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Abstract Future wireless networks provide research challenges with many
fold increase of smart devices and the exponential growth in mobile data traffic.
The advent of highly computational and real-time applications cause huge
expansion in traffic volume. The emerging need to bring data closer to users
and minimizing the traffic off the macrocell base station (MBS) introduces
the use of caches at the edge of the networks. Storing most popular files at
the edge of mobile edge networks (MENs) in user terminals (UTs) and small
base stations (SBSs) caches is a promising approach to the challenges that
face data-rich wireless networks. Caching at the mobile UT allows to obtain
requested contents directly from its nearby UTs caches through the device-to-
device (D2D) communication.

In this survey article, solutions for mobile edge computing and caching
challenges in terms of energy and latency are presented. Caching in MENs
and comparisons between different caching techniques in MENs are presented.
An illustration of the research in cache development for wireless networks
that apply intelligent and learning techniques (ILTs) in a specific domain in
their design is presented. We summarize the challenges that face the design of
caching system in MENs. Finally, some future research directions are discussed
for the development of cache placement and cache access and delivery in MENs.

Keywords Mobile edge network · edge caching · energy efficient · latency
efficient · learning technique.
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1 Introduction

In recent years, an exponential increase in traffic load has been noticed in wire-
less networks due to multimedia streaming applications and services, mobile
video streaming, web browsing, and social network inter-connections. Wire-
less devices are expected to generate much higher traffic than wired network
devices in the future [1]. To handle these traffic explosions, mobile wireless
networks require continuous evolution and improve the performance in terms
of power consumption, data throughput, and utilization of network resources
such as backhaul network capacity and bandwidth [2]. Mobile edge networks
(MENs) is one of the candidate solutions in future wireless networks. Despite
the developments of wireless network architecture, the demand for contents by
connected devices and many different applications and services on their mo-
biles, results in constraints put on latency, energy consumption, and quality
of services (QoS).

Considering these problems, researchers investigated the possibility of cach-
ing content items locally and proactively at the edge of the mobile networks
(i.e., caching in SBS and user terminal (UT)) before users request them. Lo-
cal caching is a promising approach to improve the network bottleneck [3],
[4] by providing faster connectivity, lower latency, and less power consump-
tion. SBSs which are also called (sometimes) femto caches, caching helpers, or
simply helpers, have normaly high storage capabilities and are used to build
a wireless distributed caching infrastructure [5]. Utilizing the advantages of
storing contents closer to UTs at the edge of the mobile edge networks allows
users to download requested contents from neighbouring SBS or UT caches
in SBS for user communication or device-to-device (D2D) communication, re-
spectively, which can boost QoS and reduce the latency while saving power
consumption and the network backhaul resources.

Future services and applications are highly bounded by user location, data,
and network. Internet architecture with a huge amount of mobile traffic and
having mobile users with different moving speed will suffer from poor support
for such services. Thus, user mobility patterns should be considered while
designing caching in MENs. Due to dynamic updates of user demands, content
popularity, and user mobility, it is difficult to decide which contents to cache,
where to cache them, and from where to deliver them using traditional decision
making techniques. Moreover, the large amount of data needed to develop
algorithms for cache system, makes the estimation of cache contents, access,
and delivery, a complex and difficult task. In order to meet all these challenges,
researchers explore learning and decision techniques for storing, accessing, and
delivering the huge amount of data generated within the MENs. A summary
of existing survey articles on mobile computing and caching is shown in Table
1. Table 2 lists the acronyms used in this paper.

The remaining of the paper is organized as follows: Sect. 2 discusses mobile
edge computing and caching. In Sect. 3, the literature survey of solutions for
mobile edge computing and caching challenges in terms of energy and latency
are presented. Sect. 4 explains and compares different caching techniques in
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mobile edge networks. In Sect. 5, discussion and comparison between different
caching techniques in MEN is explored. Sect. 6 summarizes the challenges that
faces the design of caching system in MENs. Sect. 7 discusses future research
direction followed by conclusions and future work in Sect. 8.

2 Mobile Edge Networks

The increasing growth in mobile data traffic and new mobile applications leads
to limitations on end users demands and communications at mobile devices.
End users require service availability, service reliability, lower latency and ef-
ficient energy usage. To overcome limitations such as computation capabili-
ties, storage capacity, latency, and energy consumption, new wireless network
paradigm is needed [13]. Mobile edge network (MEN) architecture has been
presented as a promising solution for future wireless networks. Proposals for
MEN architecture are presented from industry and academia. They are evolved
from the mobile cloud computing by utilizing the computing power and data
storage away from the mobile devices into the cloud. MEN architectures are
summarized in four main models depending on their services and operations.
They are mobile cloud computing (MCC), mobile edge computing (MEC), fog
computing, and caching [10].

The fundamental concept of MEN is to make network contents, services,
and resources closer to the network edge. This can be implemented through
the architecture design of MEN that deploys flexible computing and utilizes
storage resources at the mobile network edges. MEC is a network architec-
ture concept that was standardized by European Telecommunications Stan-
dards Institute (ETSI) and Industry Specification Group (ISG). MEC was
acknowledged as a prime emerging technology for 5G networks [14]. At the
edge of the network, IT service environment and cloud-computing capabilities
are provided within the Radio Access Network (RAN) [15]. Cisco proposed fog
computing as an extension of the cloud computing to wireless network edges.
The aim is to accommodate the Internet of Thing (IoT) applications closer to
users. At the same time, fog computing nodes are distributed in a wide area
and collaborate among multiple end users to provide processing and storage
[16]. Researchers at Carnegie Mellon University proposed cloudlet which is a
new element that extends the mobile device-cloud architecture. Cloudlet is de-
fined as resource-rich computer or cluster of computers that are connected to
the Internet and nearby mobile devices [17]. Both Wi-Fi networks and mobile
networks are deployed to provide near-real-time provisioning of applications
and handoff of virtual machine images among edge nodes when a device moves.
Cloudlet can reduce the end-to-end latency between the mobile device and the
cloud [18].

Some of key technologies to enable MEN to be flexible and easy to maintain
are software defined networks (SDN), network function virtualization (NFV),
and information centric network (ICN)[12]. SDN separates the control plane
from the data plane by allowing logical centralization of control and enabling
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Table 1 Summary of Survey Articles on Caching in Wireless Networks.

Survey Focuses on Contributions

[6] Popularity based - An overview of caching in wireless networks,
video caching - A comparison of traditional and popularity-based

caching.
- An overview of the attributes of videos and the
evaluation criteria of caching policies.
- A review of proactive caching, focusing on prediction
strategies, challenges, and open research
problems in popularity-based caching.
- A comparison of traditional and popularity-based
caching.
- An overview of the attributes of videos and the
evaluation criteria of caching policies.
- A review of proactive caching, focusing on prediction
strategies, challenges, and open research problems
in popularity-based caching.

[7] Caching strategies - A survey on caching techniques in macro-cellular
networks, heterogeneous networks, device-to-device
networks, cloud-radio access, and fog-radio
access networks.
- A tutorial on caching techniques and caching
algorithms.
-A comparisons among different algorithms
in different performance metrics.
- A summary of the main research achievements,
challenges, and research directions.

[8] Achieve low latency - A survey on the technologies to achieve low latency
communications communications

- An overview of 5G cellular network caching and
mobile edge computing and other 5G requirements.

[9] Deployment, - A survey on edge cache in radio access networks, the
strategies, edge deployment location of content placement strategy, and
caches, and network coded caching.

- A summary of the impacts on high spectral efficiency,
performances high energy efficiency, and low latency.

- Challenges in the joint optimization of radio and cache
resources.

[10] Research efforts - A review on convergence of computing, caching and
made on the communications.
MENs - A survey on cloud technology, software defined network,

and network function virtualization.
- A review of the open research challenges and future
directions.

[11] Caching mechanism - An overview of the in-network caching mechanisms
in information- - An illustration of how it works, its benefits
centric networking. and drawbacks.

- A comparison of some typical in-network caching
mechanisms through.

[12] Device-enhanced - A survey on the device-enhancement of MEC services
multi-access edge for end devices through the resources
computing (MEC) of other end devices.

- A survey on computation offloading and caching
to device enhanced MEC
- A review of limitations of existing device-enhanced
MEC mechanisms

Our Energy and latency - A survey of solutions for mobile edge computing and
paper efficient caching caching in terms of energy and latency.

in MENs. - Comparison of caching in MENs and between different
caching techniques.
- An illustration of the research in cache developments
that apply intelligent and learning techniques.
- A summary of the challenges that faces the design of
caching system.
- A discussion of future research directions for the
development of cache placement and cache access
and delivery in MENs.
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Table 2 Table of Acronyms.

Acronym Meaning

AI Artificial Intelligence
ANN Artificial Neural Networks
AR Augmented Reality
CRP Chinese Restaurant Process
CUs Cloud Units
D2D Device-to-Device
DCNNs Deep Convolutional Neural Networks
DNN Deep Neural Network
ELM Extreme Learning Machine
ENs Edge Nodes
ETSI European Telecommunications Standards Institute
FSS Fuzzy Soft Set
IIoT Industrial Internet of Things
ILTs Intelligent and Learning Techniques
IoT Internet of Thing
ISG Industry Specification Group
LFU Least Frequently Used
LRU Least Recently Used
MBS Macrocell Base Station
MCC Mobile Cloud Computing
MDP Markov Decision Process
MEC Mobile Edge Computing
MENs Mobile Edge Networks
MILP Mixed-Integer Linear Program
ML Machine Learning
PP Pricing Problem
QoS Quality of Services
RAN Radio Access Network
RL Reinforcement Learning
RMP Restricted Master Problem
RNN Recurrent Neural Networks
SBSs Small Base Stations
SCNs Small Cell Networks
SVC Scalable Video Coding
SVD Singular Value Decomposition
UTs User Terminals
VR Virtual Reality

direct programming of wireless network controls with improved energy effi-
ciency. ICN is used to speedup content distribution and utilize network re-
sources [10]. ICN serves requests from closer content nodes along the path
which enables content caching in both the air and the mobile devices. NFV
enables flexible design and management of network functions independent of
the underlying physical network equipment [19]. Integrating the programming
control principle in SDN with information centrality in ICN leads to dynamic
networking, caching, and computing resources to meet the requirements of dif-
ferent applications [20], [21]. Also, NFV-based caching solutions offers caching
of personalized and secure contents isolated from other content providers and
from other participants [12]. By utilizing these technologies, functions, con-
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tents and resources are moved closer to end users. This enables the MEN
that exploits a large number of low-cost storage devices at different places in
network edges, to proactively cache popular contents during off-peak periods.
Caching can be deployed at different levels in mobile networks instead of fetch-
ing them from the core network [10]. Reducing the number of network hops
between the location of the contents and the user requesting the contents will
reduce the latency for retrieving the contents [22]. MENs bridge the gap be-
tween the capability limitations of storage and computation in user terminals
and their increasing demands. It is done by placing storage and computation
resources at the edge of the network closer to user terminals. MEN can reduce
latency and energy consumption. There are various techniques in the litera-
ture that are proposed to process data locally at the edge of the network and
accelerate data streams, which will reduce the traffic bottleneck toward the
coding network [23]. The caching locations which are considered as caching
levels in MEN architectures are macro base station (MBS), small base station
(SBS), and user devices allowing for device to device (D2D) communications.
The places that can be used to cache most popular contents within MENs are
shown in Figure 1 and described below:

1. UT caching:
Exploiting the storage resources in UTs is one of the key technology in 5G
networks [10]. Caching in user devices allows the improvements of caching
strategies to allow D2D communications.

2. SBS caching:
Each cell in MEN employs a large number of SBSs. SBS includes higher
storage capacity than UT cache capacity. They are closer to the end users
and usually provide higher data rates [10]. Therefore, utilizing caching in
SBSs is a promising solution to improve QoS in next-generation heteroge-
neous networks.

3. MBS caching: MBS covers a larger area within the heterogeneous network
and can serve more users. The storage capacity in MBS is higher than other
caches within the cell which will lead to a higher probability of finding the
requested file (hit).

3 Energy and Latency Efficiency in Mobile Edge Networks

This section presents the benefits of MEN as an emerging technology for the
future wireless networks. There are a number of research work that has been
done to show the efficiency of MEN in terms of energy consumption, latency
requirements, and storage capacity for different applications and services. Ta-
ble 3 and Table 4 present an overview of the main research work areas in the
literature that proposed possible solutions to future mobile edge computing
and caching network in terms of energy and latency, respectively. The research
areas can be categorized into the following main streams:
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Fig. 1 Architecture of Mobile Edge Network.

1. Computation offloading: The advances in computing technology and vari-
ous applications that require high computation power and resources to run
complex programs have increased lately. These applications use wireless
networks and run on mobile devices with limited capabilities to support
the needed resources [24]. One of the solutions to solve this problem is com-
putation offloading. In computation offloading, the mobile devices transfer
tasks to an external edge cloud and receive the results from the edge cloud.
Offloading increases mobile terminals capabilities by migrating the compu-
tation to more resourceful computers (servers) at the edge of the network
[25].

2. Task caching: Computation offloading considers computing capabilities at
the edge of the network by assuming enough hardware and software re-
sources to execute the tasks. However, enough storage capacity for compu-
tation offloading is another important challenge that faces future wireless
networks. In [26], the authors proposed the task caching which refers to
caching the task (application computation task) and its related data at the
edge of the network.

3. Content caching: Contents requested by end users in massive multime-
dia services over mobile network face network capacity limitations and
increases backhaul links load. Requesting the same contents by different
users also causes network congestion and a waste of network resources .The
development of mobile edge caching techniques is another promising solu-
tion for wireless networks. Content caching of the most popular files can
prevent duplicate transmission of the same contents and improve end-user
QoS. Quality of service can be improved, since downloading the contents
from network edge (for example, base stations or end user terminals) re-
duces latency compared to downloading the contents from Internet contents
providers (core network) [10].
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4. Resource allocation: With multiple user terminals, MEN servers have much
less computational resources. One of the main issues in the design of MEN
is to consider resource allocation. It is the process of allocating the finite
radio and computational resources to multiple mobiles under resource con-
straints. There are two categories of resource allocation schemes for MEN:
centralized and distributed. In the centralized resource allocation, the MEN
server is responsible for all mobile information, makes the resource alloca-
tion decisions, and sends the decisions to mobile devices. While in dis-
tributed resource allocation, many techniques including game theory and
decomposition techniques are used to develop a distributed algorithm [27].

5. Multicast caching: To reduce the load of wireless links in traditional unicast
connection-based transmission and avoid transmitting the same file multi-
ple times to multiple users, a multicast caching is proposed for base stations
in 5G mobile networks [28]. In multicast caching, the popular content is
brought close to the users. The optimization objectives are to minimize the
average latency for all content requests and minimize the average energy
consumption [8].

6. Service chain management: Service chaining policy refers to the term that
describes executing multiple service functions in an ordered list to guar-
antee performance and security requirements [29]. In MEN networks, light
weight data centers can be used at the edge of the network. In these centers,
operators deploy service chaining as to steer traffic through the manage-
ment of a set of service functions. Service chaining is realized by using the
software-defined network and network function virtualization technologies.
Service chain management can reduce network latency by offloading the
workload or bandwidth from the core network service [30].

Mobile edge computing and caching are considered as a promising solution that
supports many emerging applications and services with specific constraints of
latency, energy, and reliability [31]. In the following section, comparison of
different caching techniques in mobile edge network are presented.

4 Caching in Mobile Edge Network

Most research work in the literature cache either uncoded contents or un-
coded parts of files during the placement phase. The base station broadcasts
the coded files (linear combination of multiple files) to user terminals during
the content delivery phase. Then, the users can decode their files simulta-
neously [54]. During the delivery phase, the cache memory contents of the
requested user are updated to store new files. There are different algorithms
and techniques to implement cache replacement. Researchers have proposed
caching algorithms for wireless systems that range from simple algorithms to
more advanced intelligent techniques. These algorithms are divided into two
main streams. The first is cache replacement algorithms based on prior knowl-
edge about contents popularity, while the second is cache replacement without
prior knowledge about contents popularity [55]. Table 5 shows a comparison of
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Table 3 Overview of Techniques Based Energy Efficient in Mobile Edge Computing and
Caching.

Area Ref Approach Summary

[24] Markov decision Propose a spatial and temporal computation
process (MDP) offloading decision algorithm in edge

cloud-enabled heterogeneous networks.

C
o
m

p
u

ta
ti

o
n

o
ffl

o
a
d

in
g

[32] Minority games Develop distributed server activation
theory mechanism.

[33] Multi-label Develop a dynamic offloading framework for
classification mobile users.
and deep learning

[34] An approximation Present centralized cloud and MEC over
collaborative FiWi networks and the cloud-MEC
computation collaborative computation offloading
offloading model.

[35] Karush Kuhn Design an energy-efficient autonomic
Tucker Lagrangian offloading scheme for physical layer design
multiplier method and application latency.

[36] Dynamic sequential Propose an adaptive sequential offloading
game theory game approach.

T
a
sk

ca
ch

in
g [26] Mixed integer Caching of complete task application and

non-linear their related data and design a multi-user
programming computation offloading algorithm in edge

cloud.
[37] Poisson point processes Analyse energy consumption of cache-

modelling of BS power enabled wireless network using spatial model

C
o
n
te

n
t

ca
ch

in
g and locations based on stochastic geometry.

[38] Lagrange multiplier Exploit statistical information on individual
and duality popularity preferences in caching policies.

[39] Social-tie factor Proposed social-aware cache information
Modelling processing for future ultra-dense networks.

[40] Dual decomposition Propose joint design of the transmission and
and a sub gradient caching policies and formulate problem that
algorithm minimize a generic cost function.

R
es

o
u

rc
e

A
ll
o
ca

ti
o
n

[41] Mixed discrete- Propose a joint caching and offloading
continuous mechanism that optimally allocate the
optimization storage resource at the BS for caching

and the uploading and downloading time
durations.

[42] Dual-decomposition Propose optimization problem to jointly
method and alternating consider bandwidth provisioning and content
direction method of source selection.
multipliers

[43] Graph theory Propose multicast caching in dense small cell
networks when a group of users can benefit
from multicast caching at a lower energy cost.

M
u

lt
ic

a
st

a
ll
o
ca

ti
o
n

[44] Distributed potential Propose a distributed joint computation
game model and offloading and optimization scheme in
cloud and wireless heterogeneous networks.
resource allocation
algorithm

[45] Clustering method Propose a user attribute aware video
based on game distribution mechanism using scalable video
theory coding.
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Table 4 Overview of Techniques Based Latency Efficient in Mobile Edge Computing and
Caching.

Area Ref Approach Summary

[46] Heuristic search, Formulate an optimization problem to jointly
reformulation minimize the latency and offloading failure
linearization probability.
and semi-definite

C
o
m

p
u

ta
ti

o
n

o
ffl

o
a
d

in
g relaxation

[47] Lyapunov Propose a dynamic policy for task offloading
stochastic and resource allocation.
optimization

[48] Lyapunov Investigate a green MEC system with energy
optimization harvesting devices and propose computation

offloading strategy.
[36] Dynamic Propose an adaptive sequential offloading game

sequential approach and design a multi-user computation
game theory offloading algorithm.

[49] Markov decision Develop a post-decision state based learning
process algorithm that learns the optimal joint offloading

and auto scaling policy on-the-fly.

S
er

v
ic

e
ch

a
in

[30] Hash-based Propose a hash-base group table to reduce the
group computation time for assigning user into groups
Management to reduce the control plane latency.

[50] Transfer Propose a proactive content caching optimization

C
o
n
te

n
t

ca
ch

in
g learning model.

algorithm
[51] Assessment Propose a prototype implementation of a mobile

tests of edge cache.
caching
solution

[31] Submodular Propose resource cognitive intelligence based on
optimization learning of network contexts and design an optimal

R
es

o
u

rc
e

a
ll
o
ca

ti
o
n caching strategy.

[52] Auction theory Propose a decoupled resource allocation model that
manages the allocation of computing resources
distributed at the edges independent of the service
provisioning management performed at the service
provider end.

[53] Nash Propose resource optimization problem based
bargaining users fairness and the global throughput.
game

different caching techniques in literature in terms of their dependency on con-
tent popularity, online learning, training phase, context-aware, socially aware,
mobility aware, and prediction ability.

In [56] and [57] least recently used (LRU) and least frequently used (LFU)
algorithms are used respectively. These techniques are simple cache replace-
ment algorithms that do not consider future content popularity and update
the cache continuously during the delivery phase. In the LRU algorithm, the
cache includes an ordered list which is updated to follow the recent access of all
cached contents. When the cache is full, the new content is placed in the least
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recently accessed cache content. The content of cache can be changed based
on prior knowledge of content popularity. The research work in [58] and [59]
use popularity statistics of different video files modeled using a Zipf distribu-
tion. The cache replacement algorithm by tracking variations in the popularity
distribution and updating cache content at user terminals and collaborative
device to device communication are combined to increase the efficiency of
content delivery. There is a trade-off between having an optimal content re-
placement that predicts future requests efficiently and the speed of computing
the content popularity. Also, in these methods, there is no personalization to
user context and preferences.

In [60] and [61], authors exploited storing of video files closer to users
in femto caches. They formulate the problem with the aim to increase the
throughput by unloading a lot of traffic from the main cellular network. The
work presented in [2] proposes caching and multicasting techniques. Caching
aims to allow popular content files at network edges in order to shorten the
distance between contents and requesters. While multicasting aims to serve
identical requests happening at nearby locations through common multicast
streaming by sending multiple copies of the same content to different users.
The exploiting of proactive caching contents based on file popularity and cor-
relations among users and files patterns are proposed in [3]. Files can be proac-
tively cached during off-peak demands by using a machine learning algorithm
and collaborative filtering, with context-awareness. The procedure aims to pre-
dict the set of influential users and social structure, and to proactively cache
strategic contents on those user terminals to utilize device-to-device commu-
nications. This approach requires a training set of known content popularities
and can learn during a training phase to decide which content to place in the
cache.

In [62], the cache strategy is modeled in a heterogeneous small cell net-
work using a reinforcement learning based coded caching framework. Authors
have designed an optimal cache placement policy that uses the learned file
popularity to find the optimal cache contents. The cache placement policy
takes into account the users’ connectivity to the SBS. At regular intervals, the
cache pre-fetches segments of the popular files (coded) to serve users’ requests.
Caching algorithm is presented in [63] based on contextual multi-armed ban-
dits optimization. In this algorithm, the SBS updates its contents regularly
by observing the demand of cached files and learns the contexts of popularity
profile over time. The objective of the multi-armed bandit optimization is to
maximize the number of cache hits. While in [64], a different extension of the
multi-armed bandit framework is proposed. In this framework, the authors
have exploited the topology of user connections by incorporating coded cache
contents. Based on observations of instantaneous demands that assume con-
tent popularity distribution, an optimal cache content placement strategy can
be achieved. While previous algorithms do not consider future prediction of
popular contents in the design of cache replacement algorithm, the work in
[65] and [66] aim to learn popularity trends. Their works include the design
of context-aware proactive caching. There is no prior knowledge about con-
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tent popularity in [65], while in [66] the cache replacement method learns the
popularity of contents and uses it to determine which contents to place in the
cache and which contents to evict from the cache.

5 Comparison of Different Caching Techniques in MEN

There are different studies that formulate the caching problem at the edge
of the network. These proposals examine the problem from different perspec-
tives. In each study, the optimization problem is formulated based on input
attributes that are manipulated by the optimization algorithm and the scheme
of caching used in the model. The performance indices in these proposals are
overall delay, user satisfaction ratio, offloading probability, and total through-
put. They have one general common objective which is redirecting user re-
quests from the expensive and limited backhaul links to local cache storages
at the edge of MEN networks. Table 6 illustrates a comparison between dif-
ferent caching techniques in MEN networks.

In [67], the authors studied the association between UTs and SBS in small
cell networks. Based on file availability in SBS and the backhaul congestion
state, the SBSs decide which users they should serve. The problem is formu-
lated using one-to-many matching game theory. In [68], two proactive caching
scenarios are examined. The goal in both cases is to keep user satisfaction ratio
above the required limit. In the first case, the contents are cached proactively
at the SBSs during low-peak demands. The cache procedure is built based
on supervised machine learning algorithm using singular value decomposition
(SVD). This technique includes two parts. The training of the input matrix
that represents the users’-to-files rating association and predictfollowed by
conclusions and future work in Secting what files each user will request (file
popularity matrix). In the second case, the contents are cached proactively in
users’ devices. The centrality metric is used to measure the social influence
of a node and its connection with other nodes (social community). Then, the
k-means clustering method is used to form a set of influential users within
a community (users’ social ties). Proactive caching procedure considers the
number of times each file is downloaded by each user to form a user-to-files
history matrix. The beta distribution is assumed to denote the probability
that a content is selected by a given user. The popular contents that will be
cached in influential users’ devices are selected based on Chinese restaurant
process (CRP). By caching at UT and enabling D2D communication, the load
on SBS and backhaul loads are reduced [68].

In [69], optimal two one-tier caching placement is presented based on the
difference of convex programming. The objective of the optimization problem
is to maximize the offloading probability. The offloading happened in three
cases:

1. Self offloading when the requested contents are found on UT (local cache),
2. D2D-offloading when the requested contents are found from near devices,

and
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3. SBS-offloading when the requested contents are found in near SBS.

Their results show that popular contents must be cached under relatively low
node density while other contents must be cached evenly under relatively high
node density.

In [70], the author formulates the caching problem as a video recommenda-
tion system. They clustered files and users depending on video file preferences
and formulate the cache scheme in two phases: the D2D cooperative phase
where files are stored in UTs and caching phase where files are stored in SBS.
The optimal caching is designed based on the greedy intra-cluster algorithm
to obtain minimum total average file download time. The results show that
clustering files before applying the optimal caching algorithm can reduce the
computational complexity of the huge number of involved users and files. The
work in [71] proposed joint caching, routing, and channel assignment for video
files in collaborative small cell cellular network. Their objective is to maximize
network throughput by using conflict graph to characterize the communication
link interference. The optimization problem is modeled as a large-scale linear
programming problem that is solved using column generation method. The
algorithm selects a subset of variables that have potential improvements to
the objective function in order to minimize the complexity of the optimization
problem. The optimization problem is then divided into two sub-problems: re-
stricted master problem (RMP) and pricing problem (PP). Their results show
that the overall throughput of the video data that can be delivered to users,
is considerably increased over the state-of-the-art femto caching models. In
[72], proactive caching is designed based on traditional collaborative filtering
by regularized decomposition to estimate the popularity matrix. Then transfer
learning is used to improve the estimation accuracy by transferring and learn-
ing hidden knowledge from other domain such as social networks. Finally, an
optimal caching strategy is implemented as a distributed iterative algorithm
to update the cache. Results show that user satisfaction ratio increases with
the number of SBS compared to other caching approaches. Authors in [73] in-
vestigate proactive caching for service providers to reduce redundant backhaul
transmission to edge nodes (ENs). The Stackelberg game is used to formulate
the problem and it was decomposed into two sub-games, a storage allocation
game and a number of user allocation games. The service provider is mod-
eled as a leader that decides the prices for the storage and backhaul resources
on ENs. ENs are modeled as followers. Their results show that lower total
backhaul resources can be achieved with proactive caching based game theory
compared with centralized popularity based caching and random caching. The
authors discussed the complexity and scalability of edge caching in wireless
communication networks where there will be a large number of ENs, users,
and service demands and will involve a huge amount of data. The complexity
is defined as the number of iteration steps of the caching algorithm and the
amount of information exchanged between network edges. The performance
of the caching algorithm with the increase of network size is addressed with
the scalability of the caching algorithm. The popularity estimation used in
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Fig. 2 Different caching techniques objectives in MEN.

caching techniques for video files in the work presented previously is based on
user request probability or the number of views of videos. The work in [74]
computes video popularity for published and unpublished videos using intel-
ligence based content-awareness. The prediction of video popularity enhances
cache placement decision as well as the quality of service in cellular networks.

In [76], an adaptive caching scheme is proposed that takes into account
user behavior, content popularity, request statistics from users, and operating
characteristics of the cellular network. The network operating characteristics
include network topology, link capacity, routing strategy, cache size, and en-
ergy usage to read/write files from hardware storages (which is called cache
deployment cost). The content popularity is predicted using the extreme learn-
ing machine (ELM) based on content features. The features of the content are
computed using a combination of human perception models and network pa-
rameters. The adaptive caching scheme uses a mixed-integer linear program
(MILP) to cache the results of popularity estimators. The caching decision
is made while the network is not heavily utilized. Without affecting network
quality of service, popular content can be transferred between BSs. The im-
pact of mobility awareness in cache placement algorithm is discussed in [77].
The authors formulate the problem of caching coded segments at BSs and UTs
taking into account users mobility and the content amount per transmission.
The optimization problem is formulated as an integer programming problem
that can be solved by submodular optimization.
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6 Challenges in Designing Caching Techniques

As illustrated in Figure 1, mobile edge network (MEN) consists of multiple
small base stations (SBSs) and user terminals (UTs). Each macrocell consists
of one MBS connected to a gateway of the core network via a high-speed
interface, N SBSs which are connected to the MBS through backhaul links,
and M UTs connected to neighboring devices through D2D communication
and to SBSs. The sets of SBSs and UTs are denoted by s={s1, s2, · · · , sN}
and u={u1, u2, · · · , uM}, respectively. There are cache storage in each MBS,
SBS, and UT with different storage capacities. Within one macro cell, cache
storage capacities can be defined by two sets cs={cs1 , cs2 , · · · , csN } and cu =
{cu1

, cu2
, · · · , cuN } for SBSs and UTs caches, respectively. Assume that MBS

has enough cache capacity to store F files defined by the set f={f1, f2, · · · , fF }.
Following the study of different caching techniques in literature, we can sum-
marize the following challenges:

6.1 Content Popularity Modelling

In order to improve the performance of caching strategies, it is required to
incorporate content popularity in caching decision making [66]. The content
library consists of F files and stored at the MBS cache. Each file is fz for
z = 1, · · · , F . The size of file fz is denoted as flz . The files are requested from
the main library based on their popularity distribution. The popularity of the
F files are denoted by the set p, where p={p1, p2, · · · , pF }. The set p can be
characterized by Zipf popularity distribution. If the files are arranged from
the highest popular file to the lowest popular file, the popularity of the i− th
ranked content can be shown by Eq. (1) [78]:

pi =

1
fγi∑F
i=1

1
iγ

. (1)

The distribution for file fi is characterized by the exponent factor γ, also
called the skewness of the popularity. When γ = 0, the popularity is uniform
over contents. As γ grows, the popularity becomes more skewed. Table 7 shows
the methods used to model content popularity in literature. In many work, the
popularity of files are generally modelled using Zipf distribution of all files. Zipf
distribution gives a fixed popularity profile and it is assumed that content
popularity is known in advance. Based on Zipf distribution, a small portion
of Internet contents is highly popular while the rest is rarely requested [74].
In reality, content popularity needs to be estimated depending on number of
related factors and not only on the content popularity distribution. Examples
of these factors are files’ preferences, users’ preferences, users’ context, social
network characteristics, users’ previous requests, etc. Also, content popularity
must not be fixed and it is expected to change continuously with time, date,
and location.
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Table 7 Content Popularity Modelling in Caching Techniques

Ref. Content Popularity Method

[56], [57], [60], [61], [2], [3], - Zipf distribution.
[64], [73], [67], [71], and [77]
[79] - Number of views vs rank of videos in terms of views.
[74] - Feature extraction and popularity prediction

for unpublished videos.
[72], [62], and [76] - Popularity estimation based on learning methods.

The approach in [79], assumes the popularity of video contents changing
slowly and the popularity distribution of all files can be considered as fixed and
known prior to the cache placement algorithm. They defined the popularity
distribution of video files depending on the number of views vs the rank of
videos in terms of views. In [63], context-dependent popularity profiles are
learned online while observing connected users’ demands and their context
information. The placement algorithm does not depend on prior knowledge of
content popularity, but it models connected users’ context-dependent demands
of files following Zipf distribution. The context information used in modeling
the content popularity is the maximum number of users that can be served by
SBS, the fraction of female users, and the fraction of underage users. The total
number of files that are used in Zipf distribution formula is divided according
to the context information of connected users.

In [74], the authors proposed a popularity prediction model for video files.
The popularity of video contents is estimated from both published (statisti-
cal information) and unpublished video (newly uploaded videos). The process
consists of the following stages, (1) Feature extraction from unpublished videos
based on deep neural network technique, (2) Clustering the features resulting
from stage 1 based on collaborative filtering technique, and (3) Fitting a re-
gression model to predict the popularity of unpublished videos while using the
statistical information of the published videos as a training set to the regres-
sion model. The approach in [72] used Zipf distribution as the training set to
design a learning based approach. Their model estimates content popularity
using regularized decomposition based collaborative filtering and they improve
estimation accuracy using transfer learning technique.

6.2 User Mobility

Modeling user mobility depends on spatial and temporal properties. The spa-
tial properties provide physical location information of user mobility patterns,
while the temporal properties provide time-related information [80]. User mo-
bility can be modeled by assuming a pairwise contact process that follows an
independent Poisson process. The work in [81] implies that the occurrence
time of pairwise contact event can be predicted in large time scale. The Pois-
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son process is used for counting the occurrence of contacts between UTs, and
between UTs and SBSs occurring at a certain rate.

To establish successful communication between mobile UT ui and SBS
sj , ui must be within the communication radius of SBS sj . For independent
Poisson process, the pairwise contact duration TSBSi,j between mobile UT ui
and SBS sj follows the exponential distribution with parameter λSBSi,j . Here,

λSBSi,j represents the contact rate between mobile UT ui and SBS sj . The

contact duration TSBSi,j when mobile UT ui is within the communication range
of SBS sj can be defined as follows [77]:

TSBSi,j = {(t− t0) : ||ltj − lti || < dSBS , t > t0}, (2)

where t0 represents the most recent time when mobile UT ui enters the com-
munication range dSBS of SBS sj . The locations of SBS sj and mobile UT ui
at time t are represented by ltj and lti , respectively.

Similarly, to establish successful communication between mobile UT ui and
mobile UT uk, the shortest distance between the two devices must be within
the communication range dD2D. The contact rate between mobile UT ui and
mobile UT uk is represnted by λUTi,k . The contact duration TUTi,k when mobile

UT ui and mobile UT uk are within the communication range of dD2D can be
defined as follows [77]:

TUTi,k = {(t− t0) : ||lti − ltk|| < dD2D, t > t0}, (3)

where t0 represents the most recent time when mobile UT ui enters the com-
munication range dD2D of mobile UT uk, and lti and ltk represent the locations
of UT ui and UT uk at time t, respectively. In most of the work discussed in
previous sections, it is assumed that users remain stationary while requesting
and obtaining files. Research with this assumption does not include mobility
as an effective parameter while taking cache placement decisions. A user may
be served by any SBS located in the user communication range. Considering
mobility on the caching design in future wireless networks caching, can be
classified into three categories based on cache location:

1. Cache in SBS: In these research [82], [83], [84], and [85], file caching in SBS
while user mobility is considered.

2. Cache in mobile UT: In these research, [86], [87], [80], [88], [89], and [90],
user mobility-aware caching design are proposed by utilizing D2D commu-
nication links.

3. Cache in SBS and mobile UT: In [84], [80], [85], and [91], the researchers
proposed user mobility-aware cache placement in SBS and mobile UT.

Caching efficiency can be improved by exploiting user mobility aware cache
placement in SBS and UT [80]. However, few cache placement techniques have
taken the impact of user mobility [77]. Most existing approaches which esti-
mate cache contents proactively face the redundancy problem. This has hap-
pened in some caching strategies that have neighboring SBSs storing the same
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popular contents. Redundancy results in wastage of cache resources and min-
imizes the cache storage capacity that is available for users. The interactions
between network edges should be taken into account while optimizing the
caching strategy [92].

6.3 Power Constraint

Energy consumption becomes a more challenging problem in the design of
wireless communications due to increase in energy consumption cost, number
of broadband wireless network users, and growing demand of the contents in
the future networks [93]. Delivering contents from SBS to UTs and from UT to
another UT will consume power and drain energy at both the network and UT.
Cache system should be designed with an objective to find optimal transmit
power and sustain the continuous growth of power consumption [94]. There
are two power consumption models presented and discussed in [77], as follows:

1. Energy consumption for D2D caching:
It is assumed that the interference of D2D communication is not considered.
When UT uk transmits the cached contents to UT ui, the components of
power consumption of UT uk are given as follows:

• βUT is the inverse of power amplifier efficiency factor of mobile UT uk,
• PukT is the mobile device transmission power of mobile UT uk,
• PukC is the circuit power consumption of mobile UT uk,
• PukH is the energy consumption of caching hardware devices of mobile

UT uk.

Then, power consumption of UT uk, ∀k is given by:

Puk = βUT × PukT + PukC + PukH ,∀k ∈ {1, · · · ,M}.
Neglecting the energy consumed for delivering the cache contents, the
power consumption can be written as:

Puk = βUT × PukT + PukC ,∀k ∈ {1, · · · ,M}. (4)

When UT uk transmits file fz of length flz to UT ui, the energy consump-
tion can be computed as [77]:

Eukz =
flz
Ri,k

.(βuk × P
uk
T + PukC ),∀k ∈ {1, · · · ,M}, (5)

where the data rate Ri,k of D2D communication between UT ui and UT
uk can be calculated as follows:

Ri,k = WUT
i,k log2

(
1 +
PukT .d−αUTi,k

σ2
UT

)
,∀i ∈ {1, · · · ,M},

∀k ∈ {1, · · · ,M},
(6)

and
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• WUT
i,k is the channel bandwidth from UT uk to UT ui,

• di,k is the distance between ui and uk,
• σ2

UT is the average noise power for D2D communication,
• αUT is the path loss factor.

2. Energy consumption for SBS caching
Similarly, to compute the energy consumption to transfer file fz from SBS
sj to UT ui, it is assumed that there is no interference between SBSs. The
downlink speed Ri,j is given below:

Ri,j = WSBS
i,j log2

(
1 +
PsjT .d

−αSBS
i,j

σ2
SBS

)
,∀i ∈ {1, · · · ,M},

∀j ∈ {1, · · · , N},
(7)

where
• WSBS

i,j is the downlink transmission bandwidth from SBS sj to UT ui,

• PsjT is the SBS transmission power,
• di,j is the distance between ui and sj ,
• σ2

SBS is the average noise power in communication with SBS,
• αSBS is the path loss factor.
Then, the components of power consumption of SBS sj are given as follows:

• βSBS is the inverse of power amplifier efficiency factor,
• PsjC is the offset of site power.

When SBS sj transmits file fz of length flz to UT ui, the energy consump-
tion can be computed as [77]:

Esjz =
flz
Ri,j

.(βSBS × P
sj
T + PsjC ). (8)

Formulating cache system requires involving the trade off between mini-
mizing energy consumption by caching contents at the edge of the network
closer to user terminals and maximizing the probability of content popularity
to place contents that will be requested by users in the near future. Caching
contents requires energy to deliver the contents from MBS to SBS and UT
caches. If these contents are not requested by users, and users request other
contents which will be delivered again from MBS, then the energy consumed on
filling SBS and UT caches was lost. The challenging problem is the adapting of
a caching system to reduce power transmission by caching contents that has
high probability of popularity. Table 8 illustrates power consumption-aware
caching algorithms proposed for wireless networks.

6.4 Quality of Service (QoS)

The quality of service (QoS) is a network performance characteristics that is
experienced by the end user. Two critical metrics can be used to refer to the
QoS in MENs, they are: latency and throughput. These constraints need to be
taken into account while formulating the optimization problem of caching at
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Table 8 Power Consumption-Aware Caching Systems

Ref. Contribution

[95] - Proposed content caching for smart grid enabled wireless multimedia
transmission system with optimal power allocation to users.

[77] - Proposed an optimal transmit power of SBSs and UT in order to reduce
the delivery energy cost.

[96] - Developed a framework to minimize the total network power consumption by
a joint design of adaptive BS selection, backhaul content assignment
and multicast beam forming.

[97] - Proposed optimal allocation cooperative caching scheme for industrial
internet of things (IIoT) in 5G heterogeneous energy consumption.

[98] - Formulate the optimal caching placement at the wireless the energy efficiency
of heterogeneous edge that maximize wireless networks.

[99] - Design a green content caching and mobile user–base station association
mechanism in the SCNs.

[100] - Propose two energy-efficient caching in heterogeneous networks: scalable video
coding (SVC) based fractional caching and SVC-based random caching.

the edge of MEN. Table 9 and Table 10 summarize previous work on latency
and throughput computation in caching scheme for wireless network.

1. Latency: In caching systems, latency refers to the average content delivery
delay experienced by the end users [101]. According to cache types, latency
can be classified into three types:
(a) Average latency of delivering the requested content from another nearby

UT cache through D2D communication.
(b) Average latency of delivering the requested content from nearby SBS

cache.
(c) Average latency of delivering the requested content from nearby MBS

cache.
The latency is also refereed to as : delay, download time, and content de-
livery deadline. In future wireless networks, new services and applications
will appear, such as augmented reality (AR) and virtual reality (VR) that
have tight latency requirements than typical video streaming. Caching at
the edge of the network promises to reduce latency required for requested
data access and delivery. Table 11 illustrates the target requirements for
different services and applications [102], [103], [104], and [105]. The reliabil-
ity can be defined as the probability of successful transmission of a certain
amount of data from one peer to another peer within a given deadline or
time frame [106]. Additionally, storage indicates if the target service re-
quires storage capacity for its manipulated data and the mobility indicates
if the service needs processing of user terminals locations. Based on the
requirements given in Table 11, latency is highly critical in most of these
applications and services.

2. Throughput: In caching systems, the throughput refers to the data units
that can be delivered through the network per unit time interval [101].
In MEN, this metric is used as a joint indicator of network transmission
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Table 9 Latency Computation in Caching Schemes

Ref. Contribution

[107] - Proposed latency-centric placement and delivery strategies for cloud
and cache aided wireless networks.

[88] - Propose cooperative vehicle-aided content edge caching scheme to minimize
the content delivery latency.

[108] - Proposed hybrid content caching algorithms for joint content caching control
in BSs and cloud units (CUs) subject to finite service latency.

[109] - Proposed a joint caching and association strategy to minimize the average
requested content download delay.

[110] - Proposed an optimal cooperative content caching and delivery policy aiming
to minimize the average downloading latency.

[111] - Proposed two content caching policies: caching popular files and greedy
caching in BS and D2D with the aim to minimize transmission delay.

[112] - Proposed probabilistic caching placement-aided throughput in stochastic
wireless D2D caching to measure the density of successfully served requests
by local caches.

[113] - Proposed deterministic caching algorithm and enable D2D connections based
on reinforcement learning to minimizing the download latency.

Table 10 Throughput computation in Caching Schemes

Ref. Contribution

[115] - Proposed femtocaching and D2D collaboration to improve video throughput.
[111] - Proposed two content caching policies: caching popular files and greedy

caching in BS and D2D and investigate the behaviour of the average
throughput per request.

[116] - Proposed optimal file placement for deterministic and random caching with
the aim to increase throughput for high user density wireless video network.

[113] - Proposed deterministic caching algorithm based on reinforcement learning
to maximize system throughput.

capabilities. Authors in [114] discuss throughput capability in decentralized
coded and uncoded caching in a multihop D2D communication for next
generation cellular networks. They illustrate the effect of using UT cache
placement strategy on the increase of throughput capabilities.

6.5 Caching for Emerging Applications and Networks

Recently, new applications and services such as AR/VR, IoT, traffic moni-
toring, and big data processing with their requirements discussed in Sect. 6.4
have been emerged. In addition to their target requirements, these applica-
tions includes various types of sensors, are launched to be used by different
types of mobile devices, and produce a wide variety of data. Therefore, MEN
has been introduced with the cloud computing capabilities, IT service environ-
ment, and caching at the edge of the network to transfer the data processing
and caching to the edge of the network. However, there are some points that
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Table 11 Target Requirements for Different Services and Applications in Future Wireless
Networks

Application/ Bandwidth Latency Reliability Storage Mobility
Services

AR/VR 1Mbps-16Mbps < 1ms ≤ 10−5 High High High
Image/Video 10Mbps (5 − 10)ms ≤ 10−7 High High
Editing
Gaming 10Mbps < 1ms ≤ 10−5 High Low
Image/Voice 1Mbps -1Gbps < 1ms ≤ 10−5 High High
/Image
Recognition
IoT (1 − 100)Mbps < 20 ms ≤ 10−9 High High
Big Data (1 − 100)Mbps < 20ms ≤ 10−9 High Low
Radio/ > 1Mbps (100 − 1000)ms ≤ 10−7 Medium Low
Backhaul
Optimization
Traffic (1 − 10)Mbps 1000ms ≤ 10−9 Medium High
Monitoring/
Shaping

need to be considered in designing energy and latency efficient caching in MEN
to overcome the problems that face emerging applications and networks:

1. Offloading tasks from mobile device with limited capabilities to the nearest
mobile edge server may face delay due to congestion in communication
environment in mobile edge server. In this case, task requirements (in terms
of latency and reliability) will not be met. Therefore, it is important to
select mobile edge server that provide communication, processing time,
and storage capacity not necessarily the one with the shortest distance
[117].

2. Many of these emerging applications are intelligent applications such as
personalized shopping recommendation, video surveillance, intelligent per-
sonal assistant, and smart applications. Artificial intelligence (AI) applica-
tions require big data analysis. Mobile devices running these applications
may suffer from limitation in device capabilities to perform high compu-
tation, poor performance, efficient energy, and limited data storage. The
merge of MEN and AI is required such that MEN collaborate between edge
devices and SBSs to serve users requests and AI simulate intelligent human
behaviour in mobile devices by learning from previous data [118].

3. In smart industry, unmanned aerial vehicles (UAV) have been deployed
to assist MEN infrastructure. UAV is a mobile device that can host SBSs
storage and edge computing and has the advantage of being equipped with
cameras, sensors, and devices for communication. In emergency commu-
nication scenarios that happen in MEN having dense zone characterized
by large number of users generating large number of service requests. The
number of SBSs in one area may fail to cover and serve users. UAVs can
be used to host SBSs storage and computation capabilities. MENs based
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UAVs architecture proposed to cover and serve users in challenged network
situations [119].

7 Learning and Decision Technique for Optimal Caching Design

In next-generation 5G wireless networks and beyond, ultra-dense heteroge-
neous networks which are highly dynamic and complex, will add many chal-
lenges for network design and management. The wireless network will face
huge data consumption from connected users and machines, that adds more
complexity and challenges. The design of MENs that includes distribution
of computational resources and storage devices in the form of local caches
enables the utilization of decision theory, complex machine learning (ML),
and AI approaches to providing possible solutions for the growing challenges.
Developing an optimal caching system with frequent changes of input param-
eters (users’ mobility, file requests probability, and contents popularity) with
an objective to maximize network throughput, minimize power consumption,
and minimize content download time, is a highly computational complexity
problem. A learning and decision technique based approach allows combining
reasoning, learning, prediction, and decision making algorithms to efficiently
find solutions for optimal cache design.

In the literature, there are number of research work in cache developments
for future wireless networks that applied learning and/or decision approaches
in a specific domain in their design. Table 12 illustrates a summary of these
research and the solution they provided. A brief review of some of future
research directions for the development of cache systems are discussed in the
following.

7.1 Decision Theory

When the problem requires to select one action from several possibilities, we
will require to formulate a decision-making problem. In statistical theory, the
branch that deals with such problems are called statistical decision theory or
hypothesis testing [133]. In possibility theory, there are a variety of informa-
tion fusion operators. Mainly they can be classified into three groups [134] as
follows:

1. Conjunctive operators: Can be used for merging agreeing sources and they
search for values when all the sources are agreeing.

2. Disjunctive operators: Can be used for merging conflicting sources.
3. Trade-off operators: Can be used for partially in conflict sources.

7.2 Evolutionary Approaches

Evolutionary approaches (soft-computing) can be used to solve NP-hard prob-
lems that requires hard computations. The model resulted from evolution-
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Table 12 ILTs for Caching System.

Learning Technique Paper Technical Solution

Regularized SVD [4] - Proactively cache files based on file popularity
K-means clustering and correlation among users. They exploit

influential users in social structure of the network
to cache strategic contents.

RSVD based CF [72] - Estimate the content popularity and improve
and TL the estimation accuracy.
Deep learning [120] - Predict content popularity.
Extreme learning [76] - Estimate the popularity of cache content based
machine (ELM) on the features of the content.
Deep belief [121] - Extract semantic information of user playback
network (DBN) pattern.
Cumulative filtering [122] - Predict the content popularity distribution.
ML on Hadoop [123] - Estimate content popularity.
framework
Clustering technique [124] - Track the evolution of content popularity

over time.
Clustering technique [125] - Content popularity based users clustering.
Reinforcement learning [126] - Enabling access points to learn the optimal

fetching-caching decisions.
Q-learning [127] - Learn, track, and adopt optimal policy.
Rank-Directed Sparse [128] - Estimate content popularity.
Bayesian Learning
Transfer learning [129] - Estimate content popularity.
Deep neural [130] - Proposed caching placement and content
network (DNN) delivering optimization algorithms.
Bayesian learning [113] - Propose Bayesian learning method to predict

personal preferences and reinforcement learning is
and RL proposed for the content placement algorithm.
Genetic algorithm [131] - Proposed cache placement algorithm for

hierarchical collaborative caching.
Fuzzy soft set [132] - Proposed fuzzy soft-set decision making for cache
(FSS) placement algorithm.
Q-Learning [127] - Proposed an optimal online caching policy.
Deep Learning [130] - Proposed a DNN to train an optimization

problem for cache placement, user association,
and content delivery.

ary approach is able to manipulate uncertainty and incomplete datasets. Two
types of evolutionary approaches are used in the design of caching systems:

1. Genetic Algorithm: The most popular evolutionary strategy that can be
used to solve multi objective optimization problems. The model is designed
by deriving from previous generations. The individuals are allowed to repro-
duce and cross among themselves with a bias allocated to the fittest mem-
bers. New generations result from the combinations of the most favourable
characteristics of the mating members of the population. New generation is
better to fit than previous generations. The control parameters of genetic
algorithm are: the number of individuals in the populations, crossover prob-
ability, mutation probability, and number of generations [135]. The authors
in [131] proposed a hierarchical collaborative caching strategy focusing on
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content placement for 5G networks. The objective of the cache placement
optimization problem is to maximize the saving in total latency of the sys-
tem. The optimization problem is formulated as two sub-problems that are
proved to be NP-hard. To solve the computational complexity of the prob-
lem, they used genetic placement algorithm to find approximate optimal
solution.

2. Fuzzy Logic: Fuzzy logic system is used to find solutions for problems with
uncertainty under membership degrees perspective. Fuzzy systems allow
to represent set membership as a possible distribution. Since fuzzy theory
depends on degree of membership rather than probability (likelihood), this
makes fuzzy logic more effective in building fuzzy conditional inference
to model uncertain information. In [132], we have proposed an algorithm
for proactive caching based on fuzzy soft set (FSS) approach for decision
making on file caching. The algorithm decides which files to cache and
where to cache them depending on file popularity distribution, file to user
preferences, file clustering, and helpers to connected users clustering. Cache
placement based FSS learns the relationship between the popular files and
the preferences of the files with current connected users.

7.3 Machine Learning (ML)

ML techniques model the functional relationship between input datasets and
output actions with the aim to optimize some parameters. The resulted model
is able to estimate an output as close as possible to the actual value. ML
techniques can be categorized in two main groups: supervised and unsuper-
vised learning depending on whether the data is labelled or not. In supervised
learning, the aim is to model input and output datasets (labelled data) while
unsupervised learning aims to model the hidden structure from unlabelled data
sets. In caching systems, ML can be utilized to explore and extract knowledge
from connected users and network characteristics to build an intelligent deci-
sion making system to make decisions for cache placement, cache access, and
cache delivery options.

Some ML techniques have been applied in caching system such as: Rein-
forcement Learning (RL) and Deep Learning.

1. Reinforcement Learning: In reinforcement learning, the machine interacts
with its dynamic environment through trial and error interactions. As a
result of the interactions, the agent learns actions by receiving input of
the current state of the environment and chooses the next action based on
possible actions. The agent action affects (change) the state of the envi-
ronment. The machine receives a value of the transition state, which can
be rewards or penalties. The goal is to learn a trajectory of actions that
maximize the rewards (or minimize the penalties) over its lifetime. Re-
inforcement learning learns the optimal policy that models environment
states and actions that will maximize (or minimize) its objectives [136].
In [127], SBSs prefetch popular content during off-peak traffic hours and
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send the contents to the edge of the network during peak period. The cache
control unit in the SBS is designed to learn, track, and adapt to the work
dynamics. The authors proposed an optimal online caching policy by de-
veloping Q-learning algorithm. The Q-learning scheme is introduced with a
linear function approximation to offer fast convergence, reduce complexity,
and obtain scalability over large networks

2. Deep Learning: Deep learning represents the form of learning that cre-
ates complex features by using multiple transformation steps. Much larger
quantities of data are used during learning steps. Deep learning techniques
show the ability to explore information included in massive data sets more
effectively than traditional ML techniques. Deep learning implies learn-
ing complex artificial neural networks (ANN) that extract progressively
patterns in the datasets. In traditional ANN, the three-layer perceptron
(input, hidden and output layers) learns by training the hidden and out-
put layers to adapt to the task of interest. In deep learning, more hidden
layers are added to the network to subject features to the sequence of trans-
formations. Each layer’s transformation represents an inference. Modeling
complex inferences can be made easier using the sequence of computational
steps. The depth of the ANN represents the complexity of the learning al-
gorithm. Some ANN learning algorithms include feedback loops. There is a
number of ANN deep learning techniques such as deep multilayer percep-
trons, deep convolutional neural networks (DCNNs), and recurrent neural
networks (RNN) [137].
Authors in [130] proposed a deep neural network (DNN) to train an op-
timization problem for cache placement, user association, and content de-
livery in advance and before applying these optimization algorithms in
real-time caching.

8 Conclusions and Future Work

In this paper, energy and latency efficient caching in mobile edge networks
(MENs) are reviewed. MEN enables the use of caching capabilities at the edge
of the network in macro base station, small base stations, and user terminals.
Different caching techniques are presented and compared. Then the challenges
that face the design of caching system in MEN are discussed. We propose to
use decision, evolutionary, and learning theoretical approaches to solve these
problems. MENs also enable complex computation to be done which allows
deep learning techniques to be adapted in these networks to solve problems
related to energy and latency constraints.

Upon review of recent developments in the design of caching in MEN,
we noted that there are several challenges in modelling and implementing
caching placement, access and delivery at the edge of the network due to
continuous changes in content popularity, user mobility, and number of users
within the network. More challenges appear in caching at MENs due to high
computation requirements of future applications that need to satisfy power and
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delivery time constraints with the quality of service requirements, improved
network throughput, and reduced end-to-end and backhaul delay costs. Future
research work is required to investigate the development of algorithms for cache
placement, cache access, and cache delivery by utilizing the data storage and
computing capabilities of mobile edge networks. The main focus is on using
learning and decision techniques to implement the algorithms.

In future work, we need to investigate the impact of user mobility, user
activities, and cell pattern on content caching that can minimize the latency
for providing the requested content to the users while on the move. More
investigations are required on the impact of previous behaviour (history of
file requests, cache contents, user activities, etc) and learn what can minimize
latency in future user requests. The aim is to find which files to cache at
SBSs and UTs to maximize the cache hit rate taking into consideration users
mobility, content popularity, and cache storage capacity. Also, we need to
develop cache access and cache delivery algorithms to minimize the download
time and energy consumption, respectively. An efficient solution is required to
build a model that is able to learn the hidden features in the input data sets,
features of system attributes and their relationships, the relationship between
cache placement in previous decisions, and cache access and delivery decisions
to predict next decisions that may improve overall system performance. The
solution approach needs to balance between the computation time and the
solution quality.
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