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Processes governing patterns of richness of riverine fish species at
the global level can be modelled using artificial neural network
(ANN) procedures. These ANNs are the most recent development
in computer-aided identification and are very different from
conventional techniques1,2. Here we use the potential of ANNs
to deal with some of the persistent fuzzy and nonlinear problems
that confound classical statistical methods for species diversity
prediction. We show that riverine fish diversity patterns on a
global scale can be successfully predicted by geographical patterns
in local river conditions. Nonlinear relationships, fitted by ANN
methods, adequately describe the data, with up to 93 per cent of
the total variation in species richness being explained by our
results. These findings highlight the dominant effect of energy
availability and habitat heterogeneity on patterns of global fish
diversity. Our results reinforce the species-energy theory3 and
contrast with those from a recent study on North American
mammal species4, but, more interestingly, they demonstrate the
applicability of ANN methods in ecology.

A central issue in macroecology is to determine the forces that
shape large-scale patterns of species richness5,6. Three main hypoth-
eses have been proposed to explain the spatial variability in species
diversity. The first, the species-area hypothesis7, implies that species
richness increases as a power function of surface area; the second,
the species-energy hypothesis3,8, predicts that species variation is
correlated with energy availability in the system; the third, the
historical hypothesis9, explains species richness gradients in terms of
patterns of recolonization and maturation of ecosystems after
glaciation. However, so far none of the three theories has been
supported to the exclusion of the other, and many causative factors
have been cited even though total available energy has gained
currency as a major influencing parameter of species diversity.
Here we model processes governing patterns of riverine fish species
richness. We use ANNs, known for their capacity to process non-
linear relationships between variables1,2. The data we present are best
explained by the hypothesis that both distribution of available
energy and habitat heterogeneity limit fish species richness in
rivers on a worldwide scale.

Global-scale patterns of fish species richness in rivers have
previously been investigated using linear statistical models10. Results
suggest that factors related to components of river size (surface area
and flow regime) and energy availability (net primary productivity)
are most important in predicting fish diversity, whereas the role of
other possible factors (such as contemporary climate and/or his-
tory) are of only marginal importance. The effect of contemporary
available energy has been demonstrated on different groups of
organisms10–14, although some other factors (historical influence,
for example) may predict patterns of richness9,15. We have reinves-
tigated previous work10 employing ANN methods, which do not
require a linear relationship between variables and so may be better
suited to model nonlinear phenomena (Fig. 1). ANNs are different
from multiple linear regressions in that the relationships between
independent parameters and fish species richness (SR) are estimated
by an iterative trial-and-error procedure. Each influencing parameter
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Figure 1 Three-layer feed-forward artificial neural network (ANN) structure used

in this work. There are three input neurons (i) for surface of the drainage area

(SDA), mean annual flow regime (FR), and net primary productivity (NPP), and

only one output neuron (o) which corresponds to fish species richness (SR) in

rivers. The hidden layer (h) has five neurons, determined as the optimal

configuration that gives lower error during training with minimal computing

time. There are two additional bias nodes labelled with a constant input value of

1.0. Initially, the network was trained with a set of 183 rivers and their

corresponding parameters for 1,000 iterations. We then examined the capability

of the trained network to predict SR with a ‘leave-one-out’ procedure (see Fig. 4

and statistical analysis).

Figure 2 Prediction of fish species richness (SR) using the 3-5-1 artificial neural

network (ANN) model shown in Fig. 1. Scatterplots compare predicted and

observed SR values. This relationship is highly significant (n ¼ 183, r ¼ 0:958,

P , 0:0001). The diagonal line illustrates points at which the predicted value

equals the observed value. Top inset, relationship between the residual values

obtained from the ANN model and the predicted values. The horizontal line

represents points for which residuals equal zero. The relationship shows no

obvious sign of dependence of residuals (n ¼ 183, r ¼ 0:018, P ¼ 0:805), which

indicates that the ANN model fits the data well. Lower inset, frequency histogram

of residuals with most values centred near zero (n ¼ 183, mean ¼ 2 2:00, s.d.,

628.82).
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is assigned with different weights and the combined weighted values
are added to predict SR. We tested two aspects of ANN performance.
First, we evaluated the ability of the independent parameters (sur-
face of the drainage area (SDA), flow regime (FR), and net primary
productivity (NPP)) to predict SR of new samples, and thus for
modelling fish species diversity processes on the global scale.
Second, we analysed the contribution profile of each predictor as
a measure of sensitivity to match data. For this, we used a three-layer
feed-forward (3-5-1) neural network: that is, three input neurons
corresponding to the three independent parameters, five hidden
neurons determined as the optimal configuration (best compromise
between bias and variance) and one output neuron for SR, which
was trained using the backpropagation algorithm1 (Fig. 1). In the
past decade, ANN models have been widely applied in different
research fields1,2 (physics, chemistry, behavioural sciences) but very
few studies have focused on the use of ANNs in theoretical ecology
and evolution2. We now explore this possibility in the context of
conservation ecology.

The 3-5-1 ANN model (Fig. 1) accurately predicted the pattern of
observed SR on a global scale (Fig. 2). The contribution profiles of
the three predictors for explaining SR estimates are illustrated in
Fig. 3. The predictive performance of the ANN model gave sig-
nificant results with 92.9 per cent of rivers achieving a perfect data fit
(Fig. 4), thereby increasing the significance of predictions.

Examination of Fig. 3 shows that for FR and NPP parameters,
there is a strong positive effect on richness patterns, with a sigmoidal

contribution between the ability of these two variables to match
data and SR values. In contrast, the contribution of the SDA variable
(that is, river size) contributes little to variation in global fish
diversity, with a contribution profile better fitting a gaussian
function where the maximum of sensitivity is achieved for
median fish richness values and average river sizes (Fig. 3). This
conflicts with previous studies showing the importance of drainage
surface area on fish species patterns15–17. The small contribution of
surface area as a predictor variable indicates the extent to which
previous investigations were strongly influenced by log–linear
transformations. SDA and FR could be causally linked and these
processes are probably acting together, confounding their effects.
However, discharge may be a more direct measure of available
habitat diversity because it may implicitly integrate a third dimen-
sion in river size, the volume of available water for fish
communities16,17.

Interestingly, FR and NPP predictors strongly influence patterns
of global-scale SR (Fig. 3). As rivers with high flow regimes may
generally contain a greater array of habitat configurations18, a part of
island biogeographic theory7, local habitat heterogeneity may
induce this increase in global SR. Additionally, the influence of
net primary productivity, a measure of energy availability, demon-
strates the importance of energy input on riverine fish richness
patterns on a worldwide scale. This fish species richness–primary
productivity function resembles the logistic model obtained for the
three species richness–evapotranspiration relationship14. Climatic
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Figure 3 Contribution of the three independent variables (SDA, FR and NPP) used

in the 3-5-1 ANN model. Sensitivity profiles explain SR (see Fig. 1 for

abbreviations). Contribution of each independent variable to SR estimates is

assessed by visual examination of nonlinear profiles: NPPand FR variables have

a sigmoid function, with the NPP curve showing a higher range of variation than

the FR function; SDA variable better fits a gaussian function. Both NPP (which

explained 43% of the total variance) and FR (31%) show a predominant positive

effect on SR, whereas SDA (26%) has a weaker effect on SR value. The relative

importance of influencing parameters on SR was calculated according to refs 29

and 30. Inset, residual values generated by the ANN model plotted against the 8

categories of climatic zones (I to VIII). Bars represent 95% confidence intervals

(CI), and N values (for each categorical climatic zone) indicate the number of

rivers analysed. Compared to the zero residual value for which the ANN model

perfectly fits the data, we obtained a significant t-test value for climatic zones IV

(oceanic areas, overestimated mean value: t-test ¼ 2 6:29, P , 0:001) and VI

(continental areas, underestimated mean value: t-test ¼ 2:11, P , 0:041) only.

Thus, the additional contribution of climatic topography to global richness

patterns appears to be negligible (r ¼ 0:97, P , 0:0001) in comparison with the

total effect of NPP, FR and SDA variables (r ¼ 0:93, P , 0:0001).

Figure 4 ‘Leave-one-out’ cross-validation test for the 183 rivers analysed in this

study. The relationship between predicted and observed SR values is shown; the

correlation is highly significant (n ¼ 183, r ¼ 0:929, P , 0:0001) and most points

perfectly fit the straight line for which predicted values equal observed ones

(many points are superimposed on the figure). Top inset, the relationship shows

some dependencies of residuals (n ¼ 183, r ¼ 0:259, P , 0:001) essentially due to

some unfitted values in the model. Lower inset, frequency histogram of residuals

with most values centred near zero (n ¼ 183, mean ¼ 1:40, s.d., 640.82). Both

insets illustrate conventional standard controls on statistics as for insets in Fig. 2.
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topography (that is, the presence of a given river in one of the eight
conventional climatic zones; see description of data) did not
significantly contribute to the explanation of patterns of global-
scale fish species richness (Fig. 3, inset), confirming that global fish
species variability is not related to topography and latitudinal
gradients, as was suggested by the historical hypothesis9. Our
findings contradict a recent study in which North American
mammal species richness was best predicted by a hierarchical
sequence of limiting factors: that is, local energy availability was
important in comparatively cold regions of high latitudes (Alaska
and most of Canada), and topographic heterogeneity best explained
species diversity for highly productive regions of the southern part
of the continent (Southern Canada and United States)4. The main
discrepancy between this previous work and our study on fish
diversity lies in the different scales of the two analyses and in their
geographical scope. Thus, we believe that large-scale fish-richness
patterns are best explained by both energy availability and habitat
diversity: the more energy available, the more fish species the
aquatic environment can support; additionally, for regions with
identical energy inputs, habitat heterogeneity may favour coexis-
tence of more fish species.

The advantage of ANNs over conventional models stems from
their ability directly to take into account nonlinear relationships, a
common stumbling block when dealing with ecological systems19–21,
and so provide a more precise idea of the relationship between any
influencing parameter and its dependent factor. Therefore, they are
powerful models for forecasting purposes. A previous study using
logarithmic transformation of variables succeeded in explaining up
to 78% of the total variation in richness10, whereas the ANN method
achieved a much higher level (,93%) with only three environ-
mental parameters. Here, we show that large-scale species richness
in riverine fish varies among regions as a nonlinear function of
contemporary available energy in the system and local habitat
heterogeneity in rivers. Characteristics of the ANN model param-
eters are practical for predicting and assessing global trends in
biodiversity loss and habitat fragmentation. Important pervasive
forms of environmental degradation due to human activities
usually include source pollution, altered hydrological regimes (by
dams, diversions and withdrawals) and habitat destruction22,23.
Consequences of such degradation are that many aquatic species
are now threatened with extinction24. To protect and maintain
aquatic (and terrestrial) biodiversity, an understanding of the
relationships between species and ecological processes that shape
the entire ecosystem is essential25,26. The development of artificial
neural network models is a task of major importance in view of
projections of global environmental change and the need for water-
resource management. M
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Methods

Descriptionof data. Data employed in this study10 are based on a subsample of
183 plots (from a total of 292 rivers) for which all parameter values were
available. We omitted the Amazon River basin, for which the richness value of
,2000 known fish species is subject to considerable error, and which, because
of its extremely high value, may considerably bias the type of statistics used. We
selected the most recent references and adjusted species number to account for
extinction and introduction wherever possible. Only riverine fish species were
included in the analyses and secondary or migratory euryhaline fishes were
systematically withdrawn. Values for species richness (SR) refer to the total
number of riverine fish species collected from the entire drainage basin, which
corresponds to the current community richness per river. Three independent
parameters were used as the best predictors of SR. There were: total surface of
the drainage area (SDA) (generally taken from the literature, in km2); mean
annual flow regime (FR) at the river mouth (also taken from the literature, in
m3 s−1, data were not available for all rivers, so we used only 183 rivers from the
entire data set of 292); and net terrestrial primary productivity (NPP), which
refers to the rate of energy flow through the plants of the region where a given
river is located. We then tested the influence of contemporary climate

topography on SR values by analysing residual variations of richness obtained
from the ANN model across the 8 conventional climatic zones (I to VIII). The
rivers fall into the following zones: I, equatorial zone with very high annual
precipitation; II, tropical summer-rainfall zone, with heavy rains in the
summer and extreme drought during the cooler season; III, subtropical dry-
zone of deserts, with very low rainfall; IV, Mediterranean transition zone with
winter rainfall; V, warm-temperate climate zone with high humidity in
summer; VI, temperate climate zone, with moderate humidity; VII, arid
temperate climate zone of continental regions, with low rainfall; VIII, cold–
temperate or boreal climate zone, with high precipitation.
Statistical analysis. ANN models are known for their capacity to process
nonlinear relationships. We used one of the principles of ANNs, (the
backpropagation algorithm27), and a ‘leave-one-out’ cross-validation test
(where each river sample is left out of the model formulation in turn and
predicted once) to determine its performance (Fig. 4). This procedure is
appropriate when the data set is quite small and/or when each sample is
likely to have ‘unique information’ that is relevant to the regression model27,28,
as is frequently found in ecology. We used a typical three-layer feed-forward (3-
5-1) ANN (Fig. 1). To determine the relative importance of the three input
parameters, we used the procedure for partitioning the connection weights of
the ANN model21,29,30.
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