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Abstract—Macrocells are expected to be densely overlaid by
small cells (SCs) to meet the increasing capacity demands. Due to
their dense deployment, some SCs will not be connected directly
to the core network and thus they may forward their traffic to the
neighboring SCs until they reach it, thereby forming a multi-hop
backhaul (BH) network. This is a promising solution, since the
expected short length of BH links enables the use of millimeter
wave (mmWave) frequencies to provide high capacity BH. In this
context, user association becomes challenging due to the multi-
hop BH architecture and therefore new optimal solutions should
be developed. Thus, in this paper, we study the user association
problem aiming at the joint maximization of network energy and
spectrum efficiency, without compromising the user quality of
service. The problem is formulated as an ε-constraint problem,
which considers the transmit energy consumption both in the
access network, i.e., the links between the users and their serving
cells, and the BH links. The optimal Pareto front solutions of the
problem are analytically derived for different BH technologies
and insights are gained into the energy and spectrum efficiency
trade-off. The proposed optimal solutions, despite their high
complexity, can be used as a benchmark for the performance
evaluation of user association algorithms. We also propose a
heuristic algorithm, which is compared with reference solutions
under different traffic distribution scenarios and BH technologies.
Our results motivate the use of mmWave BH, while the proposed
algorithm is shown to achieve near-optimal performance.

Index Terms—Backhaul, cell selection, context-awareness,
green communications, LTE-Advanced, millimeter wave.

I. INTRODUCTION

THE mobile data traffic is expected to grow significantly

during the next few years, which results in an urgent

need for mobile operators to maintain capacity growth. Serving

more traffic leads to increased energy consumption, and there-

fore, how to minimize the energy consumption becomes also

important. In parallel, the spectrum scarcity problem stresses

the need for spectral efficient solutions. The aforementioned

goals can be summarized into the joint maximization of energy

and spectrum efficiency, which constitutes a fundamental

design objective for next generation cellular networks.
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To that end, the dense deployment of small cells (SCs),

overlaying the existing macrocell networks, is a promising so-

lution. The SC deployment reduces the distance between user

equipments (UEs) and base stations (BSs)1 and, consequently,

i) the area spectral efficiency (bps/Hz/m2) increases, and ii) the

energy consumption in the access network (AN), i.e., the links

between the UEs and their serving BSs, decreases. Hence,

dense deployment of SCs is expected during the next years,

with SC radius being eventually of the order of 50 meters [1].

However, the dense deployment of SCs also poses new

challenges. Due to the high number of deployed SCs, the

direct connection of all SCs to the core network becomes

complicated. Fiber connections, which have been traditionally

considered as the best backhaul (BH) solution, are prohibitive

in this case due to their high deployment cost [2]. A promising

solution lies in exploiting the existing connection between the

macrocell site and the core network (most of the times it is a

fiber connection), and to provide core network connectivity to

SCs through the macrocell site [3]. Still, in order to connect the

SCs to the macrocell site (thus providing them core network

connectivity), new cheap wireless BH solutions are required.

In addition, this wireless BH is expected to provide high-

capacity services from the SCs to the core network, in order

to meet the expected traffic demands of the order of Gbps

[1]. Therefore, a promising solution for high capacity wireless

BH connections between the SCs and the core network lies

in using millimeter wave (mmWave) frequencies, due to their

high bandwidth availability [2]. It has been shown, however,

that mmWave frequencies are capable of providing good

coverage only if the transmission distance is shorter than 200

meters [1]–[3]. Otherwise, links may not be established. In

parallel, small wavelengths enable highly directive antennas to

compensate the high path loss with the use of pencil beams [2].

Since the macrocell radius is even in dense deployments of the

order of 500 meters, this implies that a multi-hop architecture

of point-to-point line-of-sight (LOS) links is needed, in order

to allow each of the SCs to reach the macrocell site [3], [4].

In this context, user association becomes challenging due to

the multi-hop BH architecture [5] and therefore new optimal

solutions need to be developed aiming at the joint energy and

spectrum efficiency maximization of the network.

A. State-of-the-art and Contribution

The user association problem has received a lot of research

attention, since it impacts both the network and UE perfor-

1In this paper, we will use the term BS to refer to a macrocell BS and/or a
SC BS (i.e., an eNodeB (eNB) and/or a Home eNB in LTE-A, respectively).



2

mance. In LTE-Advanced, the user association is based on

the reference signal received power (RSRP), which measures

the average received power over the resource elements that

carry cell-specific reference signals within certain bandwidth

[4]. Although RSRP maximizes the signal-to-interference-

plus-noise ratio (SINR) of UEs, it was shown that it does not

significantly increase the overall throughput, since few users

get connected to SCs [6]. Thus, range expansion (RE) (also

known as biasing) was introduced, whereby UEs are actively

pushed onto SCs [6]. In this case, although a UE may be

associated with a BS not providing the best SINR, better load

balancing is achieved between SCs and macrocell.

In [7], the authors propose a low-complexity distributed

algorithm that converges to a near-optimal solution and they

show that a per-tier biasing loses little, if the bias values

are chosen carefully. In [8], the joint user association and

resource allocation problem is studied. The authors aim to find

the optimal association so that the total resources required to

satisfy the given UE traffic demands are minimized. Focusing

also on the joint spectrum allocation and user association

problem, in [9], a proportionally fair utility function based

on the coverage rate is defined. The authors associate the UEs

with BSs based on the biased downlink received power, while

stochastic geometry is used to model the placement of BSs.

In [10], the authors formulate two different user association

problems. The first one is based on a sum utility of long-

term rate maximization with rate quality of service (QoS)

constraints, and the second on minimizing a global outage

probability with outage QoS constraints.

Taking into account the BH, in [11], the authors model a

BH-aware BS assignment problem as a multiple-choice multi-

dimensional Knapsack problem. In the considered framework,

they impose constraints on both AN and BH resources. The

main idea behind their algorithm is to distribute traffic among

BSs according to a load balancing strategy, considering both

AN and BH load status. Yet, the proposed algorithm, reduces

the BH congestion at the expense of lower spectral efficiency,

since some UEs may be assigned to non-optimal BSs in terms

of RSRP. In [12], a load-balancing based mobile association

framework is proposed under both full and partial frequency

reuse, and pseudo-optimal solutions are derived using gradient

descent method. In [13], a new theoretical framework is

introduced to model the downlink user association problem,

while upper bounds are derived for the achievable sum rate

and minimum rate using convex optimization. In [14], a joint

user association and resource allocation optimization problem

is proposed, which is shown to be NP-hard. Therefore, the

authors develop techniques to obtain upper bounds on the

system performance. In [15], the joint problem of downlink

user association and wireless BH bandwidth allocation is

studied in two-tier cellular heterogeneous networks (HetNets).

According to the considered architecture, SCs are connected

through wireless BH with the macrocell BS. The problem

is formulated as a sum logarithmic user rate maximization

problem, and wireless BH constraints are also considered.

However, the aforementioned approaches either consider

only the AN [4], [6]–[10], thus totally overlooking the BH

capacity constraints and energy impact, or do not take into

account the energy consumption of the network and hence,

their energy efficiency cannot be guaranteed [11]–[15].

To that end, in this paper, we study the user association

problem aiming at the joint energy and spectrum efficiency

maximization, while taking into account both the AN and BH

and without compromising the UE throughput demands. Pre-

liminary results of this research have been published in [16].

However, in this paper, we provide the following contributions:

• The aforementioned problem is formulated as an ε-

constraint problem [17], where the total transmit power

consumption of AN and BH is the objective to be

minimized and the amount of spectrum resources needed

is set as constraint, with its upper bound denoted by ε.

• We study the trade-off between energy and spectrum

efficiency analytically for different BH technologies by

solving the ε-constraint problem for all different ε.

Thereby, we derive the Pareto front solutions of the

problem, i.e., the set of optimal solutions for all ε values,

which can be used as a benchmark for the performance

evaluation of user association algorithms.

• Due to the high complexity of the derived optimal solu-

tions, which increases for a higher number of UEs and

BSs, we also propose a low-complexity user association

algorithm, which aims at the maximization of the energy

efficiency given a specific spectral efficiency target. The

algorithm is able to select any point of the Pareto front,

by accordingly tuning a single parameter, i.e., the spectral

efficiency target. Moreover, for each UE, it considers the

total transmit power consumption needed (both AN and

BH) to serve its traffic. This association metric relaxes the

assumption of [16] that all BH links are homogeneous,

by considering the actual transmit power consumption of

each BH link and not just the number of hops.

• Finally, we compare the energy and spectrum efficiency

of the proposed algorithm with existing user association

solutions as well as with the derived optimal solutions

under different spectral efficiency targets, traffic distribu-

tion scenarios and BH technologies. Our results motivate

the use of mmWave frequencies to provide high capacity

BH, while the proposed algorithm is shown to achieve

notable performance gains.

The rest of the paper is organized as follows: In Section II,

the system model is presented. In Section III, the problem

formulation and the solution methodology are provided. In

Section IV and Section V, the proposed algorithm is described

and compared, respectively, with existing user association

algorithms as well as with the analytical solutions derived in

Section III. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Without loss of generality and in accordance with the

scenarios proposed by 3GPP [18], we focus our analysis on a

single eNB sector, overlaid with multiple SCs. In particular,

we consider a set of BSs, denoted by C, which includes one

eNB (j=0) and C−1 SCs (j=1...C-1), with C representing the

cardinality of the set C. The SCs are divided in Ncl clusters

(k=1...Ncl), as depicted in Fig. 1, with SCk denoting the
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Fig. 1. System model.

number of SCs in cluster k [18]. We study the downlink and

make the following assumptions:

• Each SC is connected to the core network through the

eNB aggregation gateway either directly or through one

or more SC aggregation gateways [3]–[5].

• There is a fiber connection between the core network and

the eNB site, and a set of point-to-point LOS mmWave

BH links between the eNB site and the SCs, denoted

by L={L1 ,L2,...Ll,...LC−1}. Each mmWave BH link l
is represented by a set Ll that includes all cells j that

backhaul their traffic through it (i.e., ∀j ∈ Ll).

• Flat slow-fading channels are considered [14]. Therefore,

we assume that the total transmission power of each BS

is equally distributed among its subcarriers [4].

• We consider a set of N UEs (i=1,...,N ) with strict

guaranteed bit rate (GBR) QoS requirements, denoted as

ri,net, based on their service/application [19].

• Each UE can be associated only with one BS at a time.

• There is a maximum number of spectrum resource units

available to each BS j, i.e., physical resource blocks

(PRBs)2, denoted by cjmax
.

In the following, the most important parameters involved in

the total network energy efficiency calculation are derived. The

SINR calculation is given in Section II-A, while both AN and

BH power consumption models are provided in Section II-B.

A. SINR calculation

The signal-to-noise ratio (SNR) received by UE i from BS

j is given by [20]

SNRij(dB) = PjPRB (dBm) +GTxj (dBi)
− Lcbj (dB)

−Lpij (dB)
− Lfij (dB)

−Nth(dBm) −NF (dB) (1)

with PjPRB
=10log10(Pjmax

/cjmax
) being the power allocated

by BS j to a PRB, where Pjmax
is its maximum transmission

power (mW), and cjmax
is the maximum number of PRBs

allocated to it. The parameter GTxj
is the antenna gain of BS j

and Lcbj is the cable loss between the radio RF connector and

2Please note that 1 PRB is equal to 12 subcarriers in the frequency domain
and 0.5 ms in the time domain [4].

the antenna. The path loss between UE i and BS j is denoted

by Lpij
, while Lfij represents the losses due to shadowing.

Finally, Nth stands for the thermal noise and NF is the noise

figure. The SINR of UE i from BS j is given by

SINRij(dB) = SNRij(dB) − 10log10

(

Iij(mW )

Ntotal(mW )

+ 1

)

(2)

where Iij is the total interference experienced by UE i, when

associated with BS j, which depends on the applied frequency

allocation scheme. Due to the constant power allocation, the

SINRij of UE i from BS j can be estimated a priori3, and

be given as an input to the problem. Hence, the proposed work

can be applied regardless of the employed channel allocation

scheme. Still, although it is out of the scope of this paper,

the combination of our proposal with a sophisticated channel

allocation could further improve the system performance.

Finally, Ntotal = 10(Nth(dBm)+NF (dB))/10 denotes the total

noise power (mW) experienced by UE i.

B. Power consumption models

The total network power consumption can be divided into

the power consumed in the BSs (i.e, in the AN) and in the

BH links. The first is given by [16], [21]

PAN(W )
=

∑

j∈C

(
PAN
jstat(W )

+ PAN
jvar(W )

)
(3)

where PAN
jstat

is the fixed power consumption of BS j attributed

to e.g., power supply, cooling, and baseband unit operation

[21] and PAN
jvar

is the load-dependent power consumption of

BS j. Without loss of generality, we assume ideal electronics

in terms of power efficiency and therefore the load dependent

power consumption part becomes equal to the radio frequency

(RF) transmit power consumption part, which is given by [16]

PAN
jvar (W )

= PAN
jRF (W )

=
∑

i∈N

(PjPRB (W )
)⌈cij⌉aij =

∑

i∈N

(

Pjmax

cjmax

)⌈
ri,net

(1−BLER)(1− kov)

1

b log2 (1 + SINRij)

⌉

aij

(4)

where cij represents the number of PRBs needed for the

association of UE i with BS j and ri,net is the rate demand

of UE i. The parameter BLER stands for the block error rate

(BLER), i.e, for the number of erroneous blocks divided by the

total number of received blocks [22] and kov is the percentage

of overhead bits (e.g., cyclic prefixes, reference signals) [23].

From now on, we will denote as ri =
ri,net

(1−BLER)(1−kov)
, the

total rate needed for the satisfaction of ri,net. Parameter b
is the bandwidth of a PRB and ⌈·⌉ is the ceiling function

operator. The denominator of the third fraction is derived by

Shannon’s theorem and represents the maximum rate that can

be achieved with effective SINRij [23] and bandwidth equal

to b. Finally, aij is the association vector (equal to 1 when the

UE i is associated with BS j and 0 otherwise).

3Please note that the SINR after the UE association may differ from the
estimated one, as the interference experienced by the UE depends on resource
allocation i.e., whether neighboring BSs allocate the same PRBs to other UEs,
and consequently on user association. In this work, to overcome this problem,
the worst-case scenario in terms of generated interference is considered.
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Similar to the AN, the power consumption of the BH links

consists of a fixed and a variable part [21], and thus equals to

PBH (W ) =
∑

Ll∈L

PBH
Llstat (W )

+ PBH
Llvar (W )

(5)

Under the assumption of ideal electronics, the load dependent

power consumption of a BH link Ll, i.e., PBH
Llvar

, equals to the

RF transmit power consumption, which is given by [20], [24]

PBH
LlRF (dBm)

= SINRtrg
Ll (dB)

+

αLl
︷ ︸︸ ︷

Lpo (dB) + Lp
Ll (dB)

+ IL(dB)

︷ ︸︸ ︷

+Nth(dBm) +NF (dB) −GTxLl (dBi)
−GRxLl (dBi)

(6)

where Lpo
is the path loss at 1 m distance and

Lp
Ll

=20log10(4π
dLl

λ ) is the path loss at distance dLl
equal

to the length of the link. Moreover, λ is the signal wavelength

(e.g., for 60 GHz, λ = 0.005 m) and IL is the implementation

loss that may account for e.g., distortion, intermodulation

and/or phase noise. The over-braced equation, which is de-

rived by subtracting from the total losses, the transmitter and

receiver antenna gains of the BH link, will be denoted from

now on by αLl
. Finally, assuming that link adaptation is

employed [20], SINRtrg
Ll

corresponds to the (minimum) target

SINR that is needed so that the aggregated BH link traffic is

successfully transmitted and can be given by [20]

SINRtrg
Ll (dB)

= 10log10

(

2

∑
i∈N

∑
j∈Ll

riaij

B
Ll − 1

)

(7)

where BLl
is the bandwidth of the BH link Ll and

∑

i∈N

∑

j∈Ll
riaij is the aggregated traffic that passes

through it. For mmWave, the generated interference is neg-

ligible due to high path loss, and thus SINRtrg
Ll

=SNRtrg
Ll

.

III. PROBLEM FORMULATION

The problem under study aims at the joint maximization of

the network energy and spectrum efficiency, without compro-

mising the UE QoS (i.e., the UE throughput demands). The

energy efficiency (bits/Joule) is expressed as the total number

of successfully transmitted useful bits divided by the total

energy consumption or equivalently as the total goodput of the

network divided by the total power consumption (i.e., the sum

of the power consumed in the AN and in the BH links). Under

the condition that the specific UE throughput demands are

satisfied, the network energy efficiency maximization is equiv-

alent to power consumption minimization, while the spectral

efficiency maximization is equivalent to PRBs minimization.

The aforementioned problem is a non-convex multi-

objective problem. Therefore, for its formulation, we employ

the ε-constraint method, which is able to find any Pareto

optimal solution even for non-convex problems [17]. Accord-

ing to it, one of the objectives is included in the utility

function to be optimized (i.e., minimization of the total power

consumption), while the others (i.e., minimization of the total

number of required PRBs) are converted into constraints by

setting an upper bound to them. Given that the fixed power

consumption4 is independent of the user association decision,

4Still, the inclusion of the fixed power would impact all the algorithms by
equally increasing their power consumption.

the minimization of the total power consumption is equivalent

to the minimization of the traffic-dependent part (i.e., the RF

transmit power consumption in our case). Therefore, our study

from now on focuses on this part, as depicted in (8).

Hence, the first term of the objective function in (8) repre-

sents the total RF transmit power consumption of the AN and

the second of the BH links. We remind that aij
5 denotes the

association vector that is equal to 1 when the UE i is associated

with BS j and 0 otherwise (8a). Each UE can be associated

only with one BS at a time (8b). The total number of PRBs

used by BS j, denoted by cij , cannot exceed the maximum

number that is allocated to it (8c). The RF transmit power

consumption of the BH link Ll cannot exceed a maximum

value, denoted by PBHmax
(8d). The parameter sLlj is 1 if

the traffic of the BS j passes through the BH link Ll and

0 otherwise (8e). Finally, constraint (8f) refers to the total

number of PRBs and thus to the network spectrum efficiency.

argmin
aij

f1(aij) =
∑

j∈C

PAN
jRF (W )

︷ ︸︸ ︷
∑

i∈N

PjPRB
cijaij+

+
∑

Ll∈L

PBH
LlRF (W )

︷ ︸︸ ︷

(
2

∑
i∈N

∑
j∈C

aijsLlj
ri

B
Ll − 1

)
10

αLl
−30

10

s.t. a) aij ∈ {0, 1}, ∀i ∈ N , ∀j ∈ C

b)
∑

j∈C

aij = 1, ∀i ∈ N

c)
∑

i∈N

aijcij ≤ cjmax
, ∀j ∈ C

d)PBH
LlRF

≤ PBHmax ∀Ll∈L

e) sLlj ∈ {0, 1}, ∀Ll ∈ L, ∀j ∈ C

f)f2(aij) =
∑

i∈N

∑

j∈C

aijcij ≤ ε

(8)

Theorem 1. The solution of the ε-constraint problem in (8)

is weakly Pareto optimal.

Proof. Let a⋆ij be a solution of the ε-constraint problem. Let

us assume that a⋆ij is not weakly Pareto optimal. In this case

there exists some other aij such that fk(aij) < fk(a
⋆
ij) for

k=1,2. This means that f2(aij) < f2(a
⋆
ij) ≤ ε. Hence, aij

is feasible with respect to the ε-constraint problem. While in

addition f1(aij) < f1(a
⋆
ij), we have a contradiction to the

assumption that a⋆ij is a solution of the ε-constraint problem.

Thus, a⋆ij
6 has to be weakly Pareto optimal.

Although, according to Theorem 1, every solution of the ε-

constraint problem is weakly Pareto optimal, there is no Pareto

optimal solution, since there is no solution that optimizes

both objectives simultaneously. Therefore, it is reasonable

to search for a good trade-off between the two objectives

5Due to the binary association vector and the non-linear objective function
and contraints, the problem is a 0-1 non-linear integer programming problem.

6Please note that, in the rest of the paper, aij is omitted.



5

instead. To that end, the increase of ε leads to a relaxation

of the spectral efficiency constraint (i.e., f2) and consequently

to a more energy efficient solution. On the contrary, the

decrease of ε improves the spectral efficiency of the solution

by degrading its energy efficiency. The set of solutions for

the subproblems resulting from the variation of ε define the

Pareto front, hereafter denoted by F . In practice, due to the

high number of subproblems and the difficulty to establish

an efficient variation scheme for the ε-vector, this approach

has mostly been integrated within heuristic and interactive

schemes. However, due to the nature of (8), it is possible

to derive the exact Pareto front with the use of an iterative

algorithm [25]. The idea is to construct a sequence of ε-

constraint problems based on a progressive reduction of ε.

Let ~φI = (φI
1, φI

2) be the ideal point, where φI
1 = min(f1)

and φI
2 = min(f2) stand for the minimum value of f1 and

f2, respectively. Equivalently, let ~φN = (φN
1 , φN

2 ) be the

nadir point, with φN
1 and φN

2 being the minimum values

of f1 and f2, when f2 = φI
2 and f1 = φI

1, respectively,

i.e., φN
1 = min{f1:f2=φI

2} and φN
2 = min{f2:f1=φI

1}. Thus,

(φI
1, φ

N
2 ) is the solution of the Pareto front that minimizes

the RF transmit power consumption (i.e., f1) without spectral

efficiency constraints, whereas (φN
1 , φI

2) is the solution in F
that minimizes the total number of PRBs used (i.e., f2).

Lemma 1. Both (φI
1, φN

2 ) and (φN
1 , φI

2) belong to F , i.e., (φI
1,

φN
2 ) ∈ F and (φN

1 , φI
2) ∈ F .

Proof. Let us assume that (φI
1, φN

2 ) /∈ F . Then, ∃ ~f=(f1, f2)

∈ Φ: (f1, f2) ≻ (φI
1, φN

2 ), where Φ denotes the objective

space and the expression ~f=(f1, f2) ≻ (φI
1, φN

2 ) denotes that

(f1, f2) dominates (φI
1, φN

2 ). In general, we say that ~f=(f1,

f2) dominates ~f ′=(f ′
1, f ′

2), with ~f , ~f ′ ∈ Φ if and only if (iff)

f1 ≤ f ′
1 and f2 ≤ f ′

2, where at least one inequality is strict.

Thus, ~f=(f1, f2) ≻ (φI
1, φN

2 ) is true when a) f1 < φI
1 and f2

< φN
2 or b) f1 < φI

1 and f2 = φN
2 or c) f1 = φI

1 and f2 <
φN
2 . Since a) and b) contradict the definition of an ideal point

and since c) contradicts the definition of a nadir point, then

(φI
1, φN

2 ) ∈ F . The proof of (φN
1 , φI

2) ∈ F is analogous.

Lemma 2. For each (f1, f2) ∈ Φ, if (f1, f2) ∈ F , then φI
1

≤ f1 ≤ φN
1 and φI

2 ≤ f2 ≤ φN
2 .

Proof. As proved in Lemma 1, (φI
1, φN

2 ) ∈ F , and thus it is

non-dominated. Since φI
1 = min(f1), f1 ≥ φI

1, ∀ (f1, f2) ∈ F .

Moreover, if f2 > φN
2 , (φI

1, φN
2 ) ≻ (f1,f2) and (f1,f2) /∈ F .

Hence, f1 ≥ φI
1 and f2 ≤ φN

2 ∀ (f1, f2) ∈ F . The proof for

φI
2 ≤ f2 ≤ φN

2 is analogous.

According to Lemma 1 and Lemma 2, Algorithm 1 gener-

ates the exact Pareto front of the problem described in (8).

Theorem 2. Algorithm 1 generates one feasible solution for

each point of the Pareto front.

Proof. Let us denote the sequence of solutions of Algorithm 1

by {~f∗
1 , . . . , ~f∗

m, . . . , ~f∗
M}, where, e.g., ~f∗

m =
(
(f∗

m)1, (f
∗
m)2

)
,

Algorithm 1 Exact Pareto front calculation of problem (8)

1: Calculate the ideal and nadir points, ~φI and ~φN .

2: Add ~f∗
1 = (φI

1, φ
N
2 ) to F .

3: Set m = 2.

4: Set εm = φN
2 −∆, with ∆ = 1.

5: while εm ≥ φI
2 do

6: Solve problem (8) and add the optimal solution value
~f∗
m =

(
(f∗

m)1, (f
∗
m)2

)
to F .

7: Set εm+1 = (f∗
m)2 −∆.

8: Set m = m+ 1.

9: end while

10: Remove dominated points if required.

with 1, 2 denoting the first and the second objective, re-

spectively. We have to prove that if ~f ∈ Φ \ { ~f∗
1 , . . . ,

~f∗
m, . . . , ~f∗

M}, then ~f /∈ F . Let us assume that there is a

solution ~f ′ = (f ′
1, f

′
2) ∈ Φ \ { ~f∗

1 , . . . , ~f∗
m, . . . , ~f∗

M} such

that ~f ′ ∈ F . By Lemma 2, for the first objective we have

φI
1 ≤ f ′

1 ≤ φN
1 . Thus, either a) f ′

1 = (f∗
m)1 for a given

m = 1 . . .M or b) (f∗
m−1)1 < f ′

1 < (f∗
m)1 and (f∗

m−1)2
< f ′

2 ≤ (f∗
m)2 for a given m = 1 . . .M . In the first case (i.e.,

case a), f ′
2 must be lower than (f∗

m)2 for ~f ′ to be efficient.

However, since ∆ = 1 and the second objective is integer by

definition, ∃ εm
′

that will eventually reach a value for which

the optimum of the corresponding ε-constraint problem is ~f ′

for m + 1 ≤ m′ ≤ M , that is ~f ′ ∈ {~f∗
m+1, . . . ,

~f∗
M}, which

contradicts the hypothesis. Regarding the second case (i.e.,

case b), f ′
2 must be such that (f∗

m−1)2 < f ′
2 ≤ (f∗

m)2, which is

impossible since ~f∗
m is the optimal value of problem (8), with

εm=εm−1-∆, ∆=1, and the second objective is integer.

Some dominated solutions may be generated by the se-

quence of subproblems derived according to Theorem 2.

However, since all dominated points can be identified, one

can simply exclude the non-efficient solutions to obtain the

exact Pareto front. Furthermore, although Algorithm 1 limits

the number of subproblems, a subproblem may be very hard to

solve. This stems from the fact that an exhaustive search would

require the examination of CN possible solutions, which re-

sults in prohibitive complexity (O(nn)), as the number of BSs,

C, and the number of UEs, N , increase. Therefore, alternative

algorithms, available in the literature, should be used, able

to come up with very close to the optimal solutions with

acceptable computational complexity [17]. In this work, we

applied a meta-heuristic method [26], which has been shown

to lead to high-quality solutions (the average gap is less than

1% with respect to best-known solutions) in almost real time.

The applied method uses biased randomization together with

an iterated local search meta-heuristic algorithm. Although

the meta-heuristic algorithm involves lower complexity than

O(nn)7, it still requires a high number of iterations (50000

in our case). Therefore, there is need for low-complexity

algorithms, able to achieve solutions close to the Pareto front.

7Meta-heuristics have no predefined end, and thus big O notation cannot
be used to describe their complexity. Yet, they can be compared empirically
(through number of objective function evaluations/iterations).
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Algorithm 2 Proposed energy efficient user association algo-

rithm

Input: N , C, SINRij , ri,net, b, cjmax
,Ll, L

1: Calculate cij as in (4)

2: Candidatesi ← j : cij ≤ min(cijmin
+ cthres, cjmax

)
3: Sort all UEs i by Candidatesi size in ascending order

4: Calculate Ptotij = PANij
+ PBHij

using (4), (6) ∀j ∈
Candidatesi

5: Sort the UEs with the same candidate number by the Ptotij

difference among their candidates in descending order

6: Sort Candidatesi by Ptotij in ascending order

7: Choose the candidate with the minimum Ptotij

8: if the chosen BS has sufficient spectrum resources then

9: Associate the UE to it

10: Update remaining spectrum resources

11: else

12: Move to the next candidate and repeat the process

13: end if

IV. PROPOSED HEURISTIC ALGORITHM

In this section, we propose an algorithm that aims at a good

trade-off between energy and spectrum efficiency, while induc-

ing low complexity in the system. The proposed algorithm

takes into account the available context-aware information,

i.e., the UEs’ measurements (SINR) and requirements (ri,net),
the HetNet architecture (sLlj) and the available spectrum

resources of each BS (cjmax
) to efficiently associate the UEs.

This context-aware information, which can be divided into

information being reported by the network and information

being reported by the UEs, can be easily available to all nodes

in a LTE-A network (i.e., eNBs and/or SCs) [4], [27]. In

particular, the information being reported by the network does

not impose additional constraints, since the standard defines

the X2 logical interface to allow the exchange of information

among BSs (eNBs and/or SCs) [4]. Moreover, the information

about the network architecture (sLl
) requires very limited or

nil update due to its static nature. Hence, the only additional

information to be exchanged is the current traffic of each

BH link. Regarding the information being reported by UEs,

each UE is required to measure the SINR received from the

neighboring BSs. For such a purpose, Release 8 has already

defined the radio resource management (RRM) measurement

set, i.e., the set of BSs from which a UE measures and reports

parameters, such as RSRP or reference signal received quality

(RSRQ). Later on, in order to support coordinated multi-point

(CoMP), Release 10 defined a subset of the RRM measure-

ment set, namely CoMP measurement set, to allow the UEs

to measure and report short-term channel state information

[27]. Thereby, the aforementioned mechanisms guarantee the

availability of the required information.

The proposed algorithm, which is summarized in Algorithm

2, aims at the maximization of the energy efficiency given a

specific spectral efficiency target. From this point on, we will

refer to it as energy efficient (EE) user association algorithm.

As shown in Algorithm 2, EE considers as candidate cells

for a UE i the set of cells, denoted by Candidatesi, that

satisfy its rate requirements with fewer PRBs (cij) than a

target cthres=δ cijmin
(line 2). The spectral efficiency target

is defined by the tuning parameter δ >0, which controls the

deviation in the number of needed PRBs from the association

that requires the fewest. For instance, selecting δ=0, and thus,

cthres=0, would result in the maximum spectral efficiency,

while δ >0 would decrease the spectral efficiency accordingly

in favor of higher energy efficiency. Note also that a BS j
cannot be included in the candidates of a UE i, if SINRij is

too low and hence cij >cjmax
. To ensure that all the UEs will

be associated, EE sorts the UEs by their number of candidates

and starts with the UEs with the fewest candidates (line 3).

In order to maximize the network energy efficiency, EE

calculates for each UE i and candidate cell j the total RF

transmit power consumption needed for the traffic of the

UE i to be served, denoted by Ptotij =PANij
+PBHij

, (line

4). EE then sorts the UEs with the same Candidatesi size

by the difference in Ptotij between the candidate cells in

descending order, i.e., starting with the UE with the maximum

difference between the first and the second candidate (line

5). Thereafter, EE sorts the candidate cells of each UE i
by Ptotij in ascending order (line 6) and associates the UE

to the candidate cell, which involves the minimum power

consumption, as long as it has sufficient spectrum resources

to serve it (lines 8). Otherwise, it moves to the next candidate

(line 12). Every time a UE is associated with a BS j, the

algorithm updates the remaining spectrum resources of j.

Contrary to the algorithm providing the exact Pareto front

solutions, presented in Section III, the proposed heuristic

algorithm is much less complex, i.e., O(n log n) [28].

EE may be executed in each eNB sector at a specific time

interval based on the dynamics of the UE traffic, so that the

system performance is optimized. If a new UE becomes active

in the meantime (i.e., after the last execution of the algorithm

and before the next one), its association can be decided by

EE given the associations of the rest of the UEs. In particular,

Algorithm 2 is applied, excluding lines 3 and 5. Thereby, the

proposed algorithm can provide high network scalability.

V. SIMULATION RESULTS

A. Simulation Scenario

In the extensive simulations we executed in MATLAB R©,

we considered an eNB sector area, as depicted in Fig. 1, that

overlaps with Ncl=2 clusters. Each cluster consists of 4 SCs

(SC1=SC2=4) according to 3GPP [18]. Moreover, according

to [18], the SC clusters are uniformly distributed within the

eNB sector, and the SCs of each cluster are uniformly dropped

within the cluster area. The minimum distance between two

SCs is 20 m and between the eNB and a SC cluster center is

105 m. The minimum distance of a UE from the eNB is 35 m

and from a SC is 5 m. In addition, in each cluster, one SC (the

one being the closest to the eNB) is considered one hop away

from the eNB site and thus plays the role of the aggregator of

the cluster traffic, two SCs (the ones being the closest to the

aggregator) are considered two hops away from the eNB site

and the last SC is considered three hops away and connected

to the closest two-hop-away SC of the cluster (see Fig. 1).

In order to gain further insights into the benefits of

mmWave, we consider three different BH technologies: i) LOS
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TABLE I
SIMULATION VALUES

Parameter Value Parameter Value Parameter Value

fAN 2.0 GHz PeNBmax
46 dBm NFUE 9 dB

BeNB , BSC 10 MHz PSCmax
30 dBm NFBH 5 dB

ceNBmax
, cSCmax

50 PBHmax
47 dBm Nth -174 dBm/Hz

LpeNB
69.55+26.16 logfAN -13.82 logheNB-CH+(44.9- 6.55 logheNB) logd, d in km GTxeNB

17 dBi heNB 25 m

LpSC
69.55+26.16 logfAN -13.82 loghSC+(44.9- 6.55 loghSC ) logd, d in km GTxSC

5 dBi hSC 2.5 m

Lpo 57.5 dB GTxUE
0 dBi hm 1.5 m

CH 0.8+ (1.1 logfAN - 0.7) hm -1.56 logfAN IL 2 dB

mmWave links (fBH1= 60 GHz) of BBH1= 200 MHz channel

bandwidth [24], ii) LOS microwave8 links (fBH2= 28 GHz)

of BBH2= 28 MHz [29], and iii) sub-6GHz (fBH3= 3 GHz)

of BBH3= 10 MHz [30]. For a fair comparison, the path loss

models of the provided references are used, while the antenna

gains are selected equal to 37, 24 and 19 dBi, respectively. Due

to the static BH nature, we assume that frequency planning

among adjacent BH links is performed during the deployment

phase, so that the generated interference is mitigated.

In each realization (1000 in total), we consider N UEs of

different GBR requirements. Specifically, 60% of UEs demand

1.024 Mbps, 30% 2.560 Mbps and 10% 3.328 Mbps [19]. The

following UE traffic distribution scenarios are considered:

• Uniform: the UEs are uniformly distributed in the sector

area of radius R= 500 m.

• Hotspot: 2/3 of UEs are uniformly dropped within the

clusters (in a radius r= 70 m from cluster center) and 1/3

of UEs are uniformly dropped in the eNB sector [18].

The proposed work, as explained in Section II-A, is inde-

pendent of the employed channel allocation scheme. There-

fore, for the sake of simplicity and without loss of generality,

we assume that inter-sector interference is mitigated through

some form of fractional frequency reuse scheme or sophisti-

cated frequency allocation [31] and that the channels allocated

to the eNB are orthogonal to the channels allocated to SCs.

However, SCs belonging to different clusters reuse the same

bands, thus interfering to each other.

The rest of the simulation parameters are summarized in

Table I, where the subscript x={eNB, SC} refers to the eNB or

to a SC, respectively. Then, fAN denotes the frequency used in

the AN, while Bx is the bandwidth allocated to x and hx is the

antenna height of x. The parameter hm is the mobile antenna

height, while CH is the antenna height correction factor and

d is the distance between the BS and the UE. According to

LTE, BLER= 0.1 [22] and kov= 0.13 [23]. The slow fading

is modeled by a log-normal random variable with zero mean

and deviation 8 dB for the eNB and 10 dB for the SC signal.

B. Pareto front solutions

Following the general description of Section V-A, we con-

sider two different simulation scenarios, as depicted in Fig.

2 a) and b). In the first scenario, the UEs are uniformly dis-

tributed, while in the second they form hotspots. To that end,

in Fig. 3 a) and b) the exact Pareto front points of the problem

in (8) are depicted for the considered BH technologies.

As already mentioned, the number of PRBs and the power

consumption are two metrics that can not be minimized at

8In [29], 28 GHz is considered as mmWave. Still, in this paper, we adopt
the SC Forum categorization (Fig. 5-2 in [1]).

the same time, and thus a good trade-off between them has

to be found. Hence, each Pareto front point corresponds to a

dominant solution of the ε-constraint problem for a different ε
value, as described in Theorem 2. In general, in multi-objective

optimization, none of the Pareto front solutions is better than

the others. However, depending on the preference for each of

the conflicting objectives, a Pareto front solution may be more

preferable than another. For instance, in (8), the preference for

one objective (f1 or f2) may vary based on the network state.

In scenarios where spectral efficiency becomes important, e.g.,

in highly loaded scenarios, the operators may select a point

near the right extreme Pareto front solution to maximize the

spectral efficiency (f2= φI
2). On the other hand, when the

spectrum resources do not limit the system (except for (8c)),

the operators could select a point near the left Pareto front

solution (f1=φI
1), thus minimizing the energy consumption.

In the considered example, for all BH technologies when

f1=φI
1 (maximum energy efficiency), most UEs are associated

to SCs to minimize the AN power consumption (the AN power

consumption is much higher when a UE is associated to the

eNB than to a SC). Moreover, the UE association with the

SC that involves the minimum BH power consumption (e.g,

the one with the fewest hops or shortest BH links) is favored.

Therefore, when f1 = φI
1 (maximum energy efficiency), the

number of required PRBs is higher in the uniform scenario

(than in the hotspot), since the UEs are located further from the

SC cluster centers. On the contrary, when f2 = φI
2 (maximum

spectral efficiency), more UEs are associated to the eNB to

reduce the required PRBs at the expense of higher AN energy

consumption. Thus, the AN power consumption increase is

higher in the uniform scenario for all BH technologies, as

more UEs are associated to the eNB.

Regarding the rest of the Pareto front points, we notice

that in the uniform scenario, for the same RF transmit power

consumption as in the hotspot, more PRBs are required for all

BH technologies. This stems from the fact that the UEs located

in a hotspot mostly get associated with SCs both to use fewer

PRBs, and to have much less AN power consumption. On

the contrary, when the UEs are uniformly distributed, they are

located further from the SC clusters and thus to decrease the

RF transmit power consumption, a proportional PRB increase

is needed. This results in a steeper Pareto front curve for the

hotspot scenario, i.e., the hotspot Pareto front points provide

better trade-offs between the two objectives than the uniform.

Among the different BH technologies, mmWave presents

the best performance, since its Pareto front is shifted on the

left. This implies that mmWave can provide better trade-offs

than the rest of the BH technologies. Although mmWave

experiences the highest path loss, it is able to send high amount
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Fig. 2. Snapshots of (a) uniform and (b) hotspot traffic distribution scenarios with N=70 UEs.
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Fig. 3. Pareto front: number of PRBs vs. total RF transmit power consumption for N=70 UEs with (a) uniform and (b) hotspot traffic for different BH
technologies with frequency equal to 3 GHz, 28 GHz and 60 GHz, respectively.

of data without increasing the transmitted power due to its high

bandwidth availability. Therefore, mmWave achieves the high-

est performance gains for hotspot scenarios, where higher BH

traffic is generated. On the contrary, the available bandwidth

of sub-6GHz is very limited. Consequently, for higher BH

traffic, a significant increase in the RF transmit power of the

BH links is required, so that the SINR at the receiver increases.

Thereby, higher order modulation and coding schemes can be

used, which result in higher spectral efficiency. However, the

much higher RF transmit power consumption results in lower

energy efficiency. Still, 3 GHz outperforms 28 GHz for low

BH traffic, e.g., when only the UEs very closely located to

SCs are associated with them, as it presents lower path loss.

C. Performance Evaluation

In this section, we compare the performance of the proposed

algorithm with both the state-of-the-art and the optimal (yet

complex) solutions of Algorithm 1 for all BH technologies.

The algorithms under study are summarized in the following.

• ε-constraint9: the two extreme Pareto front analytical

solutions of the ε-constraint problem described in Sec-

9Under overloaded network conditions, when (8) had no feasible solution,
we were relaxing constraint (8b) and solving the relaxed problem for ε-
constraint EE and ε-constraint SE, while measuring the blocking probability
in each case (i.e., percentage of UEs that were not served).

tion III. In particular, we refer with ε-constraint EE to the

extreme Pareto front solution that maximizes the energy

efficiency and with ε-constraint SE to the Pareto front

solution that maximizes the spectral efficiency.

• EE: the proposed energy efficient algorithm, described in

Section IV, with cthres=0, 1, 2.

• BH-aware: the association algorithm proposed in [16].

• RSRP: a UE is associated with the BS from which it

receives the strongest reference signal [4].

• Range expansion (RE): a bias = 13 dB is added to the

RSRP if the signal comes from a SC [6], [31].

• Minimum path loss (MPL): a UE is associated with the

BS from which it has the minimum path loss (Lij =
Lpij

+ Lfij ) [14], independently of its received power.

In Fig. 4, the average network energy efficiency is depicted

for all algorithms and BH technologies versus the number of

UEs, N , under uniform traffic. In general, it can be noticed

that mmWave achieves much higher energy efficiency than the

rest of the BH technologies (i.e., 40% higher than 3 GHz and

2 times higher than 28 GHz) for all algorithms and N values.

This is due to its high bandwidth availability which results in

much lower BH power consumption (of the order of mW).

Regarding the user association algorithms, it is reminded

that ε-constraint EE shows the maximum energy efficiency

that can be achieved independently of the spectral efficiency,
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Fig. 5. Average total network energy efficiency for different N values and BH technologies (3, 28 and 60 GHz), when the UEs form hotspots.

while ε-constraint SE corresponds to the maximum energy

efficiency given that the spectral efficiency is maximized.

These solutions achieve better performance than the state-

of-the-art (e.g., ε-constraint EE shows up to 10.5, 7, and

14.5 times higher energy efficiency for 3, 28 and 60 GHz,

respectively). However, unlike the rest of the algorithms,

they present very high complexity, which increases with an

increasing number of UEs and BSs, as discussed in Section III.

As the network traffic increases, the gap between ε-

constraint EE and ε-constraint SE decreases, until the network

reaches saturation and thus the most energy-efficient solution

is also the most spectrum-efficient one. As shown in Fig. 4, the

network reaches saturation at an earlier point, i.e., for lower

traffic, in 3 GHz compared to the other technologies. This

stems from the fact that the maximum BH capacity (in terms

of maximum RF transmit power) is reached earlier for 3 GHz,

due to the much lower bandwidth availability at this frequency.

In Fig. 4, it can be also noticed that for all BH technolo-

gies the proposed low complexity (O(n log n)) EE algorithm

outperforms the state-of-the-art (except for MPL for low

traffic, which associates most UEs to SCs, leading to lower

AN power consumption, at the expense, however, of much

lower spectral efficiency, as it will be shown later on), while

achieving similar performance to the ε-constraint solutions.

Nevertheless, the selection of the parameter value cthres is

important. EE with cthres = 0 achieves equal performance to

the ε-constraint SE, while as cthres increases and the system is

not overloaded, the performance of the algorithm in terms of

energy efficiency is improved at the expense of lower spectral

efficiency. However, when the system becomes saturated a

higher threshold would result in lower energy efficiency, since

not all the traffic demands of UEs could be served (i.e., non-

zero blocking probability). Thus, for maximum performance,

the threshold should be adapted dynamically based on the

network conditions, i.e., a high threshold value should be

selected in low traffic scenarios, and a low value otherwise.

As for the rest of the algorithms, they achieve lower perfor-

mance for all BH technologies. In particular, BH-aware gives

priority to the candidate cell with the fewest hops to reach the

core network and thus most of the UEs get connected to the

eNB. Hence, similar to RSRP, for low values of N , although

the BH energy consumption is zero, there is high AN energy

consumption (we remind that the power per subcarrier is much

higher for the eNB than for a SC). On the contrary, EE takes

into account the possibility of having heterogeneous BH links

and adapts the user association accordingly. Thus, it presents

lower dependency on the employed scenario. Regarding RE,

it achieves almost the same performance as EE with cthres=0,

as there are more UEs associated with SCs, resulting in lower

AN energy consumption. However, this comes at the expense

of much lower spectral efficiency, as it will be shown later on.

Accordingly, in Fig. 5, the average network energy effi-

ciency of all algorithms is depicted in a hotspot scenario for

all BH technologies. In this scenario, mmWave achieves even

higher gains than in the uniform (i.e., 60% higher than 3 GHz

and 3 times higher than 28 GHz) for all algorithms and N
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Fig. 6. Average total RF transmit power consumption in the access network for different N values and BH technologies with hotspot traffic.
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Fig. 7. Average total RF transmit power consumption in the backhaul network for different N values and BH technologies with hotspot traffic.

values. This stems from the fact that, in hotspot scenarios, the

BH traffic increases and thus the available bandwidth of each

technology becomes more important. Due to the same reason,

in the hotspot scenario, the gap between ε-constraint EE and

ε-constraint SE for 3 GHz decreases at a higher rate. However,

it reaches saturation at a later point, i.e., for higher traffic, than

in the uniform scenario, as the AN in hotspot scenarios gets

saturated at a lower rate (most UEs get connected to SCs). This

is the reason why, in 60 GHz, where BH capacity is not the

network bottleneck, the gap decreases more smoothly than in

the uniform. The proposed solutions also achieve higher gains

(up to 15.5, 9, and 26 times higher energy efficiency for 3,

28 and 60 GHz, respectively) compared to the state-of-the-art

than in the uniform scenario. To gain further insights into that,

the AN and BH power consumption of all algorithms and BH

technologies are depicted in Fig. 6 and 7, respectively.

As it can be observed in Fig. 6, the AN power consumption

increases as N increases for all algorithms and BH technolo-

gies. For BH-aware, the AN power consumption increases

initially at a high rate, as more UEs get connected to the eNB.

Yet, for very high traffic the eNB becomes saturated, and thus

more UEs get associated with SCs, which results in a smoother

AN power consumption increase. As depicted in Fig. 7, the BH

energy consumption also increases for all algorithms (except

for ε-constraint EE), as N increases, since higher BH traffic

is generated and thus higher energy consumption.

In general, ε-constraint EE favors the user association that

minimizes the total RF transmit power consumption at a

specific instant, and thus, it presents a different behavior than

the rest of the algorithms. In particular, for low traffic, ε-

constraint EE favors the association of most UEs with SCs

and especially with the SC cluster located closer to the core

network to minimize both the AN and BH power consumption

as well as the number of PRBs required. For higher traffic,

however, which differs for different technologies (N=100 UEs

for 3 GHz and N=70, 160 UEs for 28 GHz and N=130 UEs

for 60 GHz), the BH aggregated traffic increases a lot (we

remind that the power consumption of a BH link increases

in an exponential way with the traffic that passes through the

link) and therefore the association of a portion of UEs with

the eNB is preferable in order to avoid a significant increase

in the BH power consumption. This is also due to the fact that

the association with the eNB at this point gives the possibility

of switching off one or even both SC clusters (in the case

all UEs can be served by the eNB), thus resulting in higher

energy efficiency gain. It is worth noting that the most energy-

consuming links in the considered model are the links that are

one hop away from the core network, which not only aggregate

all the traffic of the cluster but also may be much longer than

the rest of the BH links. Therefore, the complete switch off

of a cluster corresponds to the highest energy efficiency gain.

Regarding the rest of the algorithms, it is shown that ε-

constraint SE achieves a good balance between AN and BH

power consumption and so does the proposed algorithm. MPL

presents high energy efficiency for low traffic, as more UEs

are associated to SCs than in RSRP and RE, resulting in lower

AN power consumption and higher spectral efficiency than in

the uniform scenario, as it will be shown later on. For high
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TABLE II
AVERAGE NETWORK SPECTRAL EFFICIENCY (SE) AND BLOCKING PROBABILITY (BP)

Uniform Hotspot

3 GHz 28 GHz 60 GHz 3 GHz 28 GHz 60 GHz

User association algorithm
SE BP SE BP SE BP SE BP SE BP SE BP

(bps/Hz) (%) (bps/Hz) (%) (bps/Hz) (%) (bps/Hz) (%) (bps/Hz) (%) (bps/Hz) (%)

ε-constraint SE
3.50

2.08
3.53

0
3.53

0 4.34
2.42

4.33
0.02

4.34

0

EE cthres = 0 2.29 2.59 0.07
BH-aware 2.68 0.16 0.21 4.32 2.72 0.09

RSRP 3.39 2.36 3.47
0.03

3.47
0.01

4.14 3.0 4.19
0.1

4.20
RE 3.24 2.40 3.31 3.30 3.87 4.17 3.85 3.89

MPL 1.95 3.75 1.99 1.21 1.98 1.21 2.96 4.62 3.03 0.05 3.08
EE cthres = 1 3.01 2.27 3.10 0 3.12

0
3.83 3.96 3.79 0.03 3.81

EE cthres = 2 2.61 2.40 2.64 0.03 2.67 3.53 4.24 3.49 0.04 3.53
ε-constraint EE 2.21 2.08 1.70 0 1.58 3.74 2.42 2.78 0.02 2.63

traffic in 3 GHz, however, the BH power consumption of MPL

increases a lot (see Fig. 7) due to low bandwidth availability

at this frequency band leading to very low energy efficiency.

In Table II, the average network spectral efficiency as

well as the average blocking probability is presented for all

algorithms and BH technologies. As it can be observed, the

considered algorithms that aim at the maximization of the

spectral efficiency (i.e., ε-constraint SE, EE with cthres = 0,

BH-aware) achieve the highest spectral efficiency for all BH

technologies, since the UEs are connected to the BSs that

require the minimum spectrum resources for their QoS require-

ments to be fulfilled. On the contrary, RSRP and RE achieve

slightly lower spectral efficiency, as the UEs, under high traffic

load conditions, may be connected to BSs that require more

spectrum resources. MPL, unlike the rest of the algorithms,

presents much lower spectral efficiency, since it associates the

UEs independently of their SINR. Hence, it is very likely that

a UE is associated to a BS with low SINR, thus requiring more

spectrum resources to achieve the same throughput. This holds

also for EE cthres = 1, 2 since energy efficiency is increased

at the expense of lower spectral efficiency, which becomes

even lower in ε-constraint EE, where energy efficiency is

maximized. However, in overloaded networks (e.g., hotspot

traffic in 3 GHz), ε-constraint EE achieves higher spectrum

efficiency in order to ensure lower blocking probability.

In terms of blocking probability, the optimal solutions ε-

constraint EE and ε-constraint SE present always the highest

performance. The performance of the EE algorithm, however,

depends on the selected threshold value and the employed

scenario, as already explained. Specifically, under network

overloading conditions, higher threshold values result in lower

spectral efficiency as well as higher blocking probability.

Regarding the different BH technologies, notice that for 60

GHz all algorithms present the lowest blocking probability.

This stems from the fact that, contrary to the other BH

technologies, mmWave links do not become the network

bottleneck due to their very high bandwidth availability. On

the other hand, 3 GHz shows the worst performance especially

for hotspot scenarios where the BH traffic is higher.

VI. CONCLUSION

We studied the user association problem in a HetNet, where

several SCs forward their traffic through the BH to the neigh-

boring SCs until it reaches the core network. We aimed at the

joint maximization of network energy and spectrum efficiency,

without compromising the UE QoS. The problem was formu-

lated as an ε-constraint problem, which considers both the AN

and BH energy consumption. The trade-off between energy

and spectrum efficiency was analytically studied by deriving

the exact Pareto front points of the problem for different

BH technologies. The provided solutions can be used as a

benchmark for the performance evaluation of user association

algorithms. Moreover, a low-complexity adaptive algorithm

was proposed, which was shown to be able to select any

point of the Pareto front, by accordingly modifying the spectral

efficiency target cthres, and thus, to achieve a good trade-off

between the aforementioned metrics. The proposed algorithm

was also compared with existing user association solutions

under different BH technologies. Our results indicated that i)

the proposed algorithm achieves notable energy and spectrum

efficiency gains and that ii) mmWave is a promising solution

for high capacity and low energy consumption multi-hop BH.
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