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Abstract. We calculate the energy momentum tensor to 
orde r  E 4 in chiral perturbation theory. New terms not 

present in previous work enter the effective Lagrangian. 

We describe these and estimate the values of  the new 

coupling constants, using the results of  a dispersive anal- 

ysis of the n and K energy momentum tensors and relying 

on tensor meson dominance for the spin two component. 

In addition, we compare our findings with the predictions 

of  known scalar meson dominance models of the con- 

formal anomaly. 

I Introduction 

The only rigorous technique for describing the predic- 

tions of  QCD at very low energies involves the use of 

chiral symmetry. These predictions are best described by 

effective chiral Lagrangians which compactly summarize 

the relations between amplitudes [1,2]. These Lagran- 

gians can be expanded in powers of  the energy, accom- 

panied by a loop expansion of  chiral perturbation theory. 

It is the purpose of this paper to describe the energy 

momentum tensor in the effective Lagrangian framework. 

Despite considerable work on chiral Langrangians, 

the energy momentum tensor has not yet been written 

down at the next to leading order (called order E here- 

after). It cannot be simply obtained from the presently 

known Lagrangian by calculating the Noether current 

associated with translational symmetry, because the 

equations of  motion have been used in writing down the 

minimal Langrangian at order E 4. This can be remedied 

by repeating the construction of  the minimal Lagrangian 

including a source which couples up to the energy mo- 

mentum tensor. We will show that this produces three 

new terms in the Lagrangian. We then complete the re- 

normalization of  the chiral theory with the new terms 

and explicitly display matrix elements of the energy mo- 

mentum tensor. Estimates of  the new couplings are also 

given. Finally, we establish contact with known scalar 

meson dominance models of  the conformal anomaly. 

* Permanent address." Institut fiir Theoretische Physik, Universit/it 
Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland 

Our investigation was originally motivated by the pos- 

sibility that nature might choose to equip the Higgs par- 

ticle with a very low mass, such that the dominant decays 

would be H ~ r r r t  and H--,/t  +/2- .  The pion decay chan- 

nel is related to ( n ~  ] 0 u 10), which was studied in several 

papers [3, 4, 12, 13, 16]. In the meantime, the experimental 

bounds on the decays Z - * H a  + l t -  and Z ~ H ?  appear 

to exclude this possibility. A different application con- 

cerns the decays g/'--*q/zrrt and F ' ~  Fzrn. In this case 

a multipole expansion of  the heavy quark transition pro- 

duces an operator again related to the energy momentum 

tensor [5]. The new terms which we describe are therefore 

relevant for an analysis of  the zt rt spectrum in these tran- 

sitions. 

II Effective Lagrangian 

The energy momentum tensor in QCD (or any other the- 

ory) can be identified by adding a source field gu~ coupled 

to the matter fields in a generally covariant fashion, i.e., 

like the metric tensor of  general relativity, 

, ,~( qI, Aau )--. ~ (  ll/, AaU, gUV ) . (1) 

With this substitution, the energy momentum tensor is 

formed by 

10.v (x) -~g.~ (x) 

x ]//-g f ~ ( ~ , A a u , g a V ) l g ~ = q ,  v . (2) 

Greens functions are found by functional differentiation 

of the effective action 

e i Z  = I d q/dq~ d A  au e i I dx4 l/g ~'(u, ,  Aau, guy) (3) 

This procedure is similar to the use of  external currents 

in order to identify current matrix elements in previous 

studies of  chiral Lagrangians. 

The effective Lagrangian which results at low energy 

will share the general covariance of  the underlying theory. 

This means that it must be constructed using covariant 

derivatives, with indices contracted using the metric ten- 

sor guy, and possibly the Riemann or Ricci tensors R urn'p, 
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R uv or the curvature scalar R. The latter are constructed 

by two derivatives of  the metric tensor and hence carry 

energy dimension E 2. All of  the metric functions are sca- 

lars under chiral symmetry. The chiral symmetry aspects 

of  the construction of  the effective Lagrangian are stan- 

dard and we concentrate on the new features involving 

the curvature. 

At order E 2 in the energy expansion, there are no 

factors of  curvature multiplied by chiral fields. The pos- 

sible terms are* 

2 ( 2 ) =  F2 {g ,V  T r ( D  u UD~ U t ) + T r ( ~ : U * +  U)r 
4 

+ H o R .  (4) 

Since the chiral matrix U is a Lorentz scalar the deriva- 

tives involved are just the usual derivatives with external 

currents 

D u U = d  u U - i l  u U + i  U r , .  (5) 

It  is well known that conformal symmetry and sponta- 

neously broken chiral symmetry are not compatible with 

one another [14]. The effective Lagrangian given in (4) 

contains a dimensionful coupling constant F 0 and the 

corresponding energy momentum tensor is not traceless. 

The standard " improvement"  [6] of  scalar field theory, 

which amounts to supplementing the kinetic energy with 

a term proportional  to R e  2, i.e. 

+ ~ R r  + (6) . . . .  1 . . .  

cannot apply here, because such a term breaks chiral 

symmetry. This is why the effective Lagrangian at order 

E 2 contains the curvature only through the term HoR 

which is independent of  the meson field and does not 

play any role in what follows. [In the context of  general 

relativity, this term represents the Lagrangian of  the grav- 

itational field, H 0 being related to Newton's  constant by 

H 0 =  -- (16 ~r G ) - ' . ]  
At order E 4, there will be two classes of  contributions 

to the effective Lagrangian. 

, ~ ( 4 )  = ~g~(4, g) _~_ ~ ( 4 ,  R) .  (7) 

In the first class are those formed without any factors of  

the curvature. These are the previously known terms [2], 

but with Lorentz indices raised and lowered with guv. In 

chiral SU(3) ,  this is 

~.O(4, g) 

=L~ [Tr (D u UD u U+)] 2 

+ L2 Tr  (D u U D,  U + ) Tr (D u UD v U + ) 

+ L3 T r ( D  u UD u U + D v UD ~ U +) 

+ L 4 T r ( D  u UD u U + ) T r ( x  U + +  UX +) 

+ L s T r ( D  u U Du U+ (X U+ + UX+))  

+ L 6 [ T r ( z  U + + UX+)]2 + L 7 [ T r ( x  U + _ UX+)] 2 

+ L  8Tr (Z  U + x  U + + UX + UX +)  

-- i Z 9 Tr (Fffv D u UD v U + + FuLv D u U + D v U) 

+ L l o T r ( U  + Fffv U F  Luv) 

+ H1Tr(FRUV Fffv + FLUV FuLv) 

+ H 2 T r ( z +  X).  (8) 

Here the field strength tensors FuL~ (R) are constructed with 

the external fields l u (r u). The last two terms are contact 

terms which do not contain the meson field. 

The second class of  contributions involve derivatives 

of  the metric. General covariance implies that these de- 

rivatives only enter through the curvature tensor 

= - -FwF/ j  ~ (9) RtT]./V r �9 

At order E 4, the general expression is of  the form 

~(4 ,  R) = L11R Tr  (D u UD u U + ) 

+ L1ERUVTr(Du UD~ U +) 

+ L 1 3 R T r ( x U  + + U Z + ) +  H3R2 + H4RUVRuv 

+ 115 R u ~ z  Ruw z , (10) 

where Ruv and R are the Ricci tensor and curvature sca- 

lar, respectively 

R u v = R ~ ;  R = g ~ V R u v  . (11) 

The contact terms involving the square of  the curvature 

are the standard counter terms occurring in the quantum 

theory of gravity at one loop order. In the present context 

only those terms which contain the meson field are rel- 

evant. They involve three new low energy constants Ll~, 

L12 , L~3 which are not determined f rom previous work 

on effective Lagrangians. 

III Renormalization 

Here we identify the renormalization of the coupling con- 

stants for the one loop treatment of  the effective action. 

This involves the calculation of the divergent terms in the 

one loop graphs generated by 2 (2). The general chiral 

field U is expanded around a background field 0 which 

is a solution to the equations of  motion in the presence 

of the external fields. We expand in a symmetric fashion 

U = u e i C u ,  (12) 

where 
* A cosmological constant needs to be added to tune the vacuum 
energy to zero - we omit this term 0 = uu.  (13) 
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After some algebra, we find 

Id4x 

: I d 4 x  I ] ~  ~ ( 2 )  ([Q)-}-F~2 ' A D A B  ~ B +  ~ ( ~3)1 , 

(14) 
where 

~=�89 

1 
D=~gg  du ]fggUV dv + a ,  

A B __ + I~aA B , d a --3ABO a 

/ ~ J~ =  --�88 ([2 a, A ~] ([u +, Ou u] (15) 

- - i u+  F f f u - - i u F ~ u +  )) ,  

e a a = ~ T r  ([), A, u + D u Ou + ] [2 a, u + D u Uu+]) 

+�89 2a} (u:~ + u + u + x u + ) ) .  

The full one loop effective action is then obtained by 

integration over the quantum fluctuations 

e iZ= I [d ( ]  e iI d4x*~, (16) 

resulting in 

/ = l d 4 x  1 ~  {=~(2) (r 

+ ~(a)(0)} +~ lndet D. (17) 

The divergences in the determinant can be worked out 

in various ways. The easiest method uses the heat kernel 

expansion, which has previously been worked out for 

differential operators in a background curved space 

[7, 15]. The divergent terms are 

i 1 1 
In det D = 

2 (47g) 2 d - 4  

;<l d4x 1 ~  [ T r { ~ l ~ u v l ~ U v + l a 2 + l R d }  

+ ( N 2 - - 1 ) ( 7 ~ R  2 -  ' o ou, ,  

1 +~R.w,R'wB)+ ...1 (18) 

for S U ( N )  chiral symmetry. The terms proportional to 

I~uv I ~u~ and 6 -2 lead to the renormalization of ~(4,g)  as 

has been given previously. The remainder, in particular 
the term 

N 
~ R T r O  = 1 2  R T r ( D u  UDU U+ ) 

+ N 2 -- 1 U+ 
~ R T r ( x  +/-IX+),  (19) 

is removed by a renormalization of  the couplings occur- 
ing in .EP(4' R): 

rm 
L i -- Li_I~iA 

r =H/-A~X, 

)~ (4rr) 2 d 4 � 8 9  , (20) 

N N 2 -  1 

/ ' 1 1 -  12' / ' ~ 2 = 0 '  / ] 3 -  1 2 N  ' 

N 2 -  1 (N 2 -  1) 

A3-- 72 ' A 4 =  - A s -  180 

The finite terms have been added to )L for later conven- 

ience. 

IV The energy momentum tensor 

The effective Lagrangian specified above determines the 

Green functions involving the energy momentum tensor 

(as well as vector, axial vector, scalar or pseudoscalar 

currents) to first nonleading order in the energy expan- 

sion. The divergences of  the relevant one loop graphs are 

removed by the coupling constant renormalization given 

in (20). The resulting finite representation of  the Green 

functions automatically obeys the Ward identities asso- 

ciated with the conservation of energy and momentum 

and of  the chiral charges, because the effective theory is 

manifestly invariant both under coordinate transforma- 

tions and under local chiral rotations. 

In the framework of  the effective theory, the energy 

momentum tensor is given by the response of  the effective 

action to a variation of the metric. To first nonleading 

order, the chiral representation is of  the form 

Olzv = --.uv 0(2) --'4- v~tv~ (4, g) __'4- --/tv 0(4, R) .~_ G ( E  6 ) . (21) 

The leading term is the energy momentum tensor of 2 (2), 

0(2) = r o  2 T r ( D  u UD v U +) - g u y  2 ( 2 )  (22) 
uv 2 

The contribution from ~ (4 ,  g) is given by 

0(4, g) _ 9 r Tr (D u UD v U + U + /av - - ~ 4  ) T r ( g  + UZ +) 

+ L 5 Tr  { (D u UD v U + 

+ Dv UD u U + ) ( Z  U + + UZ+)} 

- g u y  ~(4,g)  + . . . , (23) 

where we have dropped terms which only contribute to 

matrix elements involving four or more mesons or cur- 

rents and have also discarded contact contributions. Fi- 

nally, the new couplings generate the term 

o~ R)= 2 (g,,v[]-a,,av ) 

•  D~ UD ~ U + +L,3()~ U + + UZ+)} 

+ L12(gu~gvBH+ guv t3~ c3~ --gu~ C3v C3B 

-- gw t~u da) Tr  (D ~ UD a U + ) .  (24) 
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In the evaluation of the matrix elements to order E 4, the 

leading term O(u:)~ is needed to one loop accuracy while 
the remaining contributions only enter at tree level. 

V F o r m  f a c t o r s  

We now apply the machinery set up above to the matrix 
elements of 0u v in the one-particle states [ n ) ,  [ K ) ,  [ r/). 
Lorentz invariance and energy-momentum conservation 

imply that these matrix elements are of the form 

( p ,  lO~, v [p) =l(g~, v q 2  quq~) 01 (q2) 

+�89 Pv 02(q2), (25t 

e,=p;~ +p~, 

q ,  =p;~ -p~  . 

The occurrence of two invariant form factors reflects the 

fact that the operator Ouv contains both a scalar (spin 
zero) and a tensor (spin two) part. The tensor part is 

described by the form factor 02(q 21 while the matrix 

element of the scalar Off is given by the combination 

00 (q2) = 3 q2 01 (q2) + l (4m 2_q2) 02 (q2). (26) 

The idenfication of j" d3x 00o with the Hamiltonian gives 

the normalization at q2= 0, requiring 

02 (0) = 1. (27) 

At leading order in the energy expansion, the matrix el- 
ement is given by the tree graph shown in Fig. 1 a. This 
graph leads to 0~ (q2) = 02(q2) = 1, in accordance with 

the low energy theorem [5] 

(p" IOs, vlp)=pupv+p;pu+�89 ~ ( E  4) (28) 

(a) (b) 

(c) 

> + > + >  
(~) 

Fig.  la-d. Chiral perturbation theory graphs relevant for the ex- 
pansion of the energy momentum tensor to order E*. The dots 
denote vertices of L (2) and 0(2) which only involve the pion decay --pv 

constant, while the squares indicate vertices generated by the cou- 
pling constants L~, L 2 .... 

At the next order in the energy expansion, we need to 

evaluate the one loop graphs of 0(u2~ shown in Fig. 1 b, c 
and the tree graphs of Fig. 1 d which involve a vertex of 

4, g) 0(4, R) ~z:7 (4). uv ,-u~ or The evaluation is straightforward. 
The tadpole graphs of Fig. 1 c and the contributions from 

0(U4d g~ merely renormalize the mass and the wave function 
- expressed in terms of the physical mass, the result be- 
comes independent of the couplings contained in 2 (4,g). 

The divergence contained in the one loop graph of Fig. 1 b 
are removed by the renormalization of the coupling con- 

stants Lll and L13 given in (20). For 01 (q2) the result 
then takes the form 

q2 

07 (q2)= 1 + 2  fig (4L~1 +L~2) 

2 1 
mn r r 2)i~ (q2) -- 16 ~ (Ll l - -L,3)  +~5  (2q2-m~ 

q2 m 2 
+~5 IK(q 2) + ; ; 2  In (q2), 

q2 

01K(q2) = 1 + 2  ~5 (4L~1 +L~2) 

m 2 3 q2 
- - 1 6 ~ - ( L ~ , - - L ~ 3 ) + ~ F  5 I• ( q 2) 

3q iK(q2)+(9q2-8m~) 
~ 5  l Z r  2 In(q2), 

(29) 

q2 

0~ (q2)= 1 + 2  F5 (4L~ 1 + L~2) 

2 m 2 
- -  1 6  m .  r r '~ ~5- (LI~ -- L13) + ~ -  I,~ (q2) 

+ (9q2-8mZ)IK(q2)-~ ( 4 m Z - m ~ )  

3 F  2 3 F  2 in (q2) ,  

where the function /(q2) can be expressed in terms of 

the standard scalar one loop integral y(q2) 

II ~  J(q2) = 1~5~2 a l n  + 2  
a + l  

o" = (1 -- 4m2/q2) 1/2 , 
(30) 

as 

I ( q 2 ) =  3 ~  (2mZ + q2).J ( q 2) 

1 I1 n m2 4 . 

48n 2 a2+~l 
(31) 

The function i(q2) contains a cut along the real axis, 
extending from q2 = 4 m 2 to o(3. The first two terms in the 

Taylor expansion in powers of q2 are 

2 1 llnPZm 2 - 1  q2 + ~ ( q 4 ) l  
I(q ) = ~  +~m2 �9 (32) 
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Note that the loop contribution depends on the renor- 

malization scale/~. A change in this scale however only 
adds a constant to I(q 2) and one readily checks that the 

corresponding shift in the running couplings L[1 , L~3 pre- 
cisely compensates for this constant, such that the result 
for 01 (q2) is scale independent. 

At the order of the energy expansion we are consid- 

ering here, the tensor form factor 02 (q2) does not receive 

contributions from loops and is therefore given by a po- 
lynominal of order E 2, 

q2 

02(q 2) = 1 - 2L~2 F2+ •(E4).  (33) 

Note that the normalization condition (27) excludes 
qZ-independent corrections. Furthermore, chiral sym- 

metry requires the slopes of the form factor 0if, Of and 
0~ at q2= 0 to coincide in the chiral limit. This is why, 

to order E 2, the low energy representations of these form 

factors are identical. Chiral symmetry however does not 
determine the value of the slope. In our formalism this 
low energy parameter is encoded in the coupling constant 

L 1 2 .  

The structure of the above formulae is controlled by 
the final state interaction theorem, according to which 

the phase of the form factors is determined by the scat- 
tering phase shift. Chiral symmetry implies that, at low 

energies, the Goldstone bosons only interact weakly, the 

phase shift being of order E 2. Hence the leading term in 
the energy expansion of the form factors 01 (q2), 02 (q2) 
is real. Moreover, the leading term in the energy expan- 
sion of the scattering amplitude only contains S- and P- 

waves. Accordingly, the spin two part 02 (q2) picks up a 
phase only at order E 4 - this is why the representation 

(33) of this form factor does not contain contributions 

from one loop graphs and this also explains why L12 does 

not get renormalized. The scalar form factor 00 (q2), on 
the other hand, does pick up a phase at first nonleading 

order, because the final state in the matrix element 
(p 'p]  0 u 10) is in an S-wave configuration. One readily 

checks that, in the region below KK threshold, the imag- 
inary part of the low energy representation for 03 (q2) 
which follows from (26), (29) and (33) is indeed given by 
~0. (2m 2 + q2), where 

1 

~~176 - 32  n F 2 

.~ 2 / ~ 2 ~ 1 / 2  •  --4m,~/q I + G ( E  4) (34) 

is the current algebra expression for the I =  J = 0 n n phase 

shift. We have checked that the imaginary parts of the 
remaining loop contributions occuring in (29) also obey 

the final state interaction theorem, evaluated with the 

current algebra predictions for the n n ~ K R ~ r l r l  scat- 
tering amplitudes. Unitarity thus fixes the structure of 
the form factors up to a real polynomial of order E 2. In 
case of 01 (q2), this polynomial contains both a term pro- 

portional to q2, determined by 4 Lll ~- L12, and a constant 
term proportional to m2(L11- LI3), while in the case of 
02 (q2), the normalization condition (27) only permits a 
term proportional to q2. 

V I  P h e n o m e n o l o g y  o f  the n e w  coupl ing  c o n s t a n t s  

According to (33), the coupling constant L12 determines 
the slope of the tensor form factor 02 (q2). Since the mes- 

ons are composite, this form factor is expected to obey 

an unsubtracted dispersion relation 

02(q2)=1  ~ ds im02(s) .  (35) 

7[ m 4 ~ s--qZ--ie 

The discontinuity generated by two-meson intermediate 
states is suppressed at low energies, because the D-wave 

phase shift is small there. The situation is similar to the 
case of the electromagnetic form factor where, below the 

resonance region, the discontinuity is also small. In that 
case, saturation of the dispersion relation analogous to 

(35) by a narrow resonance at mp ~770 MeV predicts a 

value for the slope of the form factor which agrees with 

experiment. We expect the same to be true of the form 
factor 02(q 2) where the resonance in question is the f2 
(1270). Saturating the dispersion relation (35) with a nar- 

row resonance of mass mi2 and using the normalization 

condition (27), we obtain 

02(qZ)~--m}J(m}2--q 2) 

: l + q 2 / m ~ +  . . .  , (36) 

which amounts to 

F 2 

Lf2m~ 2m}2  --2,7.10 -3 (37) 

The main point here is that, at low q2, the dispersion 

integral (35) receives its main contribution from rather 
high values of s such that the slope of the tensor form 

factor and hence the coupling constant L12 are expected 

to be small. 
The scalar form factors 03 (q2) and 0~:(q 2) were re- 

cently analyzed in detail [16] and we now make use of 

this work to determine the constants L n and L13. The 
analysis of [16] is based on the Omn6s-Muskhelishvili 

integral equations for the coupled nn  and K K  channels 
and chiral symmetry is used to fix the subtraction con- 
stants occuring in these equations, resulting in a param- 

eter free representation of the scalar form factors valid 

up to an energy of order 1 GeV. To compare these results 
with the chiral representation, we consider the Taylor 

series 

00(qZ)=2m 2 + q 2 0 0 + l q 4 0 o + . . .  . (38) 

In the chiral limit, the slope 00 is equal to one. The de- 

viation from this value is controlled by the low energy 

constants Lll , L12, L13. In particular, the asymmetry 
03 - 0~ is given by 

(m~-m~)  
Og - 0 ~ -  4 F 2 • 
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I ' (  
• 6 L [ l + L f 2 - 6 L ' ~ 3  1921r2 In m" ~+1 

2 2 
m, In m, (39) 

2 " 32zt2F 2 m= 

The curvature term fro, on the other hand is determined 

by 3 Lll +L12 , 

I 3 t)o~=~2 3L[1-t-L[2 1287r2 In 1.12 3 

1 { m2 8 m ~ l  
+ 8 ~ F  5 In 75.2 - s + ~ �9 (40) 

m n  

Note that the curvature tends to infinity if rn~ is put to 

zero. This reflects the fact that in the chiral limit, the 

expansion of 0g (q2) in power of q2 contains a nonanalytic 

term proportional to q4 In q2. In the real world, the cur- 

vature is finite, but large. The numerical value obtained 

in the paper referred to above is (cf. (32) and (64) of  
[16]) 

0o'~ ~ 5.9 GeV -2. (41) 

This value implies 

3 L ~ l  + L[2~4 .3 •  10 - 3  (/A = m ~ ) .  (42) 

With the estimate for L~2 given in (37), this leads to 

f 2 . 3 •  10 - 3  , /.t = m ,  
L[I~--- (43) ( 1.4• 3, /~ = 1GeV.  

According to [16], the slopes 0 j ,  0~ turn out to be nearly 

the same. In view of  (39), this amounts to 

6L~l + L [ 2 - 6 L [ 3 - - - 0 . 7 •  10 -3 (/, = m , ) .  (44) 

Using the values for L u and L~2 given above, we finally 
obtain 

~ 1.7• -3 ,  / . t=m,  (45) 

Lf3~ (,0.9 • 10-3, /~ = 1GeV.  

In summary, we note that tensor meson dominance pro- 

vides an estimate for L12 and that the available infor- 

mation on the scalar form factors 0g, Off then suffices to 

also determine L~I and L13. With these estimates of  the 

three new couplings, the effective Lagrangian is fixed - 

it allows us to calculate the Green functions of  the energy 

momentum tensor to first non-leading order in the energy 

expansion in a parameter free manner. 

VII Dilaton model of the conformal anomaly 

Finally, we establish contact with the dilation model of 

the conformal anomaly described in the literature [8-11 ], 

where the matrix elements of the operator 0 u are analyzed 

in terms of an effective scalar field. The dilaton model is 

built on the fact that the trace of  the energy momentum 

tensor represents the divergence of the dilation current 

0 u ~ x v and hence exhibits the breaking of  conformal sym- 

metry. In particular, 0 u receives a contribution from all 

of the dimensionful coupling constants occuring in the 

Lagrangian. In addition, dimensionless couplings also 

contribute, unless their B-function vanishes [10]. In the 

case of  QCD, the Lagrangian contains a dimensionless 

coupling constant g whose fl-function is different from 

zero and a set of  dimensionful couplings in the form of 

the quark mass matrix M. Accordingly, the trace of the 

energy momentum tensor contains two terms 

]~ (g) 
OU = 2 ~ -  jEuv Fuva + { 1 + y (g)} g l M q .  (46) 

The perturbative expansion of  the functions p (g), ? (g) 

starts with 

g3 

f l ( g ) =  --fl0 1 ~ 2  + d~(gS), 

o = y ( g ) = ~ +  ~,(g4) 
2rt2 

(47) 

In the case of three quark flavours, fl0 = 9. The first term 

in (46), referred to as the conformal anomaly of QCD, 

originates in the short distance singularities and is related 

to the fact that, even if the quark mass matrix is set equal 

to zero, the theory contains a dimensionful parameter in 

the form of  the renormalization group invariant scale 

A ocig. The second term exhibits the scale breaking gen- 

erated by the quark masses. Note that their contribution 

to the trace of  the energy momentum tensor is also af- 

fected by the short distance singularities of  the theory, 

through the term y (g) which originates in the renor- 

malization of the quark masses. 

As pointed out in [17], the Green functions of 0 u obey 

a set of sum rules which derive from the fact that the 

change induced by an infinitesimal dilation of  all mass 

scales is given by the matrix element of the operator 

j" d4x 0u u (one of  these sum rules will be discussed in detail 

below). The dilaton model results if one assumes that 

these sum rules are saturated by the contribution from a 

single scalar resonance. The model thus represents a sca- 

lar analogue of the vector meson dominance model. While 

in the latter, the mass of the p-meson and the matrix 

element (0[  V u I p )  which specifies the coupling of  this 

particle to the vector current are the key parameters, the 

dilaton model is characterized by the mass of  the o--par- 

ticle and by the matrix element (010Ulo-) .  The scalar 

meson dominance hypothesis approximates the Green 

functions of  0 u by the contributions due to exchange of  

the o--particle. These contributions represent the tree 

graphs of  an effective scalar field theory, characterized 

by a Lagrangian of  the form 

~, ,  =�89 aO" a + i R a 2 -  V(o-). (48) 

The curvature term insures that the trace of the corre- 

sponding energy momentum tensor does not contain de- 

rivatives of the field and is therefore well-behaved at high 
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energies. The requirement that the sum rules mentioned 

above are saturated by the pole contributions due to a -  

exchange implies that the potential V(a)  is of the form 

a 4 In (a//~). Expressing the two parameters 2 and/~ in 

terms of  the position of  the minimum, denoted by a o, 

and of  the curvature of the potential at the minimum, 

i.e., by the mass of the a-particle, this becomes 

- -  m 2  (In a t 
(49) 

Scale invariance also dictates the form of  the interaction 

with the chiral meson fields 

2, ,  + 2 v  

Tr(D UD U+) 

"~ t~00 ) 3 U~+) 1 a Tr  (Z U + + (50) 

The trace of  the energy momentum tensor of  this model 

contains two contributions: 

/.'H a 

0uu-- 4 a ~ a 4 - 4  - aoo T r ( z U  + + U Z + ) .  (51) 

The first term stems from the logarithmic scale of the 

potential which reproduces the scale breaking generated 

by the conformal anomaly, while the second originates 

in the quark mass matrix. The relation (51) shows that 

the position of the minimum is determined by the one- 

particle matrix element of 0uu; in the chiral limit we have 

(010u u l a )  = - mo2 ao.  (52) 

The dilaton model is not renormalizable and the above 

effective Lagrangian is meant to be used only at tree level. 

If  we restrict ourselves to matrix elements involving mo- 

menta which are small compared to m~, then the a-field 

can be integrated out explicitly. As we are working at 

tree level, this is achieved by solving the classical equation 

of motion 

F 2 a {  
n a - ~ R a  + V' ( a ) = 2 a ~  Tr(DuUD~'  U+) 

+2 3 a_ T r ( z U +  + U Z + ) I .  
ao 

(53) 

At small momenta, the term [] a is small compared to the 

mass term rn~ a contained in V' (a)  and can be dropped. 

What remains is an algebraic equation for the field a 

which is readily solved, 

a = a o q  2rhea0 Tr (DuUDU U+) 

+3Tr(z V + + UX +) + Ra~ ~ F ~ ) .  (54) 

Accordingly, the effective Lagrangian reduces to 

F 2 
~ = ~ -  T r (D  u UD u U + +Z U + + UX+) 

+ ~ a ~  T r (D  u UDu U +) 

+ Tr(xU + + ux +) Rao ) 2 . (55) 

Comparison with the general effective Lagrangian of (8) 

and (10) shows that the model corresponds to 

F 4 3 F 4 9 F 4 

Z l =  8 2 2; Z4 - -  2 2;  L 6 = 3 2  a ; 
aom ~ 8 a o m  o ~m~ 

F 2 F 2 

Lll--12m~, L13=Sm ] ,  

(56) 

all other couplings being equal to zero. In particular, the 

dilaton model thus leads to a theoretical prediction for 

the new couplings L~ and LI3 , relating their value to the 

mass of the a-particle. The prediction represents a scalar 

analogue of the tensor meson dominance formula for L12 

given above. In fact, relations of this sort are by no means 

a special feature of the dilaton model. Similar estimates 

relating the values of all the "old" couplings L 1 .. . . .  L m 

to the properties of low lying resonances are given in 

[18]. In this perspective, the scope of  the dilaton model 

is rather narrow as it exclusively accounts for the ex- 

change of a scalar flavor neutral particle and ignores the 

contribution generated by other particles of  tow mass. In 

the case of L 1 , e.g., the leading contribution turns out to 

arise from vector meson exchange, while in the case of  

L4, L6, singlet and octet scalars generate comparable con- 

tributions. 

VIII Scalar meson dominance 

In view of these limitations of the dilaton model, we now 

examine the above predictions for the new couplings in 

a model independent manner. We wish to show that these 

predictions immediately follow if one assumes that the 

dispersion relations obeyed by the scalar form factor 

00 (q2) and by the two-point-function (0  ] TOuv clq[ O) are 

saturated by the contributions from an intermediate state 

of  mass rn,.  For simplicity, we work in the chiral limit 

where the scalar form factor reduces to q2(301-02)/2, 
such that the dispersion relation can be written in the 

once-subtracted form 

_ •  o~ ds Im0o(S) (57) 

0~ ~ s s - q 2 - i e  0 

Furthermore, in the chiral limit, the slope of  0 o at q2 = 0 

is equal to one. The imaginary part therefore obeys the 

low energy theorem 

1 * d s  
n I ~ - I m 0 0 ( s )  1. (58) 

0 
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Now, we invoke the scalar meson dominance hypothesis 

and assume that the integrals in (57) and (58) are satu- 

rated by the contributions from the region around 

s~-m 2. This leads to the approximate representation 

O0(q2)=  2 2 2 2 = q 2  ... q m o / ( m o  -- q ) + q 4 / m 2  + . (59) 

Comparing this with the chiral representation and ig- 

noring the loop contributions generated by two pion in- 

termediate states, we obtain 

3 Ll l  + LI2 = F 2 / 4 m  2 . (60) 

In view of  (37), the meson dominance formula for Ll~ 

therefore reads 

F 2 F 2 

LI1 = 12m 2 + - - 6  mf~ ' (61) 

a result which indeed reduces to the prediction (56) of 

the dilaton model if the tensor contribution is dropped. 

Finally, consider the two point function 

i ]" d4xe i qx ( 0  ] TOur (x)  q q l 0 )  

= g u v C ~ o ( q 2 ) + ( g u v q 2 - - q u q v ) ~ l ( q 2  ) . (62) 

On account of energy-momentum conservation, the imag- 

inary part of  qS0(q 2) vanishes, such that this term is a 

polynominal and can be removed with a suitable rede- 

finition of the time-ordered product. In fact, the Fourier 

integral is ambiguous, because the integrand is singular 

at x = 0. The structure of the singularity is controlled by 

the operator product expansion. We again consider the 

chiral limit where chirality conservation implies that the 

coefficient of  the unit operator vanishes, such that the 

leading singularity stems from the operator qq, 

0u v (x) qq = cuv (x) qq + . . . .  (63) 

Since 0uv carries canonical dimension, the leading con- 

tribution in the short distance expansion of the coefficient 

Cuv is the same as for free quarks, 

c .  v ( x )  = (a~ a ~ - g .  v n )  

1 
• 4 rc2x ~ { 1 + 0 (1/log x)}. (64) 

The Fourier integral occuring in (62) is therefore only 

logarithmically divergent - the two point function is 

unique up to a constant. In particular, the transverse part 

~b 1 (q2) is free of ambiguities; it tends to zero for q--*ov 

and therefore satisfies an unsubtracted dispersion rela- 

tion, 

1 o~ a s  Im~l__(s_) (65)  
q~l(q2)=n I s _ q 2 _ i g  " 

0 

Furthermore, since the behaviour at q ~  oo is determined 

by the leading short distance singularity, the imaginary 

part obeys the sum rule 

oo 

rc S ds Imq~l ( s )=  - < 0 1 q q l ~  (66) 

0 

Assuming that the integrals (65) and (66) are dominated 

by the contributions from the region s~-m],  we obtain 

~b 1 (q2) = _ (OlqqlO)/(m~ _ q2). (67) 

In particular, scalar meson dominance predicts that the 

value of  ~ 1  a t  q2=0 is approximately given by 

- ( O l q q ] O ) / r n  ~. This is to be compared with the sys- 

tematic expansion in powers of the momentum provided 

by chiral perturbation theory. The effective Lagrangian 

given in Sect. II allows us to calculate the two-point func- 

tion we are considering here up to and including terms 

of order q2. In this framework, the leading term is a 

contact contribution to q5 o, which - as discussed above 

- is a matter of convention. The function ~b 1 (q2) starts 

showing up at order q2 where two graphs contribute: a 

tree graph involving the coupling L13 and a one loop 

graph associated with two pion intermediate states. 

Ignoring the latter, the effective Lagrangian predicts 

8L13 
gb I (0) = F2 ( 0 1 q q l 0 )  . (68) 

The scalar meson dominance formula (67) therefore im- 

plies the estimate 

F 2 
2" (69) L13 -- 8 m,~ 

More generally, the above analysis shows that the value 

of L13 can  be expressed in terms of the function Im~b 1 (s) 

which is sensitive only to flavor neutral states of  spin zero 

- this is why, in this case, the meson dominance formula 

agrees with the prediction of  the dilaton model. 

Note that the two point functions involving the trace 

of the energy momentum tensor is given by 4 q~ 0 + 3 q2~) 1 

and therefore in general tends to a constant as q2----}ct3. 

There is however one particular definition of  the time- 

ordered product for which this constant vanishes, viz. 

4~0= _ 3  ( 0 l q q l 0 )  " (70) 

With this choice, the energy momentum tensor is not 

transverse, but the trace is well-behaved at high energies 

and obeys the sum rule of  [17], 

i ~ d x ( 0 1 T O ~ ( x ) q q ] O )  = - 3 ( 0 [ q q l 0 ) .  (71) 

Let us now confront the meson dominance formula 

for the couplings Ll l  and L13 with the results of  the dis- 

persive analysis given in Sect. VI. There are two problems 

with these formulas. First, the structure of  the I =  J =  0 

channel is rather complex, particularly around K K  

threshold - it is not clear whether it makes sense to replace 
this structure by a single narrow peak and, if so, it is not 

clear what mass to choose. Second, the two pion contin- 

uum generates substantial contributions even at low en- 

ergies, because the I =  J = 0 phase shift rapidly grows with 
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energy, reaching values o f  order  400 already at 

]/~ = 500 MeV:  the scalar resonance which is supposed 

to dominate  the dispersion integrals, sits on top o f  a 

sizeable background.  This problem manifests itself in the 

fact that  the values o f  the coupling constants  L ~ ,  L~3 

depend on the scale/2 at which the one loop contr ibutions 

are renormalized. Numerically, using m~ =/2 = 1 GeV, the 

meson dominance  formulae (61) and (69) predict 

Ll l  : 1.6• 10 .3  and L13 = 1.1 • 10 3 to be compared  

with the dispersive values L 1~ = 1.4 • 10-  3 and 

L13 =0.9)<  10 3. This shows that  the result o f  the dis- 

persive analysis is reasonable, both  in the size and in 

magnitude.  It  is clear, however,  that  the compar ison  is 

sensitive to the values taken for  mo and / z ,  a notor ious  

problem with the scalar channel  where there are several 

candidates to play the role o f  the cr-particle and where, 

as witnessed by the sensitivity o f  the couplings to the 

value o f / z ,  the rtrr con t inuum generates an impor tan t  

background.  The problem does not  occur  with vector or  

tensor meson dominance  where the mass o f  the resonance 

is unmistakable and where the background  is neglibible. 

IX Summary and conclusion 

1. We have extended the effective Lagrangian o f  chiral 

per turbat ion theory to incorporate  matrix elements o f  the 

energy m o m e n t u m  tensor. At  one loop order, the exten- 

sion requires three new coupl ing constants.  

2. As an application o f  this machinery  we have evaluated 

the energy expansion of  the fo rm factors (~[0~,  v [ ~ ) ,  

(K]  0uv I K) and (r / [  Ouv to order E 4. The calculation 

illustrates the physical significance o f  the three new cou- 

plings: one o f  the three is related to the slope o f  the scalar 

form factor  ( l r  [0u u [~r), the second to the slope o f  the 

spin-two componen t  and the third determines the flavor 

asymmetries generated by the quark  masses. 

3. Two of  the three couplings are determined by com- 

paring the chiral representat ion with a dispersive analysis 

o f  the scalar form factors (~r 10gl~) and ( K [  0 u [ K ) .  

The third is estimated on the basis o f  the hypothesis that  

the slope o f  the spin two fo rm factors is domina ted  by 

the contr ibut ion f rom f2-exchange. 

4. The results found for the new coupling constants  are 

compared  with the predictions o f  the dilaton model  and 

the significance o f  this model  is discussed in the more  

general context  o f  scalar meson dominance.  The analysis 

shows that  these model  predictions are rather soft, be- 

cause the scalar channel is not  well represented by a single 

nar row resonance. On a semi-quantitative level, the model  

expectations do match  our  dispersive results. 
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