal evolution.

5 Comparison of the local model with experimental and numerically simulated data

To determine the empirical dimensionless constants Cr , CK , CF , Cθ , Cτ1, Cτ2, C3 and n
we compare results from the local closure model presented in Sect. 4 with experimental,
large-eddy simulation (LES) and direct numerical simulation (DNS) data.

As mentioned earlier, the local model is applied to homogeneous turbulence and does
not include transports of turbulent energies and turbulent fluxes. At the same time practi-
cally all currently available data represent vertically (in a number of cases, both vertically
and horizontally) heterogeneous flows, in which the above transports are more or less pro-
nounced. In these conditions, fundamental dimensionless parameters of turbulence, such as
PrT , Ri f , (τ/EK )2, F2

z /(EK Eθ ) and Az , can be only approximately considered as universal
functions of Ri. Mauritsen and Svensson (2007) have demonstrated quite reasonable Ri
dependencies of the above parameters based on datasets obtained in several recent field cam-
paigns. To reduce inevitable deviations from universality and to more accurately determine
empirical constants, we now more carefully select data and rule out those that represent
strongly heterogeneous regimes.

Figures 1a, b show the turbulent Prandtl number, PrT , and flux Richardson number, Ri f =
Ri/ PrT , versus the gradient Richardson number, Ri. They demonstrate reasonable agreement
between data from atmospheric and laboratory experiments, LES and DNS. Data for Ri→ 0 in
Fig. 1 are consistent with the commonly accepted empirical estimate of Pr(0)

T ≡ PrT |Ri→0 =
0.8 [see data collected by Churchill (2002) and Foken (2006) and the theoretical analysis of
Elperin et al. (1996)]. Figure 1b clearly demonstrates that Ri f at large Ri levels off, allowing
an estimate of its limiting value, Ri∞f = 0.2.

Figure 2 shows Ri dependencies of the dimensionless turbulent fluxes: (a) τ̂ 2 ≡ (τ/EK )2

and (b) F̂2
z ≡ F2

z /(EK Eθ ). It is long recognised [see, e.g., Sect. 5.3 and 8.5 in Monin and
Yaglom (1971)] that in neutral stratification, atmospheric observations give more variable and
generally smaller values of these dimensionless turbulent fluxes than laboratory experiments.
This is not surprising because measured values of the TKE, EK , in the atmosphere are con-
taminated with low-frequency velocity fluctuations caused by the interaction of the airflow
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Fig. 1 Ri dependences of (a)
turbulent Prandtl number,
PrT = KM/K H , and (b) flux
Richardson number,
Ri f = −βFz(τ S)−1, based on
meteorological observations:
slanting black triangles (Kondo
et al. 1978), snowflakes (Bertin
et al. 1997); laboratory
experiments: black circles
(Strang and Fernando 2001),
slanting crosses (Rehmann and
Koseff 2004), diamonds (Ohya
2001); LES: triangles (new data
provided by Igor Esau); DNS:
five-pointed stars (Stretch et al.
2001). Solid lines show our
model for homogeneous
turbulence; dashed line,
analytical approximations after
Eq. (64)
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with surface heterogeneities. These low-frequency fluctuations, however, should not be con-
fused with shear-generated turbulence. Therefore, to validate our turbulence closure model it
is only natural to use data on τ̂ 2 obtained from laboratory experiments and/or numerical sim-
ulations. Relying on these data presented in Fig. 2a, we obtain (τ/EK )(0) = 0.326 for Ri �
1; and (τ/EK )∞= 0.18 for Ri  1 [the superscripts “(0)” and “∞” mean “at Ri = 0” and “at
Ri→ ∞”]. These estimates are consistent with the conditions (τ̂ 2)(0)/(F̂2

z )(0) = Pr(0)
T = 0.8,

and (F̂2
z )∞ = 0 that follow from Eqs. (47)–(48). Furthermore, Fig. 3, which shows the Ri

dependencies of the re-normalised fluxes, (a) τ̂ 2/(τ̂ 2)(0) and (b) F̂2
z /(F̂2

z )(0), reveals essen-
tial similarity in the shape of these dependencies based on atmospheric, laboratory and LES
data, and provides additional support to our analysis.

Data on the vertical anisotropy of turbulence, Az = Ez/EK , are shown in Fig. 4. These
data are quite ambiguous and need to be analysed carefully. For neutral stratification, we
adopt the estimate of A(0)

z = 0.25 based on precise results from laboratory experiments
(Agrawal et al. 2004) and DNS (Moser et al. 1999). These data are now commonly accepted
and have been shown to be consistent with independent data on the wall-layer turbulence
(L’vov et al. 2006). Current and previous atmospheric data (e.g., those shown in Fig. 75
in Monin and Yaglom 1971) yield smaller values of A(0)

z , but, as already mentioned, they
overestimate the horizontal TKE and, consequently, underestimate Az , especially in neutral
stratification. Such overestimating arises from meandering of atmospheric boundary-layer
flow caused by non-uniform features of the earth’s surface (hills, houses, groups of trees,
etc.). At the same time, very large values of Ri in currently available experiments and numer-
ical simulations are relevant to turbulent flows above the boundary layer, where the TKE of
local origin (controlled by the local Ri) is often small compared to the TKE transported from
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Fig. 2 Same as in Fig. 1 but for
the squared dimensionless
turbulent fluxes of (a)
momentum, τ̂2 = (τ/EK )2, and
(b) potential temperature,
F̂2

z = F2
z /(EK Eθ ), based on

laboratory experiments:
diamonds (Ohya 2001) and LES:
triangles (new data provided by
Igor Esau); and meteorological
observations: squares [CME =
Carbon in the Mountains
Experiment, Mahrt and Vickers
(2005)], circles [SHEBA =
Surface Heat Budget of the
Arctic Ocean, Uttal et al. (2002)]
and overturned triangles
[CASES-99 = Cooperative
Atmosphere-Surface Exchange
Study, Poulos et al. (2002), Banta
et al. (2002)]

0.01 0.1 1 10 100

0.02

0.04

0.06

0.08

0.1

Ri

(τ / E
K

)2

a)

0.01 0.1 1 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ri

F2
z
 / ( E

K
 Eθ )

b)

Fig. 3 Same as in Fig. 2 but for
re-normalised turbulent fluxes:
(a) τ̂2/(τ̂2)(0) and (b)
F̂2

z /(F̂2
z )(0), where the

superscript (0) indicates mean
values at Ri = 0 [hence
τ̂2/(τ̂2)(0) and F̂2

z /(F̂2
z )(0)

equal 1 at Ri = 0]
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Fig. 4 Same as in Figure 2 but
for the vertical anisotropy of
turbulence, Az = Ez/EK , on
addition of DNS data of Stretch
et al. (2001) shown by
five-pointed stars
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the lower, strong-shear layers. It is not surprising that the spread of data on Az versus Ri
is quite large. Nonetheless, atmospheric data characterise Az as a monotonically decreasing
function of Ri and allow at least an approximate estimate of its lower limit: A∞

z = 0.075.

Below we use the estimates of A(0)
z , (τ 2 E−2

K )Ri=0, Pr(0)
T , Ri∞f , A∞

z , and (τ 2 E−2
K )Ri=∞

to determine our empirical constants.
We start with data for neutral stratification. The empirical estimate of A(0)

z = 0.25 yields

Cr = 3A(0)
z (1 − 3A(0)

z )−1 = 3. (56)

Then we combine Eq. (25c) for EK with Eq. (32) for tT and consider the logarithmic
boundary layer, in which lz = z, τ = τ |z=0 ≡ u2∗ and S = u∗(kz)−1(u∗ is the friction
velocity and k is the von Karman constant) to obtain

CK = k(A(0)
z )1/2

(
EK

τ

)3/2

Ri=0
= 1.08. (57)

This estimate is based on the well-determined empirical value of k ≈ 0.4, and the above
values of (τ/EK )(0) = 0.326 and A(0)

z = 0.25. Then taking CK = 1.08, Pr(0)
T = 0.8 and

using Eqs. (43a) and (47) we obtain

Cτ1 = CK

2A(0)
z

(
EK

τ

)−2

Ri=0
= 0.228, (58)

CF = Cτ1/Pr(0)
T = 0.285. (59)

Taking Cr = 3, A∞
z = 0.075, Ri∞f = 0.2 and using Eq. (46) we obtain

�∞
3 = A∞

z

A(0)
z

+ 3Ri∞f
Cr (1 − Ri∞f )

= 0.55; C3 = 1

Ri∞f

(
�∞

3 − 1
) = −2.25. (60)

The constants C1 and C2 determine only the energy exchange between the horizontal
velocity components and do not affect any other aspects of our closure model. Taking them
equal (based on symmetry reasons) and recalling that C1 + C2 + C3 = 0 yields

C1 = C2 = −1

2
C3 = 1.125. (61)
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Taking CK = 1.08, Ri∞f = 0.2, A∞
z = 0.075 and (τ/EK )∞= 0.18, Eq. (50b) gives

�∞
τ = CK

[
(τ/EK )∞

]2
(1 − Ri∞f )

2A∞
z

=0.187; Cτ2 = 1

Ri∞f

(
�∞

τ − Cτ1
)= −0.208 (62)

Then Cθ is determined from Eq. (45) written in the strong stability limit:

Cθ = 1

1 + Cr

[
Cr�

∞
3

3

(
1

Ri∞f
− 1

)
− 1

]
= 0.3. (63)

Using the above values of dimensionless constants, the function Ri f = �(Ri) determined
by Eqs. (41)–(42) is shown in Fig. 1b by the solid line. For practical use we propose the
following explicit approximation of this function (with 5% accuracy):

Ri f = �(Ri) ≈ 1.25Ri
(1 + 36Ri)1.7

(1 + 19Ri)2.7 , (64)

which is shown in Fig. 1b by the dashed line.
In the above estimates we did not use data on the dimensionless heat flux F̂2

z ≡ F2
z /(EK Eθ )

shown in Fig. 2b and 3b. The good correspondence between data and the theoretical curves
in these figures serves as an empirical confirmation to our model.

The last empirical constant to be determined is the exponent n in Eq. (55). We eliminate
lz from Eqs. (53) and (54) to obtain

z

L
= Ri f

(2�τ )1/2�1/4�l
, (65)

where �τ and � are functions of Ri f as specified by Eqs. (38) and (39). Given the depen-
dence �l(Ri f ), the Eqs. (41) and (65) allow us to determine Ri f and Ri as single-valued
functions of z/L . Vice versa, given, e.g., the dependence Ri(z/L),�l can be determined as
a single-valued function of Ri f .

We can apply this analysis to deduce �l(Ri f ) from the empirical dependence of Ri on
z/L obtained by Zilitinkevich and Esau (2007) using LES DATABASE64 (Esau 2004; Beare
et al. 2006; Esau and Zilitinkevich 2006) and data from the field campaign SHEBA (Uttal et
al. 2002). In Fig. 5, we present the above LES data together with our approximation based
on Eq. (55). The exponent n = 4/3 is obtained from the best fit of the theoretical curve to
all these data.

Strictly speaking, the suggested local, algebraic closure model is applicable only to homo-
geneous flows, in particular, to the nocturnal stable atmospheric boundary layer (ABL) of
depth h, where non-local vertical turbulent transport plays a comparatively minor role,
whereas τ and Fz are reasonably accurately represented by universal functions of z/h
(see, e.g., Fig. 1 in Zilitinkevich and Esau 2005); or with more confidence to the lower
10% of the ABL, the so-called surface layer, where τ and Fz can be taken depth-constant:
τ ≈ τ |z=0 = u2∗ and Fz ≈ Fz |z=0 = F∗.

As mentioned earlier, Eqs. (64) and (65) determine Ri f and Ri as single-valued functions
of z/L:

Ri f = �Rif

( z

L

)
, (66a)

Ri = �Ri

( z

L

)
. (66b)
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Fig. 5 Gradient Richardson number, Ri =β(∂�/∂z)(∂U/∂z)−2, versus dimensionless height z/L in the noc-
turnal atmospheric boundary layer (ABL). Dark- and light-grey points show LES data within and above the
ABL, respectively; heavy black points with error bars are bin-averaged values of Ri [from Fig. 3 of Zilitinkevich
and Esau (2007)]. Solid line is calculated after Eqs. (41), (55) and (65) with n= 4/3

Consequently, our model applied to the steady-state, homogeneous regime in the surface
layer, is consistent with the similarity theory of Monin and Obukhov (1954). Given τ and
Fz , this model allows us to determine z/L dependencies of all the dimensionless parameters
considered above, as well as the familiar similarity-theory functions specifying mean velocity
and temperature profiles:

�M ≡ kz

τ 1/2

(
∂U

∂z

)
≡ k

Ri f

( z

L

)
= k

�Rif(z/L)

( z

L

)
, (67a)

�H ≡ kT zτ 1/2

−Fz

(
∂�

∂z

)
≡ kT

PrT

Ri f

( z

L

)
≡ kT

Ri

Ri2f

( z

L

)

= kT
�Ri(z/L)

�2
Rif(z/L)

( z

L

)
, (67b)

where k is the von Karman constant expressed through our constants by Eq. (57) and kT =
k/ Pr(0)

T . At Ri � 1, Eqs. (66a, b) reduce to Ri f ≈ kz/L and Ri ≈ Pr(0)
T kz/L while Eqs. (67a,

b) recover the familiar wall-layer formulation. �M (z/L) and �H (z/L) calculated according
to our model are shown in Figure 6 together with LES data from Zilitinkevich and Esau
(2007).

In contrast to the commonly accepted paradigm that both �M and �H depend on z/L
linearly, LES data and our solution show different asymptotic behaviours, namely, linear
for �M and stronger than linear for �H . This result deserves discussion. Indeed, the tra-
ditional formulation, �M ,�H ∼ z/L at z/L  1, implies that PrT levels off (rather than
increases) with increase of z/L and, as a consequence, that surface-layer turbulence decays
when Ri exceeds a critical value, Ric ≈ 0.25. However, as demonstrated in Sects. 1 and 3
this conclusion is erroneous.

Note that the linear dependences, �M ∼ �H ∼ z/L , were traditionally derived from the
heuristic “z-less stratification” concept, which postulates that the distance from the surface,
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Fig. 6 Dimensionless vertical gradients of (a) mean velocity, �M = kz
τ1/2

(
∂U
∂z

)
, and (b) potential tempera-

ture, �H = kT zτ1/2

−Fz

(
∂�
∂z

)
, versus z/L , based on our local closure model [solid lines plotted after Eq. (5.13a,

b)] compared to the same LES data as in Fig. 5 [from Figs. 1 and 2 of Zilitinkevich and Esau (2007)]

z, does not appear in the set of parameters that characterise the vertical turbulent length scale
in sufficiently strong static stability (z/L  1). Without this assumption the linear asymptote
for �H loses ground while for �M it holds true. Indeed, the existence of a finite upper limit
for the flux Richardson number Ri f → Ri∞f at z/L → ∞ immediately yields the asymptotic
relation:

�M ≈ CU
z

L
at

z

L
 1, (68)

where CU = (Ri∞f )−1 ≈ 5.
It is important to note that the algebraic closure model presented in Sect. 4, is applica-

ble only to homogeneous turbulence regimes. Therefore it probably serves as a reasonable
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approximation for the nocturnal ABL separated from the free flow by the neutrally stratified
residual layer, but not for the conventionally neutral and the long-lived stable ABLs, which
develop against the stably stratified free flow and exhibit essentially non-local features, such
as the distant effect of the free-flow stability on the surface-layer turbulence (see Zilitinkevich
2002; Zilitinkevich and Esau 2005). In order to reproduce these types of ABL realistically,
an adequate turbulence closure model should take into account the non-local transports.

6 Summary and conclusions

The structure of the most widely used turbulence closure models for neutrally and stably strat-
ified geophysical flows follows Kolmogorov (1941): vertical turbulent fluxes are assumed
to be downgradient; the turbulent exchange coefficients, namely, the eddy viscosity, KM ,
conductivity, K H , and diffusivity, K D , are assumed to be proportional to the turbulent length
scale, lT , and the turbulent velocity scale, uT , which in turn is taken to be proportional to the
square root of the TKE, E1/2

K , so that K{M,H,D} ∼ E1/2
K lT ; and EK is determined solely from

the TKE budget equation. Kolmogorov developed this formulation for neutral stratification,
where it provides quite a good approximation. However, when applied to essentially stable
stratification Kolmogorov’s model predicts that TKE decays at Richardson numbers exceed-
ing a critical value, Ric (close to 0.25), which contradicts experimental evidence. To avoid
this drawback, modern closure models modify the original Kolmogorov formulation assum-
ing K{M,H,D} = f{M,H,D}(Ri)E1/2

K lz , where stability functions f{M,H,D}(Ri) are determined
either theoretically or empirically. Given these functions, it remains to determine lT and then,
apparently, the closure problem is solved.

Such a conclusion, however, is premature. The concepts of the downgradient turbulent
transport and the turbulent exchange coefficients, as well as the relationships K{M,H,D} =
f{M,H,D}(Ri)E1/2

K lT are consistent with the flux-budget equations only in comparatively sim-
ple particular cases relevant to the homogeneous regime of turbulence. Only in these cases the
turbulent exchange coefficients can be rigorously defined, in contrast to the turbulent fluxes
that represent clearly defined, measurable parameters, governed by the flux-budget equa-
tions. It is therefore preferable to rely on the flux-budget equations rather than to formulate
hypotheses about virtual exchange coefficients.

Furthermore, the TKE budget equation does not fully characterise turbulent energy trans-
formations, not to mention that the vertical turbulent transports are controlled by the energy
of vertical velocity fluctuations, Ez , rather than EK .

In this study we do not follow the above “main stream” approach, and instead of solely
using the TKE budget equation, we employ the budget equations for turbulent potential
energy (TPE) and turbulent total energy (TTE = TKE + TPE), which guarantees mainte-
nance of turbulence by the velocity shear in any stratification.

Furthermore, we do not accept a priori the concept of downgradient turbulent transports
(implying universal existence of turbulent exchange coefficients). Instead, we use the bud-
get equations for key turbulent fluxes and derive (rather than postulate) formulations for the
exchange coefficients, when it is physically grounded as in the steady-state homogeneous
regime.

In the budget equation for the vertical flux of potential temperature we take into account a
crucially important mechanism: generation of the countergradient flux due to the buoyancy
effect of potential-temperature fluctuations (compensated, but only partially so, by the cor-
relation between the potential-temperature and the pressure-gradient fluctuations). We show
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that this is an important mechanism responsible for the principle difference between the heat
and the momentum transfer.

To determine the energy of the vertical velocity fluctuations, we modify the traditional
return-to-isotropy formulation accounting for the effect of stratification on the redistribution
of the TKE between horizontal and vertical velocity components. We then derive a simple
algebraic version of an energetically consistent closure model for the steady-state, homoge-
neous regime, and verify it against available experimental, LES and DNS data.

As seen from Figs. 1–4 showing Ri dependencies of the turbulent Prandtl number, PrT =
KM/K H , the flux Richardson number, Ri f , dimensionless turbulent fluxes, (τ/EK )2 and F2

z
(EK Eθ )

−1, and anisotropy of turbulence, Az = Ez/EK , our model, in compliance with the
majority of data, reveals the existence of two essentially different regimes of turbulence sepa-
rated by a comparatively narrow interval of Ri around a threshold value of Ri ≈ 0.25 (shown
in the figures by the vertical dashed lines). On both sides of the transitional interval, 0.1< Ri
<1, the ratios (τ/EK )2 and F2

z (EK Eθ )
−1 approach plateaus corresponding to the very high

efficiency of the turbulent transfer at Ri < 0.1, and to the strongly different efficiencies of
the momentum transfer (which is still pronounced) and heat transfer (which is very weak) at
Ri > 1.

It is hardly incidental that the above threshold coincides with the critical Richardson num-
ber, Ric, derived from the classical perturbation analyses. These analyses have demonstrated
that the infinitesimal perturbations grow exponentially at Ri < Ric but do not grow at Ri >

Ric when, as we understand now, the onset of turbulent events requires finite perturbations.
Consequently, the transitional interval, 0.1 < Ri < 1, indeed separates two essentially differ-
ent regimes: strong turbulence at Ri < 0.1 and weak turbulence at Ri > 1, but do not separate
the turbulent and the laminar regimes as traditionally assumed.

What we presented in this study is just a first step towards developing consistent and
practically useful turbulence closure models based on a minimal set of equations, which
indispensably includes the TTE budget equation and does not imply the existence of the
critical Richardson number. Two other recent studies follow this approach. Mauritsen et al.
(2007) have developed a simple closure model employing the TTE budget equation and
empirical Ri dependences of (τ/EK )2 and F2

z (EK Eθ )
−1 (similar to those shown in our Fig.

2–3). L’vov, Procaccia and Rudenko (Private communication) perform detailed analyses of
the budget equations for the Reynolds stresses in the turbulent boundary layer (relevant to the
strong turbulence regime) taking into consideration the dissipative effect of the horizontal
heat flux explicitly, in contrast to our “effective-dissipation approximation”.

As already mentioned, the present study is limited to the local, algebraic closure model that
is applicable to the steady-state, homogeneous turbulence regime. Generalised versions of
this model, based on the same physical analyses but accounting for the third-order transports
(�K ,�P ,�F and �

(τ)
{1,2}) will be presented in forthcoming papers.

Our data analysis provides only a plausible first verification rather than a comprehensive
validation of the proposed model. Special efforts are needed to extend our data analysis using
additional field, laboratory and numerically simulated data (e.g., Rohr et al., 1988; Shih et
al. 2000). In future work, particular attention should also be paid to direct verification of our
approximations, such as those for the term ρ−1

0 〈θ∂p/∂z〉 taken to be proportional to β
〈
θ2

〉
in Eq. (9b), and for the term εi3(eff) ≡ ε

(τ)
i3 − βFi − Qi3 assumed to be proportional to

τi3/tT in Eq. (10b).
In the present state, our closure model does not account for vertical transports arising

from internal waves. The dual nature of fluctuations representing both turbulence and waves
in stratified flows has been suggested, e.g., by Jacobitz et al. (2005). The role of waves and
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the need for their inclusion in the context of turbulence closure models has been discussed,
e.g., by Jin et al. (2003) and Baumert and Peters (2005). Direct account of the wave-driven
transports of momentum and both kinetic and potential energies is a topic of our current
research.
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Appendix A: The pressure term in the budget equation for turbulent flux of potential
temperature

The approximation used in Sect. 2:

β
〈
θ2〉 + 1

ρ0

〈
θ

∂

∂z
p

〉
= Cθβ

〈
θ2〉 (69)

with Cθ = constant < 1 can be justified as follows. Taking the divergence of the momentum
equation we arrive at the following equation

1

ρ0
�p = −β

∂

∂z
θ. (70)

Applying the inverse Laplacian to Eq. (70) yields

1

ρ0
p = β�−1

(
∂θ

∂z

)
, and

1

ρ0

〈
θ

∂

∂z
p

〉
= −β

〈
θ�−1 ∂2

∂z2 θ

〉
. (71)

We employ the following scaling estimate:

〈
θ�−1

(
∂2θ
∂z2

)〉
〈
θ2

〉 ≈ (1 + α−1)

(
1 − arctan

√
α√

α

)
, (72)

where α = l2⊥/l2
z − 1, lz and l⊥ are the correlation lengths of the correlation function

〈θ(t, x1)θ(t, x2)〉 in the vertical and the horizontal directions.
Equations (71) and (72) yield

1
ρ0

〈
θ

∂p
∂z

〉
〈
θ2

〉 ≈ −
{

1
3

(
1 + 2

5α
)

in the thermal isotropy limit (α � 1)
1 − π

2
√

α
in the infinite thermal anisotropy limit (α  1). (73)

Consequently, the coefficient Cθ = {1 + [r.h.s. of Eq. (73)]} turns into 2/3 in the thermal
isotropy limit (corresponding to neutral stratification) and vanishes in an imaginary case of
the infinite thermal anisotropy. Our empirical estimate, Eq. (63), of Cθ = 0.3 is a reasonable
compromise between these two extremes.
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